diff options
| author | Juan Marín Noguera <juan.marinn@um.es> | 2020-11-22 11:19:46 +0100 |
|---|---|---|
| committer | Juan Marín Noguera <juan.marinn@um.es> | 2020-11-22 11:19:46 +0100 |
| commit | 863825a3c3055f6b5b3a961ef56ccd63a0605bf8 (patch) | |
| tree | ec940ec80331eefabe92071f54a57858eda3b975 /graf | |
| parent | 423602a2090b6145e80df98f3e02f7695f898d5f (diff) | |
Grafos
Diffstat (limited to 'graf')
| -rw-r--r-- | graf/n.lyx | 165 | ||||
| -rw-r--r-- | graf/n1.lyx | 1899 |
2 files changed, 2064 insertions, 0 deletions
diff --git a/graf/n.lyx b/graf/n.lyx new file mode 100644 index 0000000..fafb34a --- /dev/null +++ b/graf/n.lyx @@ -0,0 +1,165 @@ +#LyX 2.3 created this file. For more info see http://www.lyx.org/ +\lyxformat 544 +\begin_document +\begin_header +\save_transient_properties true +\origin unavailable +\textclass book +\begin_preamble +\input{../defs} +\end_preamble +\use_default_options true +\begin_modules +algorithm2e +\end_modules +\maintain_unincluded_children false +\language spanish +\language_package default +\inputencoding auto +\fontencoding global +\font_roman "default" "default" +\font_sans "default" "default" +\font_typewriter "default" "default" +\font_math "auto" "auto" +\font_default_family default +\use_non_tex_fonts false +\font_sc false +\font_osf false +\font_sf_scale 100 100 +\font_tt_scale 100 100 +\use_microtype false +\use_dash_ligatures true +\graphics default +\default_output_format default +\output_sync 0 +\bibtex_command default +\index_command default +\paperfontsize 10 +\spacing single +\use_hyperref false +\papersize a5paper +\use_geometry true +\use_package amsmath 1 +\use_package amssymb 1 +\use_package cancel 1 +\use_package esint 1 +\use_package mathdots 1 +\use_package mathtools 1 +\use_package mhchem 1 +\use_package stackrel 1 +\use_package stmaryrd 1 +\use_package undertilde 1 +\cite_engine basic +\cite_engine_type default +\biblio_style plain +\use_bibtopic false +\use_indices false +\paperorientation portrait +\suppress_date false +\justification true +\use_refstyle 1 +\use_minted 0 +\index Index +\shortcut idx +\color #008000 +\end_index +\leftmargin 0.2cm +\topmargin 0.7cm +\rightmargin 0.2cm +\bottommargin 0.7cm +\secnumdepth 3 +\tocdepth 3 +\paragraph_separation indent +\paragraph_indentation default +\is_math_indent 0 +\math_numbering_side default +\quotes_style swiss +\dynamic_quotes 0 +\papercolumns 1 +\papersides 1 +\paperpagestyle empty +\listings_params "basicstyle={\ttfamily}" +\tracking_changes false +\output_changes false +\html_math_output 0 +\html_css_as_file 0 +\html_be_strict false +\end_header + +\begin_body + +\begin_layout Title +Grafos y Optimización Discreta +\end_layout + +\begin_layout Date +\begin_inset Note Note +status open + +\begin_layout Plain Layout + +\end_layout + +\end_inset + + +\end_layout + +\begin_layout Standard +\begin_inset ERT +status open + +\begin_layout Plain Layout + + +\backslash +def +\backslash +cryear{2020} +\end_layout + +\end_inset + + +\end_layout + +\begin_layout Standard +\begin_inset CommandInset include +LatexCommand input +filename "../license.lyx" + +\end_inset + + +\end_layout + +\begin_layout Standard +Bibliografía: +\end_layout + +\begin_layout Itemize +Manuel Andrés Pulido Cayuela (Universidad de Murcia). + Apuntes de Grafos y Optimización Discreta. +\end_layout + +\begin_layout Itemize +Pascual Fernández Hernández (Universidad de Murcia). + Apuntes de Grafos y Optimización Discreta. +\end_layout + +\begin_layout Chapter +Grafos +\end_layout + +\begin_layout Standard +\begin_inset CommandInset include +LatexCommand input +filename "n1.lyx" + +\end_inset + + +\end_layout + +\end_body +\end_document diff --git a/graf/n1.lyx b/graf/n1.lyx new file mode 100644 index 0000000..2f8d37e --- /dev/null +++ b/graf/n1.lyx @@ -0,0 +1,1899 @@ +#LyX 2.3 created this file. For more info see http://www.lyx.org/ +\lyxformat 544 +\begin_document +\begin_header +\save_transient_properties true +\origin unavailable +\textclass book +\use_default_options true +\begin_modules +algorithm2e +\end_modules +\maintain_unincluded_children false +\language spanish +\language_package default +\inputencoding auto +\fontencoding global +\font_roman "default" "default" +\font_sans "default" "default" +\font_typewriter "default" "default" +\font_math "auto" "auto" +\font_default_family default +\use_non_tex_fonts false +\font_sc false +\font_osf false +\font_sf_scale 100 100 +\font_tt_scale 100 100 +\use_microtype false +\use_dash_ligatures true +\graphics default +\default_output_format default +\output_sync 0 +\bibtex_command default +\index_command default +\paperfontsize default +\spacing single +\use_hyperref false +\papersize default +\use_geometry false +\use_package amsmath 1 +\use_package amssymb 1 +\use_package cancel 1 +\use_package esint 1 +\use_package mathdots 1 +\use_package mathtools 1 +\use_package mhchem 1 +\use_package stackrel 1 +\use_package stmaryrd 1 +\use_package undertilde 1 +\cite_engine basic +\cite_engine_type default +\biblio_style plain +\use_bibtopic false +\use_indices false +\paperorientation portrait +\suppress_date false +\justification true +\use_refstyle 1 +\use_minted 0 +\index Index +\shortcut idx +\color #008000 +\end_index +\secnumdepth 3 +\tocdepth 3 +\paragraph_separation indent +\paragraph_indentation default +\is_math_indent 0 +\math_numbering_side default +\quotes_style french +\dynamic_quotes 0 +\papercolumns 1 +\papersides 1 +\paperpagestyle default +\tracking_changes false +\output_changes false +\html_math_output 0 +\html_css_as_file 0 +\html_be_strict false +\end_header + +\begin_body + +\begin_layout Standard +Un +\series bold +grafo dirigido +\series default + es un par +\begin_inset Formula $(V,A)$ +\end_inset + + formado por un conjunto de +\series bold +vértices +\series default + o +\series bold +nodos +\series default + +\begin_inset Formula $V$ +\end_inset + + y un subconjunto +\begin_inset Formula $A\subseteq V\times V$ +\end_inset + + de +\series bold +arcos +\series default +. + Un +\series bold +grafo no dirigido +\series default + es un par +\begin_inset Formula $(V,E)$ +\end_inset + + definido de forma similar, pero +\begin_inset Formula $E\subseteq\{S\in{\cal P}(V):|S|\in\{1,2\}\}$ +\end_inset + + es un conjunto de +\series bold +aristas +\series default + o +\series bold +ejes +\series default +, que representamos como pares de elementos no ordenados. + Podemos equiparar un grafo no dirigido +\begin_inset Formula $(V,E)$ +\end_inset + + a uno dirigido +\begin_inset Formula $(V,\{(i,j)\in V\times V:i,j\in E\})$ +\end_inset + +. +\end_layout + +\begin_layout Standard +Dado un grafo +\begin_inset Formula $G=(V,E)$ +\end_inset + +, ordenado o no, llamamos +\series bold +orden +\series default + de +\begin_inset Formula $G$ +\end_inset + + a +\begin_inset Formula $|V|$ +\end_inset + + y +\series bold +tamaño +\series default + de +\begin_inset Formula $G$ +\end_inset + + a +\begin_inset Formula $|E|$ +\end_inset + +. + Un +\series bold +bucle +\series default + es un par en +\begin_inset Formula $E$ +\end_inset + + de la forma +\begin_inset Formula $(i,i)$ +\end_inset + +. + Un +\series bold +multigrafo +\series default + es un grafo en que el segundo elemento no es un conjunto sino un multiconjunto, + en que puede aparecer el mismo elemento repetido un número finito de veces. + Un grafo es +\series bold +simple +\series default + si no tiene bucles, y es +\series bold +finito +\series default + si tiene un número finito de nodos y aristas. + Consideramos grafos no dirigidos finitos y simples. +\end_layout + +\begin_layout Standard +Dado un grafo +\begin_inset Formula $G=(V,E)$ +\end_inset + +, si +\begin_inset Formula $v\in V$ +\end_inset + +, llamamos +\begin_inset Formula $G-v$ +\end_inset + + a +\begin_inset Formula $(V\setminus\{v\},\{e\in E:v\notin e\})$ +\end_inset + +, y si +\begin_inset Formula $e\in E$ +\end_inset + +, llamamos +\begin_inset Formula $G-e$ +\end_inset + + a +\begin_inset Formula $(V,E\setminus\{e\})$ +\end_inset + +. +\end_layout + +\begin_layout Section +Grafos y subgrafos +\end_layout + +\begin_layout Standard +Un grafo +\begin_inset Formula $G:=(V,E)$ +\end_inset + + es +\series bold +completo +\series default + si +\begin_inset Formula $\forall i,j\in V,(i\neq j\implies(i,j)\in E)$ +\end_inset + +, y es +\series bold +bipartito +\series default + si existe una partición +\begin_inset Formula $\{V_{1},V_{2}\}$ +\end_inset + + de +\begin_inset Formula $V$ +\end_inset + + tal que +\begin_inset Formula $\forall e\in E,\exists a\in V_{1},b\in V_{2}:e=(a,b)$ +\end_inset + +. + Llamamos +\begin_inset Formula $K_{n}$ +\end_inset + + al grafo completo de orden +\begin_inset Formula $n$ +\end_inset + +, que tiene tamaño +\begin_inset Formula $\binom{n}{2}$ +\end_inset + +, y +\begin_inset Formula $K_{n,m}$ +\end_inset + + al mayor grafo bipartito con partición +\begin_inset Formula $\{V_{1},V_{2}\}$ +\end_inset + + del conjunto de nodos tal que +\begin_inset Formula $|V_{1}|=n$ +\end_inset + + y +\begin_inset Formula $|V_{2}|=m$ +\end_inset + +, que tiene tamaño +\begin_inset Formula $nm$ +\end_inset + +. +\end_layout + +\begin_layout Standard +El +\series bold +grafo complementario +\series default + a +\begin_inset Formula $G$ +\end_inset + + es +\begin_inset Formula +\[ +G^{\complement}:=(V,E^{\complement}):=(V,\{S\in{\cal P}(V):|S|=2,S\notin E\}). +\] + +\end_inset + +Un grafo +\begin_inset Formula $G':=(V',E')$ +\end_inset + + es un +\series bold +subgrafo +\series default + de +\begin_inset Formula $G:=(V,E)$ +\end_inset + + si +\begin_inset Formula $V'\subseteq V$ +\end_inset + + y +\begin_inset Formula $E'\subseteq E$ +\end_inset + +. + Si además +\begin_inset Formula $V'=V$ +\end_inset + +, +\begin_inset Formula $G'$ +\end_inset + + es un +\series bold +subgrafo generador +\series default + de +\begin_inset Formula $G$ +\end_inset + +. + Llamamos +\series bold +subgrafo +\series default + de +\begin_inset Formula $G$ +\end_inset + + +\series bold +inducido +\series default + por +\begin_inset Formula $V'\subseteq V$ +\end_inset + + a +\begin_inset Formula $G_{V'}:=(V',E_{V'})$ +\end_inset + +, donde +\begin_inset Formula $E_{V'}:=\{S\in E:S\subseteq V'\}$ +\end_inset + +, y +\begin_inset Formula $V$ +\end_inset + + es +\series bold +independiente +\series default + si +\begin_inset Formula $E_{V'}=\emptyset$ +\end_inset + +. + Un +\series bold +cliqué +\series default + de +\begin_inset Formula $G$ +\end_inset + + es un subgrafo completo de +\begin_inset Formula $G$ +\end_inset + +, y es +\series bold +maximal +\series default + si no está contenido en otro cliqué de +\begin_inset Formula $G$ +\end_inset + +. +\end_layout + +\begin_layout Standard +Dos grafos +\begin_inset Formula $G:=(V,E)$ +\end_inset + + y +\begin_inset Formula $G':=(V',E')$ +\end_inset + + son +\series bold +isomorfos +\series default + si existe una biyección +\begin_inset Formula $\sigma:V\to V'$ +\end_inset + + tal que +\begin_inset Formula $\forall u,v\in V,((u,v)\in E\iff(\varphi(u),\varphi(v))\in E')$ +\end_inset + +, en cuyo caso +\begin_inset Formula $\varphi$ +\end_inset + + es un +\series bold +isomorfismo de grafos +\series default +. +\end_layout + +\begin_layout Standard +Dados un grafo +\begin_inset Formula $G=(V,E)$ +\end_inset + + y +\begin_inset Formula $e:=(i,j)\in E$ +\end_inset + +, +\begin_inset Formula $i$ +\end_inset + + y +\begin_inset Formula $j$ +\end_inset + + son +\series bold +vértices extremos +\series default + de +\begin_inset Formula $e$ +\end_inset + +, +\begin_inset Formula $e$ +\end_inset + + es +\series bold +incidente +\series default + a +\begin_inset Formula $i$ +\end_inset + + y +\begin_inset Formula $j$ +\end_inset + + e +\begin_inset Formula $i$ +\end_inset + + es +\series bold +adyacente +\series default + a +\begin_inset Formula $j$ +\end_inset + +. +\end_layout + +\begin_layout Section +Grado de un nodo +\end_layout + +\begin_layout Standard +Dado un grafo +\begin_inset Formula $G:=(V,E)$ +\end_inset + +, llamamos +\series bold +entorno +\series default + de +\begin_inset Formula $v\in V$ +\end_inset + +, +\begin_inset Formula $N(v)$ +\end_inset + +, al conjunto de nodos adyacentes a +\begin_inset Formula $v$ +\end_inset + +. + Llamamos +\series bold +grado +\series default + de +\begin_inset Formula $v\in V$ +\end_inset + +, +\begin_inset Formula $o(v)$ +\end_inset + +, al número de ejes incidentes a +\begin_inset Formula $v$ +\end_inset + +, más el número de bucles en +\begin_inset Formula $v$ +\end_inset + + en grafos o multigrafos no simples para que los bucles +\begin_inset Quotes cld +\end_inset + +sumen 2 al grado +\begin_inset Quotes crd +\end_inset + +. + Así, en un grafo simple, +\begin_inset Formula $o(v)=|N(v)|$ +\end_inset + +. +\end_layout + +\begin_layout Standard +Un nodo +\begin_inset Formula $v$ +\end_inset + + es +\series bold +aislado +\series default + si +\begin_inset Formula $o(v)=0$ +\end_inset + +, y es +\series bold +hoja +\series default + si +\begin_inset Formula $o(v)=1$ +\end_inset + +, en cuyo caso el único eje incidente a +\begin_inset Formula $v$ +\end_inset + + es un +\series bold +eje colgante +\series default +. + Llamamos +\begin_inset Formula $\delta_{G}:=\min_{v\in V}o(v)$ +\end_inset + + y +\begin_inset Formula $\Delta_{G}:=\max_{v\in V}o(v)$ +\end_inset + +. + +\begin_inset Formula $G$ +\end_inset + + es +\series bold +regular +\series default + si todos sus vértices tienen el mismo grado, y +\series bold + +\begin_inset Formula $k$ +\end_inset + +-regular +\series default + si este grado es +\begin_inset Formula $k$ +\end_inset + +. +\end_layout + +\begin_layout Standard +La +\series bold +secuencia de grados +\series default + de +\begin_inset Formula $G$ +\end_inset + + es la secuencia formada por los grados de los vértices de +\begin_inset Formula $G$ +\end_inset + + puestos en orden decreciente. + Como +\series bold +teorema +\series default +, la suma de los grados de los vértices es el doble del tamaño del grafo, + pues +\begin_inset Formula +\[ +\sum_{v\in V}o(v)=\sum_{v\in V}|\{S\in E:v\in S\}|=\sum_{S\in E}|S|=2|E|. +\] + +\end_inset + +Si el grafo no es simple, es fácil ver que esto también se cumple. + Así, todo grafo tiene un número par de nodos de grado impar, pues la suma + de los grados es par. +\end_layout + +\begin_layout Section +Secuencias gráficas +\end_layout + +\begin_layout Standard +Dada una secuencia de naturales +\begin_inset Formula $S$ +\end_inset + +, una +\series bold +subrealización +\series default + de +\begin_inset Formula $S$ +\end_inset + + es un grafo +\begin_inset Formula $(\{1,\dots,n\},E)$ +\end_inset + + tal que +\begin_inset Formula $o(i)\leq d_{i}$ +\end_inset + + para +\begin_inset Formula $i\in\{1,\dots,n\}$ +\end_inset + +, y el +\series bold +índice crítico +\series default + de la subrealización es el mayor +\begin_inset Formula $h\in\{1,\dots,n+1\}$ +\end_inset + + tal que +\begin_inset Formula $\forall i<h,o(i)=d_{i}$ +\end_inset + +. + Una +\series bold +secuencia gráfica +\series default + es una secuencia de enteros que es la secuencia de grados de algún grafo. +\end_layout + +\begin_layout Standard + +\series bold +Teorema de Erdös y Gallai +\series default + (1961) +\series bold +: +\series default + Una secuencia +\begin_inset Formula $S:=(d_{1},\dots,d_{n})$ +\end_inset + + monótona decreciente de naturales es una secuencia gráfica si y sólo si + +\begin_inset Formula $\sum_{i=1}^{n}d_{i}$ +\end_inset + + es par y para +\begin_inset Formula $k\in\{1,\dots,n-1\}$ +\end_inset + +, +\begin_inset Formula +\[ +\sum_{i=1}^{k}d_{i}\leq k(k-1)+\sum_{i=k+1}^{n}\min\{k,d_{i}\}. +\] + +\end_inset + +En tal caso, el algoritmo +\begin_inset CommandInset ref +LatexCommand ref +reference "alg:erdos-gallai" +plural "false" +caps "false" +noprefix "false" + +\end_inset + + permite obtener un grafo con secuencia gráfica +\begin_inset Formula $S$ +\end_inset + +. +\end_layout + +\begin_layout Standard +\begin_inset Float algorithm +wide false +sideways false +status open + +\begin_layout Plain Layout +\begin_inset ERT +status open + +\begin_layout Plain Layout + + +\backslash +Entrada{Secuencia gráfica $S=(d_1, +\backslash +dots,d_n)$.} +\end_layout + +\begin_layout Plain Layout + + +\backslash +Salida{Grafo $G=( +\backslash +{1, +\backslash +dots,n +\backslash +},E)$ con $o(i)=d_i$ para cada $i$.} +\end_layout + +\begin_layout Plain Layout + +$E +\backslash +gets +\backslash +emptyset$ +\backslash +; +\end_layout + +\begin_layout Plain Layout + + +\backslash +Para{$h +\backslash +gets 1$ +\backslash +KwA $n$}{ +\end_layout + +\begin_layout Plain Layout + + +\backslash +Mientras{$o(h)<d_h$}{ +\end_layout + +\begin_layout Plain Layout + + +\backslash +uSSi{existe $i>h$ con $o(i)<d_i$ y $(h,i) +\backslash +notin E$}{ +\end_layout + +\begin_layout Plain Layout + + Añadir $(h,i)$ a $E$ +\backslash +; +\end_layout + +\begin_layout Plain Layout + + } +\backslash +uEnOtroCasoSi{existe $i<h$ con $(h,i) +\backslash +notin E$}{ +\end_layout + +\begin_layout Plain Layout + + Encontrar $u +\backslash +in N(i) +\backslash +setminus N(h)$ distinto de $h$ +\backslash +; +\end_layout + +\begin_layout Plain Layout + + Añadir $(i,h),(h,u)$ a $E$ y quitar $(i,u)$ +\backslash +; +\end_layout + +\begin_layout Plain Layout + + +\backslash +SSi{$d_h<o(h)$}{ +\end_layout + +\begin_layout Plain Layout + + Encontrar $k>h$ con $o(k) +\backslash +leq d_k$ +\backslash +; +\end_layout + +\begin_layout Plain Layout + + Quitar $(h,k)$ de $E$ +\backslash +; +\end_layout + +\begin_layout Plain Layout + + } +\end_layout + +\begin_layout Plain Layout + + } +\backslash +uEnOtroCasoSi{existe $k>h$ con $o(k)<h,d_k$}{ +\end_layout + +\begin_layout Plain Layout + + Encontrar $i<h$ con $i +\backslash +notin N(k)$ y +\end_layout + +\begin_layout Plain Layout + + $u +\backslash +in N(i) +\backslash +setminus N(h)$ +\backslash +; +\end_layout + +\begin_layout Plain Layout + + Añadir $(h,u),(i,k)$ a $E$ y quitar $(u,i)$ +\backslash +; +\end_layout + +\begin_layout Plain Layout + + } +\backslash +EnOtroCaso{ +\end_layout + +\begin_layout Plain Layout + + Encontrar $i,j<h$ distintos no adyacentes +\backslash +; +\end_layout + +\begin_layout Plain Layout + + Encontrar $u +\backslash +in N(i) +\backslash +setminus N(h)$ y +\end_layout + +\begin_layout Plain Layout + + $w +\backslash +in N(j) +\backslash +setminus N(h)$ mayores que $h$ +\backslash +; +\end_layout + +\begin_layout Plain Layout + + Añadir $(i,j),(h,u)$ a $E$ y quitar $(i,u),(j,w)$ +\backslash +; +\end_layout + +\begin_layout Plain Layout + + } +\end_layout + +\begin_layout Plain Layout + + } +\end_layout + +\begin_layout Plain Layout + +} +\end_layout + +\end_inset + + +\end_layout + +\begin_layout Plain Layout +\begin_inset Caption Standard + +\begin_layout Plain Layout +\begin_inset CommandInset label +LatexCommand label +name "alg:erdos-gallai" + +\end_inset + +Obtención de un grafo con una secuencia de grados determinada. +\end_layout + +\end_inset + + +\end_layout + +\end_inset + + +\end_layout + +\begin_layout Itemize +\begin_inset Argument item:1 +status open + +\begin_layout Plain Layout +\begin_inset Formula $\implies]$ +\end_inset + + +\end_layout + +\end_inset + +Sea +\begin_inset Formula $G=\{(1,\dots,n),E\}$ +\end_inset + + un grafo tal que +\begin_inset Formula $o(i)=d_{i}$ +\end_inset + + para todo +\begin_inset Formula $i$ +\end_inset + +. + Sabemos que la suma de los grados de los nodos es par. + Por otro lado, +\begin_inset Formula +\begin{align*} +\sum_{i=1}^{k}o(i) & =\sum_{i=1}^{k}|\{j\in N(i):j\leq k\}|+\sum_{i=1}^{k}|\{j\in N(i):j>k\}|\\ + & =\sum_{i=1}^{k}o_{G_{\{1,\dots,k\}}}|N(i)|+\sum_{j=k+1}^{n}|\{i\in N(j):i\leq k\}|\leq2\binom{k}{2}+\sum_{j=k+1}^{n}\min\{k,d_{j}\}. +\end{align*} + +\end_inset + + +\end_layout + +\begin_layout Itemize +\begin_inset Argument item:1 +status open + +\begin_layout Plain Layout +\begin_inset Formula $\impliedby]$ +\end_inset + + +\end_layout + +\end_inset + +Queremos ver que el algoritmo funciona en estas condiciones. + La idea es que, en cada iteración del bucle interno, +\begin_inset Formula $o(h)$ +\end_inset + + aumenta al menos en 1, y que este tiene como invariante que para +\begin_inset Formula $i<h$ +\end_inset + + es +\begin_inset Formula $o(i)=d_{i}$ +\end_inset + + y que +\begin_inset Formula $\{h+1,\dots,n\}$ +\end_inset + + es un conjunto de nodos independiente, con lo que el algoritmo va aumentando + +\begin_inset Formula $o(h)$ +\end_inset + + hasta que llega a +\begin_inset Formula $d_{h}$ +\end_inset + +, sin pasarse, y entonces pasa al siguiente +\begin_inset Formula $h$ +\end_inset + +. + Veamos los casos: +\end_layout + +\begin_deeper +\begin_layout Enumerate +\begin_inset CommandInset label +LatexCommand label +name "enu:eg-igth" + +\end_inset + +Si existe +\begin_inset Formula $i>h$ +\end_inset + + con +\begin_inset Formula $o(i)<d_{i}$ +\end_inset + + y +\begin_inset Formula $(h,i)\notin E$ +\end_inset + +, basta añadir +\begin_inset Formula $(h,i)$ +\end_inset + +. +\end_layout + +\begin_layout Enumerate +\begin_inset CommandInset label +LatexCommand label +name "enu:eg-ilth" + +\end_inset + +Si existe +\begin_inset Formula $i<h$ +\end_inset + + con +\begin_inset Formula $(h,i)\notin E$ +\end_inset + +, como +\begin_inset Formula $o(i)=d_{i}\geq d_{h}>o(h)$ +\end_inset + +, existe +\begin_inset Formula $u\in N(i)\setminus N(h)$ +\end_inset + + ( +\begin_inset Formula $u\neq h,i$ +\end_inset + +), y añadir +\begin_inset Formula $(i,h)$ +\end_inset + + y +\begin_inset Formula $(h,u)$ +\end_inset + + y quitar +\begin_inset Formula $(i,u)$ +\end_inset + + conserva los invariantes salvo que, al añadir 2 a +\begin_inset Formula $o(h)$ +\end_inset + +, podría ser +\begin_inset Formula $o(h)=d_{h}+1$ +\end_inset + +. + En tal caso, como +\begin_inset Formula $\sum_{i=1}^{n}d_{i}$ +\end_inset + + y +\begin_inset Formula $\sum_{i=1}^{n}o(i)$ +\end_inset + + son pares, +\begin_inset Formula $\sum_{i=1}^{n}(d_{i}-o(i))$ +\end_inset + + es par, y como +\begin_inset Formula $d_{h}-o(h)=-1$ +\end_inset + +, existe un +\begin_inset Formula $k\neq h$ +\end_inset + + con +\begin_inset Formula $o(k)\neq d_{k}$ +\end_inset + +, y será +\begin_inset Formula $o(k)<d_{k}$ +\end_inset + + y +\begin_inset Formula $k>h$ +\end_inset + +. + Si +\begin_inset Formula $(h,k)\notin E$ +\end_inset + + estaríamos en el caso +\begin_inset CommandInset ref +LatexCommand eqref +reference "enu:eg-igth" +plural "false" +caps "false" +noprefix "false" + +\end_inset + + (no lo hemos quitado después), luego +\begin_inset Formula $(h,k)\in E$ +\end_inset + + y basta quitar +\begin_inset Formula $(h,k)$ +\end_inset + +. +\end_layout + +\begin_layout Enumerate +\begin_inset CommandInset label +LatexCommand label +name "enu:eg-ksmall" + +\end_inset + +Si existe +\begin_inset Formula $k>h$ +\end_inset + + con +\begin_inset Formula $o(k)<h,d_{k}$ +\end_inset + +, por ser +\begin_inset Formula $o(k)<h$ +\end_inset + + existe +\begin_inset Formula $i\in\{1,\dots,h\}$ +\end_inset + + con +\begin_inset Formula $(i,k)\notin E$ +\end_inset + +. + Si fuera +\begin_inset Formula $h=i$ +\end_inset + +, como +\begin_inset Formula $o(k)<d_{k}$ +\end_inset + +, estaríamos en el caso +\begin_inset CommandInset ref +LatexCommand eqref +reference "enu:eg-igth" +plural "false" +caps "false" +noprefix "false" + +\end_inset + +, luego +\begin_inset Formula $i<h$ +\end_inset + +. + Como +\begin_inset Formula $o(i)=d_{i}\geq d_{h}>o(h)$ +\end_inset + +, existe +\begin_inset Formula $u\in N(i)\setminus N(h)$ +\end_inset + +, +\begin_inset Formula $u\neq h$ +\end_inset + + ( +\begin_inset Formula $u\neq i,k$ +\end_inset + +), y basta añadir +\begin_inset Formula $(h,u)$ +\end_inset + + e +\begin_inset Formula $(i,k)$ +\end_inset + + y quitar +\begin_inset Formula $(u,i)$ +\end_inset + +. +\end_layout + +\begin_layout Enumerate +En otro caso, al no darse +\begin_inset CommandInset ref +LatexCommand eqref +reference "enu:eg-ksmall" +plural "false" +caps "false" +noprefix "false" + +\end_inset + +, para +\begin_inset Formula $k>h$ +\end_inset + +, como +\begin_inset Formula $o(k)\leq h$ +\end_inset + + por ser +\begin_inset Formula $\{h+1,\dots,n\}$ +\end_inset + + independiente y +\begin_inset Formula $o(k)\leq d_{k}$ +\end_inset + + por ser +\begin_inset Formula $G$ +\end_inset + + una subrealización de +\begin_inset Formula $S$ +\end_inset + +, +\begin_inset Formula $o(k)=\min\{h,d_{k}\}$ +\end_inset + +, y al no darse +\begin_inset CommandInset ref +LatexCommand eqref +reference "enu:eg-ilth" +plural "false" +caps "false" +noprefix "false" + +\end_inset + + se tiene +\begin_inset Formula $1,\dots,h-1\in N(h)$ +\end_inset + +. + Afirmo que existen +\begin_inset Formula $i,j<h$ +\end_inset + + distintos y adyacentes. + En efecto, si no existieran, el subgrafo generado por +\begin_inset Formula $\{1,\dots,h\}$ +\end_inset + + sería completo, luego los ejes adyacentes a los +\begin_inset Formula $i\in\{1,\dots,h\}$ +\end_inset + + serían los de +\begin_inset Formula $K_{h}$ +\end_inset + + más lo que conectan con los +\begin_inset Formula $j\in\{h+1,\dots,n\}$ +\end_inset + + y +\begin_inset Formula +\[ +\sum_{i=1}^{h}o(i)=h(h-1)+\sum_{i=h+1}^{n}o(i)=h(h-1)+\sum_{i=h+1}^{n}\min\{h,d_{i}\}\geq\sum_{i=1}^{h}d_{i}, +\] + +\end_inset + +de modo que +\begin_inset Formula $d_{h}=o(h)$ +\end_inset + + y no se estaría ejecutando el interior del bucle. + Entonces, como +\begin_inset Formula $o(i)=d_{i}\geq d_{h}>o(h)$ +\end_inset + +, existe +\begin_inset Formula $u\in N(i)\setminus N(h)$ +\end_inset + +, +\begin_inset Formula $u\neq h$ +\end_inset + +, y análogamente existe +\begin_inset Formula $w\in N(j)\setminus N(h)$ +\end_inset + +, +\begin_inset Formula $w\neq h$ +\end_inset + +, y necesariamente +\begin_inset Formula $u,w>h$ +\end_inset + + al no conectar con +\begin_inset Formula $h$ +\end_inset + +. + Entonces, independientemente de si +\begin_inset Formula $u=w$ +\end_inset + + o no, añadir +\begin_inset Formula $(i,j)$ +\end_inset + + y +\begin_inset Formula $(h,u)$ +\end_inset + + y eliminar +\begin_inset Formula $(i,u)$ +\end_inset + + y +\begin_inset Formula $(j,w)$ +\end_inset + + mantiene los invariantes. +\end_layout + +\end_deeper +\begin_layout Standard + +\series bold +Teorema de Havel +\series default + (1955) +\series bold +y Hakimi +\series default + (1962) +\series bold +: +\series default + Una secuencia +\begin_inset Formula $S=(d_{1},\dots,d_{n})$ +\end_inset + + decreciente de naturales con +\begin_inset Formula $n\geq2$ +\end_inset + + y +\begin_inset Formula $d_{1}\geq1$ +\end_inset + + es una secuencia gráfica si y sólo si lo es el resultado de ordenar de + forma decreciente la secuencia +\begin_inset Formula +\[ +S':=(d_{2}-1,d_{3}-1,\dots,d_{d_{1}+1}-1,d_{d_{1}+2},\dots,d_{n}). +\] + +\end_inset + + +\end_layout + +\begin_layout Itemize +\begin_inset Argument item:1 +status open + +\begin_layout Plain Layout +\begin_inset Formula $\impliedby]$ +\end_inset + + +\end_layout + +\end_inset + +Si +\begin_inset Formula $G$ +\end_inset + + es un grafo con secuencia de grados +\begin_inset Formula $S'$ +\end_inset + +, añadiendo a +\begin_inset Formula $G$ +\end_inset + + un nodo y conectándolo a +\begin_inset Formula $d_{1}$ +\end_inset + + vértices con grados +\begin_inset Formula $d_{2}-1,\dots,d_{d_{1}+1}-1$ +\end_inset + +, se obtiene un grafo con secuencia de grados +\begin_inset Formula $S$ +\end_inset + +. +\end_layout + +\begin_layout Itemize +\begin_inset Argument item:1 +status open + +\begin_layout Plain Layout +\begin_inset Formula $\implies]$ +\end_inset + + +\end_layout + +\end_inset + +Sea +\begin_inset Formula $G:=(\{1,\dots,n\},E)$ +\end_inset + + un grafo con +\begin_inset Formula $o(i)=d_{i}$ +\end_inset + + para cada +\begin_inset Formula $i$ +\end_inset + + y tal que +\begin_inset Formula $\sum_{i\in N(1)}d_{i}$ +\end_inset + + es máximo entre los nodos que cumplen la propiedad. + Entonces 1 es adyacente a nodos de grados +\begin_inset Formula $d_{2},\dots,d_{d_{1}+1}$ +\end_inset + +. + En efecto, si esto no fuera cierto, existirían +\begin_inset Formula $i,j>1$ +\end_inset + + tales que +\begin_inset Formula $1\in N(j)\setminus N(i)$ +\end_inset + + y +\begin_inset Formula $d_{i}>d_{j}$ +\end_inset + +, pero como +\begin_inset Formula $o(i)>o(j)$ +\end_inset + +, existe un +\begin_inset Formula $k\in N(i)\setminus N(j)$ +\end_inset + +, +\begin_inset Formula $k\neq j$ +\end_inset + +, y +\begin_inset Formula $(V,(E\cup\{(1,i),(k,j)\})\setminus\{(1,j),(k,i)\})$ +\end_inset + + es un grafo que cumple la propiedad y tiene mayor +\begin_inset Formula $\sum_{i\in N(1)}d_{i}\#$ +\end_inset + +. + Por tanto la secuencia de grados de +\begin_inset Formula $G-1$ +\end_inset + + es la que resulta de ordenar +\begin_inset Formula $S'$ +\end_inset + +. +\end_layout + +\begin_layout Standard +\begin_inset Float algorithm +wide false +sideways false +status open + +\begin_layout Plain Layout +\begin_inset ERT +status open + +\begin_layout Plain Layout + + +\backslash +Entrada{Secuencia $S=(d_1, +\backslash +dots,d_n)$ decreciente de naturales.} +\end_layout + +\begin_layout Plain Layout + + +\backslash +Salida{Si $S$ es o no una secuencia gráfica.} +\end_layout + +\begin_layout Plain Layout + + +\backslash +lSSi{$n=0$}{ +\backslash +Devolver{sí}} +\end_layout + +\begin_layout Plain Layout + + +\backslash +Mientras{$ +\backslash +sum_{i=1}^nd_i$ es par y $d_1 +\backslash +in[1,n-1]$}{ +\end_layout + +\begin_layout Plain Layout + + $S +\backslash +gets(d_2-1, +\backslash +dots,d_{d_1+1}-1,d_{d_1+2}, +\backslash +dots,d_n)$ +\backslash +; +\end_layout + +\begin_layout Plain Layout + + Ordenar $S$ +\backslash +; +\end_layout + +\begin_layout Plain Layout + + $n +\backslash +gets n-1$ +\backslash +; +\end_layout + +\begin_layout Plain Layout + +} +\end_layout + +\begin_layout Plain Layout + + +\backslash +Devolver{$d_1=0$} +\backslash +; +\end_layout + +\end_inset + + +\end_layout + +\begin_layout Plain Layout +\begin_inset Caption Standard + +\begin_layout Plain Layout +\begin_inset CommandInset label +LatexCommand label +name "alg:havel-hakimi" + +\end_inset + +Algoritmo de Havel-Hakimi. +\end_layout + +\end_inset + + +\end_layout + +\end_inset + + +\end_layout + +\begin_layout Standard +El +\series bold +algoritmo de Havel-Hakimi +\series default + (algoritmo +\begin_inset CommandInset ref +LatexCommand eqref +reference "alg:havel-hakimi" +plural "false" +caps "false" +noprefix "false" + +\end_inset + +) permite determinar si una secuencia decreciente de naturales es gráfica. +\end_layout + +\begin_layout Section +Caminos y ciclos +\end_layout + +\begin_layout Standard +Dado un grafo +\begin_inset Formula $G=(V,E)$ +\end_inset + +, una secuencia de la forma +\begin_inset Formula +\[ +v_{0}e_{1}v_{1}e_{2}\cdots v_{k-1}e_{k}v_{k} +\] + +\end_inset + +con cada +\begin_inset Formula $v_{i}\in V$ +\end_inset + + y +\begin_inset Formula $e_{i}=(v_{i-1},v_{i})$ +\end_inset + + es un +\series bold +paseo +\series default + de +\begin_inset Formula $v_{0}$ +\end_inset + + a +\begin_inset Formula $v_{k}$ +\end_inset + +, y normalmente lo representaremos como +\begin_inset Formula $v_{0}v_{1}\cdots v_{k}$ +\end_inset + + o como +\begin_inset Formula $e_{1}e_{2}\cdots e_{k}$ +\end_inset + +. + Entonces +\begin_inset Formula $k$ +\end_inset + + es la +\series bold +longitud +\series default + del paseo. + Un paseo es +\series bold +simple +\series default + si todos sus ejes son distintos y +\series bold +cerrado +\series default + si +\begin_inset Formula $v_{0}=v_{k}$ +\end_inset + +. + Un +\series bold +circuito +\series default + es un paseo cerrado, un +\series bold +camino +\series default + es un paseo en que +\begin_inset Formula $\forall i,j\in\{0,\dots,k\},(i\neq j\land\{i,j\}\neq\{0,k\}\implies v_{i}\neq v_{j})$ +\end_inset + +, y un +\series bold +ciclo +\series default + es un camino cerrado. +\end_layout + +\begin_layout Standard +Propiedades: +\end_layout + +\begin_layout Enumerate +Todo paseo no trivial (de longitud no nula) entre dos vértices contiene + un camino no trivial entre ellos. + Por tanto todo paseo entre dos vértices contiene un camino entre ellos. +\end_layout + +\begin_deeper +\begin_layout Standard +Sea +\begin_inset Formula $v_{0}e_{1}v_{1}\cdots e_{k}v_{k}$ +\end_inset + + un paseo no trivial. + Sea +\begin_inset Formula $p\in\{1,\dots,k\}$ +\end_inset + + mínimo con +\begin_inset Formula $v_{p}=v_{k}$ +\end_inset + +, nos quedamos con +\begin_inset Formula $v_{0}e_{1}v_{1}\cdots e_{p}v_{p}$ +\end_inset + +. + Entonces, si existen +\begin_inset Formula $i,j\in\{0,\dots,p-1\}$ +\end_inset + + con +\begin_inset Formula $i<j$ +\end_inset + + y +\begin_inset Formula $v_{i}=v_{j}$ +\end_inset + +, eliminamos +\begin_inset Formula $e_{i+1}v_{i+1}\cdots e_{j}v_{j}$ +\end_inset + + y repetimos hasta que esto no suceda. + El resultado es claramente un camino, y es no trivial porque contiene al + menos a +\begin_inset Formula $e_{p}$ +\end_inset + +. +\end_layout + +\end_deeper +\begin_layout Enumerate +Todo paseo cerrado de longitud impar contiene un ciclo no trivial. +\end_layout + +\begin_deeper +\begin_layout Standard +Al tener longitud impar es no trivial y por tanto contiene un camino entre + los vértices inicial y final, que son el mismo y por tanto el camino es + un ciclo. +\end_layout + +\end_deeper +\end_body +\end_document |
