diff options
| author | Juan Marín Noguera <juan.marinn@um.es> | 2021-06-08 11:04:07 +0200 |
|---|---|---|
| committer | Juan Marín Noguera <juan.marinn@um.es> | 2021-06-08 11:04:07 +0200 |
| commit | 186e63629fb299643339cc81709b035060455e93 (patch) | |
| tree | 4b771a1b654fd64d0bdef19ac9a8867adc64acc5 /ggs | |
| parent | cd672890234ff0f3d3a25f6f1ce1682f6aac1474 (diff) | |
GGS tema 9
Diffstat (limited to 'ggs')
| -rw-r--r-- | ggs/n.lyx | 14 | ||||
| -rw-r--r-- | ggs/n9.lyx | 916 |
2 files changed, 930 insertions, 0 deletions
@@ -283,5 +283,19 @@ filename "n8.lyx" \end_layout +\begin_layout Chapter +Teorema de Gauss-Bonnet +\end_layout + +\begin_layout Standard +\begin_inset CommandInset include +LatexCommand input +filename "n9.lyx" + +\end_inset + + +\end_layout + \end_body \end_document diff --git a/ggs/n9.lyx b/ggs/n9.lyx new file mode 100644 index 0000000..0cbf9ec --- /dev/null +++ b/ggs/n9.lyx @@ -0,0 +1,916 @@ +#LyX 2.3 created this file. For more info see http://www.lyx.org/ +\lyxformat 544 +\begin_document +\begin_header +\save_transient_properties true +\origin unavailable +\textclass book +\begin_preamble +\input{../defs} +\end_preamble +\use_default_options true +\maintain_unincluded_children false +\language spanish +\language_package default +\inputencoding auto +\fontencoding global +\font_roman "default" "default" +\font_sans "default" "default" +\font_typewriter "default" "default" +\font_math "auto" "auto" +\font_default_family default +\use_non_tex_fonts false +\font_sc false +\font_osf false +\font_sf_scale 100 100 +\font_tt_scale 100 100 +\use_microtype false +\use_dash_ligatures true +\graphics default +\default_output_format default +\output_sync 0 +\bibtex_command default +\index_command default +\paperfontsize default +\spacing single +\use_hyperref false +\papersize default +\use_geometry false +\use_package amsmath 1 +\use_package amssymb 1 +\use_package cancel 1 +\use_package esint 1 +\use_package mathdots 1 +\use_package mathtools 1 +\use_package mhchem 1 +\use_package stackrel 1 +\use_package stmaryrd 1 +\use_package undertilde 1 +\cite_engine basic +\cite_engine_type default +\biblio_style plain +\use_bibtopic false +\use_indices false +\paperorientation portrait +\suppress_date false +\justification true +\use_refstyle 1 +\use_minted 0 +\index Index +\shortcut idx +\color #008000 +\end_index +\secnumdepth 3 +\tocdepth 3 +\paragraph_separation indent +\paragraph_indentation default +\is_math_indent 0 +\math_numbering_side default +\quotes_style french +\dynamic_quotes 0 +\papercolumns 1 +\papersides 1 +\paperpagestyle default +\tracking_changes false +\output_changes false +\html_math_output 0 +\html_css_as_file 0 +\html_be_strict false +\end_header + +\begin_body + +\begin_layout Section +Teorema de Liouville +\end_layout + +\begin_layout Standard +Sean +\begin_inset Formula $f,g:I\to\mathbb{R}$ +\end_inset + + diferenciables con +\begin_inset Formula $f^{2}+g^{2}\equiv1$ +\end_inset + +, +\begin_inset Formula $t_{0}\in I$ +\end_inset + + y +\begin_inset Formula $\theta_{0}\in\mathbb{R}$ +\end_inset + + con +\begin_inset Formula $f(t_{0})=\cos\theta_{0}$ +\end_inset + + y +\begin_inset Formula $g(t_{0})=\sin\theta_{0}$ +\end_inset + +, entonces existe una única función diferenciable +\begin_inset Formula $\theta:I\to\mathbb{R}$ +\end_inset + + con +\begin_inset Formula $\theta(t_{0})=\theta_{0}$ +\end_inset + + y, para todo +\begin_inset Formula $t\in I$ +\end_inset + +, +\begin_inset Formula $f(t)=\cos\theta(t)$ +\end_inset + + y +\begin_inset Formula $g(t)=\sin\theta(t)$ +\end_inset + +. + +\series bold +Demostración: +\series default + Sea +\begin_inset Formula +\[ +\theta(t):=\theta_{0}+\int_{t_{0}}^{t}(f(u)g'(u)-f'(u)g(u))du, +\] + +\end_inset + + +\begin_inset Formula $\theta$ +\end_inset + + es derivable una vez por el teorema fundamental del cálculo y su derivada + es +\begin_inset Formula ${\cal C}^{\infty}$ +\end_inset + +, por lo que +\begin_inset Formula $\theta$ +\end_inset + + es diferenciable. + Sea +\begin_inset Formula $h:I\to\mathbb{R}$ +\end_inset + + dada por +\begin_inset Formula $h(t):=(f(t)-\cos\theta(t))^{2}+(g(t)-\sin\theta(t))^{2}$ +\end_inset + +, entonces +\begin_inset Formula $h(t_{0})=0$ +\end_inset + + y +\begin_inset Formula +\begin{align*} +\frac{1}{2}h'= & (f-\cos\theta)(f'+\theta'\sin\theta)+(g-\sin\theta)(g'-\theta'\cos\theta)\\ += & (f-\cos\theta)(f'+(fg'-f'g)\sin\theta)+(g-\sin\theta)(g'-(fg'-f'g)\cos\theta)\\ += & ff'+f(fg'-f'g)\sin\theta-f'\cos\theta-(fg'-f'g)\sin\theta\cos\theta+\\ + & +gg'-g'\sin\theta-g(fg'-f'g)\cos\theta+(fg'-f'g)\sin\theta\cos\theta, +\end{align*} + +\end_inset + +pero derivando +\begin_inset Formula $f^{2}+g^{2}=1$ +\end_inset + + queda +\begin_inset Formula $2ff'+2gg'=0$ +\end_inset + +, +\begin_inset Formula $ff'+gg'=0$ +\end_inset + +, luego +\begin_inset Formula +\begin{align*} +\frac{1}{2}h(t) & =(f(fg'-f'g)-g')\sin\theta+(-f'-g(fg'-f'g))\cos\theta\\ + & =(g'(f^{2}-1)-ff'g)\sin\theta+(f'(-1+g^{2})-fgg')\cos\theta\\ + & =(g^{2}g'-ff'g)\sin\theta+(f^{2}f'-fgg')\cos\theta\\ + & =g(gg'-ff')\sin\theta+f(ff'-gg')\cos\theta=0. +\end{align*} + +\end_inset + +Para la unicidad, sea +\begin_inset Formula $\hat{\theta}$ +\end_inset + + otra función que cumple las condiciones, +\begin_inset Formula $\hat{\theta}$ +\end_inset + + se diferencia de +\begin_inset Formula $\theta$ +\end_inset + + en cada punto en un múltiplo de +\begin_inset Formula $2\pi$ +\end_inset + +, pero como +\begin_inset Formula $\hat{\theta}-\theta$ +\end_inset + + es continua con dominio conexo, su rango debe ser conexo y estar en la + componente conexa de +\begin_inset Formula $\{2k\pi\}_{k\in\mathbb{Z}}$ +\end_inset + + en la que está +\begin_inset Formula $(\hat{\theta}-\theta)(t_{0})=0$ +\end_inset + +, que es +\begin_inset Formula $\{0\}$ +\end_inset + +, luego +\begin_inset Formula $\hat{\theta}=\theta$ +\end_inset + +. +\end_layout + +\begin_layout Standard +Sean +\begin_inset Formula $S$ +\end_inset + + una superficie regular orientada por +\begin_inset Formula $N$ +\end_inset + + y +\begin_inset Formula $\alpha:I\to S$ +\end_inset + + una curva regular, +\begin_inset Formula $e_{1},e_{2},V\in\mathfrak{X}(\alpha)$ +\end_inset + + unitarios con +\begin_inset Formula $e_{2}(t)=Je_{1}(t)=N(\alpha(t))\wedge e_{1}(t)$ +\end_inset + + para todo +\begin_inset Formula $t\in I$ +\end_inset + +, entonces +\begin_inset Formula $(e_{1}(t),e_{2}(t))$ +\end_inset + + es una base ortonormal de +\begin_inset Formula $T_{\alpha(t)}S$ +\end_inset + + y existe +\begin_inset Formula $\theta(t)$ +\end_inset + + diferenciable tal que +\begin_inset Formula $V=\cos\theta e_{1}+\sin\theta e_{2}$ +\end_inset + +, y decimos que +\begin_inset Formula $\theta$ +\end_inset + + es el +\series bold +ángulo de rotación +\series default + de +\begin_inset Formula $V$ +\end_inset + + respecto a +\begin_inset Formula $e_{1}$ +\end_inset + +. +\end_layout + +\begin_layout Standard +La curvatura geodésica de +\begin_inset Formula $\alpha$ +\end_inset + + (no necesariamente p.p.a.) es +\begin_inset Formula +\[ +\kappa_{g}^{\alpha}(s)=\frac{\langle\alpha''(u),J\alpha'(u)\rangle}{\Vert\alpha'(u)\Vert^{3}}. +\] + +\end_inset + + +\end_layout + +\begin_layout Standard + +\series bold +Teorema de Liouville: +\series default + Sean +\begin_inset Formula $(U,X)$ +\end_inset + + una parametrización ortogonal de +\begin_inset Formula $S$ +\end_inset + + con primera forma fundamental +\begin_inset Formula $E,F,G$ +\end_inset + +, +\begin_inset Formula $\alpha:I\to X(U)$ +\end_inset + + una curva regular p.p.a. + con curvatura geodésica +\begin_inset Formula $\kappa_{g}$ +\end_inset + +, +\begin_inset Formula $\tilde{\alpha}:=(u,v):=X^{-1}\circ\alpha:I\to U$ +\end_inset + +, +\begin_inset Formula $e_{1}:I\to\mathbb{R}^{3}$ +\end_inset + + dado por +\begin_inset Formula +\[ +e_{1}(s):=\frac{1}{\sqrt{E(\tilde{\alpha}(s))}}X_{u}(\tilde{\alpha}(s)), +\] + +\end_inset + + +\begin_inset Formula $\theta:I\to\mathbb{R}$ +\end_inset + + el ángulo de rotación de +\begin_inset Formula $\alpha'$ +\end_inset + + respecto a +\begin_inset Formula $e_{1}$ +\end_inset + +, +\begin_inset Formula $\alpha_{v}(u):=\beta_{u}(v):=X(u,v)$ +\end_inset + +, +\begin_inset Formula $(\kappa_{g})_{1}(u,v)$ +\end_inset + + la curvatura geodésica de +\begin_inset Formula $\alpha_{v}$ +\end_inset + + en +\begin_inset Formula $u$ +\end_inset + + y +\begin_inset Formula $(\kappa_{g})_{2}(u,v)$ +\end_inset + + la de +\begin_inset Formula $\beta_{u}$ +\end_inset + + en +\begin_inset Formula $v$ +\end_inset + +, entonces +\begin_inset Formula +\[ +\kappa_{g}=\theta'+\frac{1}{2\sqrt{EG}}\left(-u'E_{v}(\tilde{\alpha})+v'G_{u}(\tilde{\alpha})\right)=\theta'+(\kappa_{g})_{1}(\tilde{\alpha})\cos\theta+(\kappa_{g})_{2}(\tilde{\alpha})\sin\theta. +\] + +\end_inset + + +\series bold +Demostración: +\series default + En efecto, +\begin_inset Formula $e_{1}$ +\end_inset + + es tangente y unitario, ya que +\begin_inset Formula +\begin{align*} +e_{1}(s) & =\frac{X_{u}}{\Vert X_{u}\Vert}(\tilde{\alpha}(s)). +\end{align*} + +\end_inset + +Entonces +\begin_inset Formula $e_{2}(s):=Je_{1}(s)$ +\end_inset + + es también tangente y unitario y ortogonal a +\begin_inset Formula $\frac{\partial X}{\partial u}$ +\end_inset + +, luego +\begin_inset Formula +\[ +e_{2}(s)=\frac{X_{v}}{\Vert X_{v}\Vert}(\tilde{\alpha}(s))=\frac{1}{\sqrt{G(\tilde{\alpha}(s))}}X_{v}(\tilde{\alpha}(s)). +\] + +\end_inset + +Con esto, +\begin_inset Formula +\begin{align*} +\left\langle \frac{De_{1}}{ds},e_{1}\right\rangle & =\langle e_{1}',e_{1}\rangle=\frac{1}{2}\frac{d}{ds}\langle e_{1},e_{1}\rangle=0,\\ +\left\langle \frac{De_{1}}{ds},e_{2}\right\rangle & =\langle e_{1}',e_{2}\rangle=\frac{d}{ds}\langle e_{1},e_{2}\rangle-\langle e_{1},e_{2}'\rangle=-\langle e_{1},e_{2}'\rangle=-\left\langle \frac{De_{2}}{ds},e_{1}\right\rangle ,\\ +\left\langle \frac{De_{2}}{ds},e_{2}\right\rangle & =\frac{1}{2}\frac{d}{ds}\langle e_{2},e_{2}\rangle=0, +\end{align*} + +\end_inset + +luego si +\begin_inset Formula $\omega:=\langle e_{1}',e_{2}\rangle=-\langle e_{1},e_{2}'\rangle$ +\end_inset + + +\begin_inset Formula +\begin{align*} +\frac{De_{1}}{ds}(s) & =\left\langle \frac{De_{1}}{ds},e_{1}\right\rangle e_{1}+\left\langle \frac{De_{2}}{ds},e_{2}\right\rangle e_{2}=\omega(s)e_{2}(s), & \frac{De_{2}}{ds}(s) & =-\omega(s)e_{1}(s). +\end{align*} + +\end_inset + +Por tanto, como +\begin_inset Formula $\alpha'=\cos\theta e_{1}+\sin\theta e_{2}$ +\end_inset + +, +\begin_inset Formula +\begin{align*} +\frac{D\alpha'}{ds} & =-\theta'\sin\theta e_{1}+\cos\theta\omega e_{2}+\theta'\cos\theta e_{2}-\sin\theta\omega e_{1}=(\theta'+\omega)(\cos\theta e_{2}-\sin\theta e_{1})\\ + & =(\theta'+\omega)J\alpha'(s). +\end{align*} + +\end_inset + +Por otro lado, +\begin_inset Formula $\frac{D\alpha'}{ds}(s)=\kappa_{g}(s)J\alpha'(s)$ +\end_inset + +, luego +\begin_inset Formula $\kappa_{g}(s)=\theta'(s)+\omega(s)$ +\end_inset + +. + Derivando la fórmula de +\begin_inset Formula $e_{1}$ +\end_inset + +, +\begin_inset Formula +\[ +e_{1}'=\frac{d}{ds}\left(\frac{1}{\sqrt{E}}\right)X_{u}(\tilde{\alpha})+\frac{1}{\sqrt{E}}\left(u'X_{uu}(\tilde{\alpha})+v'X_{uv}(\tilde{\alpha})\right). +\] + +\end_inset + +Entonces, como +\begin_inset Formula $X_{uu}(\tilde{\alpha})=\Gamma_{11}^{1}X_{u}+\Gamma_{11}^{2}X_{v}+eN$ +\end_inset + + y +\begin_inset Formula $X_{uv}=\Gamma_{12}^{1}X_{u}+\Gamma_{12}^{2}X_{v}+fN$ +\end_inset + +, +\begin_inset Formula +\begin{align*} +\omega & =\langle e_{1}',e_{2}\rangle=\frac{1}{\sqrt{EG}}\left\langle u'({\textstyle \Gamma_{11}^{1}X_{u}+\Gamma_{11}^{2}X_{v}+eN)}+v'({\textstyle \Gamma_{12}^{2}X_{u}+\Gamma_{12}^{2}X_{v}+fN}),X_{v}\right\rangle \\ + & =\frac{1}{\sqrt{EG}}(u'\Gamma_{11}^{2}G+v'\Gamma_{12}^{2}G), +\end{align*} + +\end_inset + +pero como +\begin_inset Formula +\begin{align*} +\Gamma_{11}^{2} & =\frac{-F\frac{E_{u}}{2}+EF_{u}-E\frac{E_{v}}{2}}{EG-F^{2}}=-\frac{E\frac{E_{v}}{2}}{EG}=-\frac{E_{v}}{2G}, & \Gamma_{12}^{2} & =\frac{-F\frac{E_{v}}{2}+E\frac{G_{u}}{2}}{EG-F^{2}}=\frac{E\frac{G_{u}}{2}}{EG}=\frac{G_{u}}{2G}, +\end{align*} + +\end_inset + +queda +\begin_inset Formula +\[ +\omega=\frac{1}{2\sqrt{EG}}(-u'E_{v}+v'G_{u}), +\] + +\end_inset + + la primera expresión. + Por otro lado, +\begin_inset Formula +\begin{align*} +\alpha'_{v}(u) & =X_{u}, & J\alpha'_{v}(u) & =N\wedge X_{u}=\Vert X_{u}\Vert\frac{X_{v}}{\Vert X_{v}\Vert}=\sqrt{\frac{E}{G}}X_{v}, & \alpha''_{v}(u) & =X_{uu},\\ +\beta'_{u}(v) & =X_{v}, & J\beta'_{u}(v) & =N\wedge X_{v}=-\Vert X_{v}\Vert\frac{X_{u}}{\Vert X_{u}\Vert}=-\sqrt{\frac{G}{E}}X_{u}, & \beta''_{u}(v) & =X_{vv}, +\end{align*} + +\end_inset + +y como +\begin_inset Formula +\[ +\Gamma_{22}^{1}=\frac{G(F_{v}-\frac{G_{u}}{2})-F\frac{G_{v}}{2}}{EG-F^{2}}=\frac{-G\frac{G_{u}}{2}}{EG}=-\frac{G_{u}}{2E}, +\] + +\end_inset + +queda +\begin_inset Formula +\begin{align*} +(\kappa_{g})_{1}(u,v) & =\frac{\langle\alpha''_{v}(u),J\alpha'_{v}(u)\rangle}{\Vert\alpha'_{v}(u)\Vert^{3}}=\frac{\langle\Gamma_{11}^{1}X_{u}+\Gamma_{11}^{2}X_{v}+eN,\sqrt{\frac{E}{G}}X_{v}\rangle}{\Vert X_{u}\Vert^{3}}=\sqrt{\frac{E}{G}}\frac{\Gamma_{11}^{2}G}{E\sqrt{E}}=-\frac{E_{v}}{2E\sqrt{G}},\\ +(\kappa_{g})_{2}(u,v) & =\frac{\langle\beta''_{u}(v),J\beta'_{u}(v)\rangle}{\Vert\beta'_{u}(v)\Vert^{3}}=\frac{\langle\Gamma_{22}^{1}X_{u}+\Gamma_{22}^{2}X_{v}+gN,-\sqrt{\frac{G}{E}}X_{u}\rangle}{\Vert X_{v}\Vert^{3}}=-\sqrt{\frac{G}{E}}\frac{\Gamma_{22}^{1}E}{G\sqrt{G}}=\frac{G_{u}}{2G\sqrt{E}}. +\end{align*} + +\end_inset + +Con esto, +\begin_inset Formula $E_{v}=-2E\sqrt{G}(\kappa_{g})_{1}$ +\end_inset + + y +\begin_inset Formula $G_{u}=2G\sqrt{E}(\kappa_{g})_{2}$ +\end_inset + +, luego +\begin_inset Formula +\[ +\kappa_{g}=\theta'+\frac{1}{2\sqrt{EG}}\left(u'2E\sqrt{G}(\kappa_{g})_{1}+v'2G\sqrt{E}(\kappa_{g})_{2}\right)=\theta'+u'\sqrt{E}(\kappa_{g})_{1}+\sqrt{G}v'(\kappa_{g})_{2}, +\] + +\end_inset + +y queda ver que +\begin_inset Formula $u'\sqrt{E}=\cos\theta$ +\end_inset + + y +\begin_inset Formula $v'\sqrt{G}=\sin\theta$ +\end_inset + +, pero +\begin_inset Formula +\begin{align*} +\alpha' & =(X\circ\tilde{\alpha})'=u'X_{u}+v'X_{v}\\ + & =\cos\theta e_{1}+\sin\theta e_{2}=\cos\theta\frac{1}{\sqrt{E}}X_{u}+\sin\theta\frac{1}{\sqrt{G}}X_{v}, +\end{align*} + +\end_inset + +y usando que +\begin_inset Formula $(X_{u},X_{v})$ +\end_inset + + es base despejamos y se obtiene el resultado. +\end_layout + +\begin_layout Section +Teorema de rotación de las tangentes +\end_layout + +\begin_layout Standard +Sean +\begin_inset Formula $S$ +\end_inset + + una superficie regular y +\begin_inset Formula $\alpha:[0,\ell]\to S$ +\end_inset + + un segmento de curva regular a trozos p.p.a. + (en cada trozo) +\series bold +cerrado +\series default + ( +\begin_inset Formula $\alpha(0)=\alpha(\ell)$ +\end_inset + +), +\series bold +simple +\series default + +\begin_inset Formula $(\forall s,s'\in[0,\ell],(\alpha(s)=\alpha(s')\implies s=s'\lor\{s,s'\}=\{0,\ell\})$ +\end_inset + +) y cuya traza +\begin_inset Formula $\Gamma$ +\end_inset + + es la frontera de una región +\begin_inset Formula $R$ +\end_inset + + de +\begin_inset Formula $S$ +\end_inset + + simplemente conexa, entonces la parametrización +\begin_inset Formula $\alpha$ +\end_inset + + está +\series bold +positivamente orientada +\series default + si, para +\begin_inset Formula $s\in[0,\ell]$ +\end_inset + + que no sea un vértice, +\begin_inset Formula $J\alpha'(s)$ +\end_inset + + apunta al interior de +\begin_inset Formula $R$ +\end_inset + + ( +\begin_inset Formula $\exists\delta>0:\forall t\in(0,\delta),\alpha(s)+tJ\alpha'(s)\in R$ +\end_inset + +). + +\end_layout + +\begin_layout Standard +La +\series bold +velocidad que llega +\series default + a un vértice +\begin_inset Formula $\alpha(s_{i})$ +\end_inset + + es +\begin_inset Formula $\alpha'_{-}(s_{i})$ +\end_inset + +, que en +\begin_inset Formula $\alpha(\ell)$ +\end_inset + + es +\begin_inset Formula $\alpha'_{-}(\ell):=\lim_{s\to\ell^{-}}\alpha'(s)$ +\end_inset + +, y la +\series bold +velocidad que sale +\series default + es +\begin_inset Formula $\alpha'_{+}(s_{i})$ +\end_inset + +, que en +\begin_inset Formula $\alpha(0)$ +\end_inset + + es +\begin_inset Formula $\alpha'_{+}(0)=\lim_{s\to0^{+}}\alpha'(s)$ +\end_inset + +. + El +\series bold +ángulo exterior +\series default + en un +\begin_inset Formula $\alpha(s_{i})$ +\end_inset + + es el único +\begin_inset Formula $\theta\in(-\pi,\pi]$ +\end_inset + + tal que +\begin_inset Formula +\[ +\alpha'_{+}(s_{i})=\cos\theta\alpha'_{-}(s_{i})=\sin\theta J\alpha'_{-}(s_{i}), +\] + +\end_inset + + que en +\begin_inset Formula $\alpha(0)=\alpha(\ell)$ +\end_inset + + es el que cumple +\begin_inset Formula $\alpha'_{+}(0)=\cos\theta\alpha'_{-}(\ell)+\sin\theta J\alpha'_{-}(\ell)$ +\end_inset + +. +\end_layout + +\begin_layout Standard + +\series bold +Teorema de rotación de las tangentes: +\series default + Sean +\begin_inset Formula $(U,X)$ +\end_inset + + una parametrización ortogonal de una superficie +\begin_inset Formula $S$ +\end_inset + +, +\begin_inset Formula $\alpha:[0,\ell]\to X(U)$ +\end_inset + + una parametrización positivamente orientada de la frontera +\begin_inset Formula $\Gamma$ +\end_inset + + de una región +\begin_inset Formula $R$ +\end_inset + + de +\begin_inset Formula $S$ +\end_inset + +, +\begin_inset Formula $0=s_{0}<\dots<s_{k}=\ell$ +\end_inset + + una partición en la que los +\begin_inset Formula $\alpha(s_{i})$ +\end_inset + + son los vértices de +\begin_inset Formula $\alpha$ +\end_inset + +, +\begin_inset Formula $\varepsilon_{i}$ +\end_inset + + el ángulo exterior de +\begin_inset Formula $\alpha(s_{i})$ +\end_inset + + y +\begin_inset Formula $\theta_{i}$ +\end_inset + + el ángulo de rotación de la velocidad de +\begin_inset Formula $\alpha_{i}:=\alpha|_{[s_{i-1},s_{i}]}$ +\end_inset + + respecto a +\begin_inset Formula $e_{1}(s):=X_{u}(X^{-1}(\alpha(s)))/\sqrt{E(s)}$ +\end_inset + +, entonces +\begin_inset Formula +\[ +\sum_{i=1}^{k}(\theta_{i}(s_{i})-\theta_{i}(s_{i-1}))+\sum_{i=1}^{k}\varepsilon_{i}=2\pi. +\] + +\end_inset + + +\end_layout + +\begin_layout Section +Teorema de Gauss-Bonnet local +\end_layout + +\begin_layout Standard + +\series bold +Teorema de Green: +\series default + Sea +\begin_inset Formula $\tilde{\alpha}:=(u,v):[0,\ell]\to\mathbb{R}^{2}$ +\end_inset + + una parametrización positivamente orientada de la frontera de un +\begin_inset Formula $\Omega\subseteq\mathbb{R}^{2}$ +\end_inset + + acotado y +\begin_inset Formula $P,Q:\overline{\Omega}\to\mathbb{R}$ +\end_inset + + diferenciables, +\begin_inset Formula +\[ +\iint_{\Omega}\left(\frac{\partial Q}{\partial u}-\frac{\partial P}{\partial v}\right)du\,dv=\int_{\partial\Omega}(P(\tilde{\alpha})u'+Q(\tilde{\alpha})v')ds:=\sum_{i=1}^{k}\int_{s_{i-1}}^{s_{i}}(P(\tilde{\alpha})u'+Q(\tilde{\alpha})v')ds, +\] + +\end_inset + +donde +\begin_inset Formula $0=s_{0}<\dots<s_{k}=\ell$ +\end_inset + + es una partición de +\begin_inset Formula $[0,\ell]$ +\end_inset + + tal que los +\begin_inset Formula $\alpha(s_{i})$ +\end_inset + + son los vértices de +\begin_inset Formula $\alpha$ +\end_inset + +. +\end_layout + +\begin_layout Standard + +\series bold +Versión local del teorema de Gauss-Bonnet: +\series default + Sean +\begin_inset Formula $(U,X)$ +\end_inset + + una parametrización ortogonal de +\begin_inset Formula $S$ +\end_inset + +, +\begin_inset Formula $\alpha:[0,\ell]\to X(U)$ +\end_inset + + una parametrización positivamente orientada de la frontera de una región + +\begin_inset Formula $R$ +\end_inset + + de +\begin_inset Formula $S$ +\end_inset + +, +\begin_inset Formula $0=s_{0}<\dots<s_{k}=\ell$ +\end_inset + + una partición en la que los +\begin_inset Formula $\alpha(s_{i})$ +\end_inset + + son los vértices de +\begin_inset Formula $\alpha$ +\end_inset + + y +\begin_inset Formula $\varepsilon_{i}$ +\end_inset + + el ángulo exterior de +\begin_inset Formula $\alpha(s_{i})$ +\end_inset + +, entonces +\begin_inset Formula +\[ +\int_{R}K\,dS+\int_{\partial R}\kappa_{g}ds+\sum_{i=1}^{k}\varepsilon_{i}=2\pi. +\] + +\end_inset + + +\end_layout + +\end_body +\end_document |
