diff options
| author | Juan Marin Noguera <juan@mnpi.eu> | 2022-10-03 00:53:30 +0200 |
|---|---|---|
| committer | Juan Marin Noguera <juan@mnpi.eu> | 2022-10-03 00:53:30 +0200 |
| commit | ac94f0eb91684220aa0d803a44d80325ac1142ec (patch) | |
| tree | 2146cfd469ce0a9d1f29766140505327263de814 /mc | |
| parent | b82ae20c0fcfe2310e99e5b5a136b9d73a78e2f7 (diff) | |
MC tema 5
Diffstat (limited to 'mc')
| -rw-r--r-- | mc/n.lyx | 14 | ||||
| -rw-r--r-- | mc/n5.lyx | 839 |
2 files changed, 853 insertions, 0 deletions
@@ -292,5 +292,19 @@ filename "n4.lyx" \end_layout +\begin_layout Chapter +Reducibilidad +\end_layout + +\begin_layout Standard +\begin_inset CommandInset include +LatexCommand input +filename "n5.lyx" + +\end_inset + + +\end_layout + \end_body \end_document diff --git a/mc/n5.lyx b/mc/n5.lyx new file mode 100644 index 0000000..a32f40d --- /dev/null +++ b/mc/n5.lyx @@ -0,0 +1,839 @@ +#LyX 2.3 created this file. For more info see http://www.lyx.org/ +\lyxformat 544 +\begin_document +\begin_header +\save_transient_properties true +\origin unavailable +\textclass book +\begin_preamble +\input{../defs} +\end_preamble +\use_default_options true +\maintain_unincluded_children false +\language spanish +\language_package default +\inputencoding auto +\fontencoding global +\font_roman "default" "default" +\font_sans "default" "default" +\font_typewriter "default" "default" +\font_math "auto" "auto" +\font_default_family default +\use_non_tex_fonts false +\font_sc false +\font_osf false +\font_sf_scale 100 100 +\font_tt_scale 100 100 +\use_microtype false +\use_dash_ligatures true +\graphics default +\default_output_format default +\output_sync 0 +\bibtex_command default +\index_command default +\paperfontsize default +\spacing single +\use_hyperref false +\papersize default +\use_geometry false +\use_package amsmath 1 +\use_package amssymb 1 +\use_package cancel 1 +\use_package esint 1 +\use_package mathdots 1 +\use_package mathtools 1 +\use_package mhchem 1 +\use_package stackrel 1 +\use_package stmaryrd 1 +\use_package undertilde 1 +\cite_engine basic +\cite_engine_type default +\biblio_style plain +\use_bibtopic false +\use_indices false +\paperorientation portrait +\suppress_date false +\justification true +\use_refstyle 1 +\use_minted 0 +\index Index +\shortcut idx +\color #008000 +\end_index +\secnumdepth 3 +\tocdepth 3 +\paragraph_separation indent +\paragraph_indentation default +\is_math_indent 0 +\math_numbering_side default +\quotes_style french +\dynamic_quotes 0 +\papercolumns 1 +\papersides 1 +\paperpagestyle default +\tracking_changes false +\output_changes false +\html_math_output 0 +\html_css_as_file 0 +\html_be_strict false +\end_header + +\begin_body + +\begin_layout Standard +Un +\series bold +oráculo +\series default + para un lenguaje +\begin_inset Formula $L$ +\end_inset + + es una caja negra que decide +\begin_inset Formula $L$ +\end_inset + +. + Un lenguaje +\begin_inset Formula $A$ +\end_inset + + se +\series bold +reduce +\series default + a un lenguaje +\begin_inset Formula $B$ +\end_inset + + si existe una +\begin_inset Formula $\text{MT}$ +\end_inset + + que decide +\begin_inset Formula $A$ +\end_inset + + usando un oráculo de +\begin_inset Formula $B$ +\end_inset + +. + +\end_layout + +\begin_layout Standard +Una +\series bold +reducción +\series default + de un lenguaje +\begin_inset Formula $L_{1}\subseteq\Sigma_{1}^{*}$ +\end_inset + + a un lenguaje +\begin_inset Formula $L_{2}\subseteq\Sigma_{2}^{*}$ +\end_inset + + es una +\begin_inset Formula $f:\Sigma_{1}^{*}\to\Sigma_{2}^{*}$ +\end_inset + + tal que +\begin_inset Formula $\forall w\in\Sigma_{1}^{*},(w\in L_{1}\iff f(w)\in L_{2})$ +\end_inset + +. + Una función +\begin_inset Formula $f:\Sigma_{1}^{*}\to\Sigma_{2}^{*}$ +\end_inset + + es +\series bold +computable +\series default + si existe una +\begin_inset Formula $\text{MT}$ +\end_inset + + que siempre termina y que, para una entrada +\begin_inset Formula $w\in\Sigma_{1}^{*}$ +\end_inset + +, termina conteniendo en su cinta únicamente +\begin_inset Formula $f(w)$ +\end_inset + +. + Una +\series bold +\emph on +\lang english +mapping +\emph default +\lang spanish + reducción +\series default + de +\begin_inset Formula $L_{1}\subseteq\Sigma_{1}^{*}$ +\end_inset + + a +\begin_inset Formula $L_{2}\subseteq\Sigma_{2}^{*}$ +\end_inset + + es una reducción computable de +\begin_inset Formula $L_{1}$ +\end_inset + + a +\begin_inset Formula $L_{2}$ +\end_inset + +. + Si existe decimos que +\begin_inset Formula $L_{1}$ +\end_inset + + se puede +\series bold +reducir +\series default + a +\begin_inset Formula $L_{2}$ +\end_inset + +, +\begin_inset Formula $L_{1}\leq_{\text{m}}L_{2}$ +\end_inset + +, y esta relación es claramente transitiva. +\end_layout + +\begin_layout Standard + +\series bold +Teoremas de reducibilidad: +\end_layout + +\begin_layout Enumerate +Si +\begin_inset Formula $A\leq_{\text{m}}B$ +\end_inset + + y +\begin_inset Formula $A\notin{\cal DEC}$ +\end_inset + + entonces +\begin_inset Formula $B\notin{\cal DEC}$ +\end_inset + +. +\end_layout + +\begin_deeper +\begin_layout Standard +Si +\begin_inset Formula $B\in{\cal DEC}$ +\end_inset + +, sean +\begin_inset Formula ${\cal H}$ +\end_inset + + una +\begin_inset Formula $\text{MT}$ +\end_inset + + que decide +\begin_inset Formula $B$ +\end_inset + + y +\begin_inset Formula ${\cal F}$ +\end_inset + + una que calcula una +\emph on +\lang english +mapping +\emph default +\lang spanish + reducción de +\begin_inset Formula $A$ +\end_inset + + a +\begin_inset Formula $B$ +\end_inset + +, una +\begin_inset Formula $\text{MT}$ +\end_inset + + que ejecuta +\begin_inset Formula ${\cal F}$ +\end_inset + + y luego +\begin_inset Formula ${\cal H}$ +\end_inset + + decide +\begin_inset Formula $A$ +\end_inset + +, luego +\begin_inset Formula $A\in{\cal DEC}$ +\end_inset + +. +\end_layout + +\end_deeper +\begin_layout Enumerate +Si +\begin_inset Formula $A\leq_{\text{m}}B$ +\end_inset + + y +\begin_inset Formula $A\notin{\cal RE}$ +\end_inset + + entonces +\begin_inset Formula $B\notin{\cal RE}$ +\end_inset + +. +\end_layout + +\begin_deeper +\begin_layout Standard +Análogo. +\end_layout + +\end_deeper +\begin_layout Standard +Ejemplos: +\end_layout + +\begin_layout Enumerate + +\series bold +Problema de la parada. + +\series default + +\begin_inset Formula +\[ +\text{HALT}^{\text{MT}}\coloneqq\{\langle{\cal M},w\rangle:{\cal M}\text{ es una MT que para con entrada }w\}\notin{\cal DEC}. +\] + +\end_inset + + +\end_layout + +\begin_deeper +\begin_layout Standard +Sea +\begin_inset Formula ${\cal M}'$ +\end_inset + + es una +\begin_inset Formula $\text{MT}$ +\end_inset + + que ejecuta +\begin_inset Formula ${\cal M}$ +\end_inset + +, acepta si +\begin_inset Formula ${\cal M}$ +\end_inset + + acepta y entra en bucle infinito en otro caso, +\begin_inset Formula $\langle{\cal M},w\rangle\mapsto\langle{\cal M}',w\rangle$ +\end_inset + + es una +\emph on +\lang english +mapping +\emph default +\lang spanish + reducción de +\begin_inset Formula $K$ +\end_inset + + a +\begin_inset Formula $\text{HALT}^{\text{MT}}$ +\end_inset + +, y +\begin_inset Formula $K\notin{\cal DEC}$ +\end_inset + +. +\end_layout + +\end_deeper +\begin_layout Enumerate +\begin_inset Formula $\text{EMPTY}^{\text{MT}}\coloneqq\{\langle{\cal M}\rangle:{\cal M}\text{ es una MT que no acepta ninguna cadena}\}\notin{\cal DEC}$ +\end_inset + +. +\end_layout + +\begin_deeper +\begin_layout Standard +Dadas una +\begin_inset Formula $\text{MT}$ +\end_inset + + +\begin_inset Formula ${\cal M}$ +\end_inset + + y una cadena +\begin_inset Formula $w$ +\end_inset + +, definimos +\begin_inset Formula ${\cal M}_{w}$ +\end_inset + + como una máquina que comprueba si la entrada es +\begin_inset Formula $w$ +\end_inset + +, rechaza si no lo es y ejecuta +\begin_inset Formula ${\cal M}$ +\end_inset + +, de modo que +\begin_inset Formula +\[ +L({\cal M}_{w})=\begin{cases} +\{w\}, & w\in L({\cal M});\\ +\emptyset, & \text{en otro caso}, +\end{cases} +\] + +\end_inset + +y +\begin_inset Formula $\langle{\cal M},w\rangle\mapsto\langle{\cal M}_{w}\rangle$ +\end_inset + + es una +\emph on +\lang english +mapping +\emph default +\lang spanish + reducción de +\begin_inset Formula $K$ +\end_inset + + a +\begin_inset Formula $\overline{\text{EMPTY}^{\text{MT}}}$ +\end_inset + +, con lo que +\begin_inset Formula $\overline{\text{EMPTY}^{\text{MT}}}\notin{\cal DEC}$ +\end_inset + + y por tanto +\begin_inset Formula $\text{EMPTY}^{\text{MT}}\notin{\cal DEC}$ +\end_inset + +. +\end_layout + +\end_deeper +\begin_layout Enumerate +\begin_inset Formula $\text{Pass}\coloneqq\{\langle{\cal M},w,q\rangle:{\cal M}\text{ es una MT que, con entrada }w\text{, pasa por el estado \ensuremath{q}}\}\notin{\cal DEC}$ +\end_inset + +. +\end_layout + +\begin_deeper +\begin_layout Standard +\begin_inset Formula $\langle{\cal M},w\rangle\mapsto\langle{\cal M},w,q_{f}\rangle$ +\end_inset + +, donde +\begin_inset Formula $q_{f}$ +\end_inset + + es el estado final de +\begin_inset Formula ${\cal M}$ +\end_inset + +, es una +\emph on +\lang english +mapping +\emph default +\lang spanish + reducción de +\begin_inset Formula $K$ +\end_inset + + a +\begin_inset Formula $\text{Pass}$ +\end_inset + +, pues si +\begin_inset Formula ${\cal M}$ +\end_inset + + acepta +\begin_inset Formula $w$ +\end_inset + +, pasa por +\begin_inset Formula $q_{f}$ +\end_inset + + cuando tiene entrada +\begin_inset Formula $w$ +\end_inset + +, y si no la acepta es porque no pasa por +\begin_inset Formula $q_{f}$ +\end_inset + +. +\end_layout + +\end_deeper +\begin_layout Standard +Un lenguaje +\begin_inset Formula $L\in{\cal RE}$ +\end_inset + + es +\series bold +completo +\series default + para +\begin_inset Formula ${\cal RE}$ +\end_inset + + si todo +\begin_inset Formula $L'\in{\cal RE}$ +\end_inset + + se puede reducir a +\begin_inset Formula $L$ +\end_inset + +. + Entonces: +\end_layout + +\begin_layout Enumerate +\begin_inset Formula $K$ +\end_inset + + es completo en +\begin_inset Formula ${\cal RE}$ +\end_inset + +. +\end_layout + +\begin_deeper +\begin_layout Standard +Dado +\begin_inset Formula $L\in{\cal RE}$ +\end_inset + +, sea +\begin_inset Formula ${\cal M}$ +\end_inset + + una máquina que enumera +\begin_inset Formula $L$ +\end_inset + +, +\begin_inset Formula $\langle w\rangle\mapsto\langle{\cal M},w\rangle$ +\end_inset + + es una +\emph on +\lang english +mapping +\emph default +\lang spanish + reducción de +\begin_inset Formula $L$ +\end_inset + + a +\begin_inset Formula $K$ +\end_inset + +. +\end_layout + +\end_deeper +\begin_layout Enumerate +Si +\begin_inset Formula $L$ +\end_inset + + es completo en +\begin_inset Formula ${\cal RE}$ +\end_inset + + y +\begin_inset Formula $L'\in{\cal RE}$ +\end_inset + + cumple +\begin_inset Formula $L\leq_{\text{m}}L'$ +\end_inset + +, +\begin_inset Formula $L'$ +\end_inset + + es completo en +\begin_inset Formula ${\cal RE}$ +\end_inset + +. +\end_layout + +\begin_layout Standard +Una +\series bold +propiedad +\series default + de los lenguajes recursivamente enumerables es una proposición cuya única + variable libre se refiere a un lenguaje en +\begin_inset Formula ${\cal RE}$ +\end_inset + +, y se puede identificar con la subclase de los lenguajes en +\begin_inset Formula ${\cal RE}$ +\end_inset + + que cumplen la propiedad. + Es +\series bold +trivial +\series default + si es +\begin_inset Formula $\emptyset$ +\end_inset + + o +\begin_inset Formula ${\cal RE}$ +\end_inset + +. + Así, +\begin_inset Formula ${\cal REG}$ +\end_inset + +, +\begin_inset Formula ${\cal CF}$ +\end_inset + +, +\begin_inset Formula ${\cal DEC}$ +\end_inset + + y +\begin_inset Formula $\{L\text{ es finito}\}$ +\end_inset + + son propiedades no triviales. +\end_layout + +\begin_layout Standard + +\series bold +Teorema de Rice: +\series default + Para una propiedad +\begin_inset Formula $P$ +\end_inset + + de +\begin_inset Formula ${\cal RE}$ +\end_inset + + no trivial, +\begin_inset Formula +\[ +{\cal L}_{P}\coloneqq\{\langle{\cal M}\rangle:{\cal M}\text{ es una MT con }L(M)\in P\}\notin{\cal DEC}. +\] + +\end_inset + + +\series bold +Demostración: +\series default + Supongamos +\begin_inset Formula ${\cal L}_{P}\in{\cal DEC}$ +\end_inset + +, con lo que existe +\begin_inset Formula ${\cal M}_{P}$ +\end_inset + + que decide +\begin_inset Formula ${\cal L}_{P}$ +\end_inset + +. + Como +\begin_inset Formula $P$ +\end_inset + + es no trivial, existen +\begin_inset Formula $L_{1}\in{\cal L}_{P}$ +\end_inset + + y +\begin_inset Formula $L_{2}\in{\cal RE}\setminus{\cal L}_{P}$ +\end_inset + +, y podemos tomar que uno de los dos sea +\begin_inset Formula $\emptyset$ +\end_inset + +. + Si, por ejemplo, +\begin_inset Formula $L_{2}=\emptyset$ +\end_inset + +, sea +\begin_inset Formula ${\cal M}_{L_{1}}$ +\end_inset + + una +\begin_inset Formula $\text{MT}$ +\end_inset + + que enumera +\begin_inset Formula $L_{1}$ +\end_inset + +, para cada +\begin_inset Formula $\text{MT}$ +\end_inset + + +\begin_inset Formula ${\cal M}$ +\end_inset + + y cada cadena +\begin_inset Formula $w$ +\end_inset + +, definimos +\begin_inset Formula ${\cal M}_{w}$ +\end_inset + + como una +\begin_inset Formula $\text{MT}$ +\end_inset + + que, ante una entrada +\begin_inset Formula $x$ +\end_inset + +, ejecuta +\begin_inset Formula ${\cal M}$ +\end_inset + + con entrada +\begin_inset Formula $w$ +\end_inset + +, entra en bucle infinito si +\begin_inset Formula ${\cal M}$ +\end_inset + + rechaza, y en otro caso ejecuta +\begin_inset Formula ${\cal M}_{L_{1}}$ +\end_inset + + con entrada +\begin_inset Formula $x$ +\end_inset + + y devuelve el resultado de esta última máquina. + Entonces +\begin_inset Formula +\[ +L({\cal M}_{w})=\begin{cases} +L_{1}, & w\in L({\cal M});\\ +\emptyset, & \text{en otro caso}, +\end{cases} +\] + +\end_inset + +luego +\begin_inset Formula $\langle{\cal M},w\rangle\mapsto\langle{\cal M}_{w}\rangle$ +\end_inset + + es una +\emph on +\lang english +mapping +\emph default +\lang spanish + reducción de +\begin_inset Formula $K$ +\end_inset + + a +\begin_inset Formula ${\cal L}_{P}$ +\end_inset + + y basta aplicar el primer teorema de reducibilidad. + Si +\begin_inset Formula $L_{1}=\emptyset$ +\end_inset + + esto permite probar que +\begin_inset Formula ${\cal RE}\setminus{\cal L}_{P}\notin{\cal DEC}$ +\end_inset + + y por tanto +\begin_inset Formula ${\cal L}_{P}\notin{\cal DEC}$ +\end_inset + +. +\end_layout + +\begin_layout Standard +Un lenguaje es +\series bold +indecidible +\series default + si no es +\begin_inset Formula ${\cal RE}$ +\end_inset + +, pero existen +\series bold +grados de indecidibilidad +\series default + según los oráculos que hacen falta para poder enumerarlo. +\end_layout + +\end_body +\end_document |
