aboutsummaryrefslogtreecommitdiff
path: root/mc
diff options
context:
space:
mode:
authorJuan Marin Noguera <juan@mnpi.eu>2022-10-03 00:53:30 +0200
committerJuan Marin Noguera <juan@mnpi.eu>2022-10-03 00:53:30 +0200
commitac94f0eb91684220aa0d803a44d80325ac1142ec (patch)
tree2146cfd469ce0a9d1f29766140505327263de814 /mc
parentb82ae20c0fcfe2310e99e5b5a136b9d73a78e2f7 (diff)
MC tema 5
Diffstat (limited to 'mc')
-rw-r--r--mc/n.lyx14
-rw-r--r--mc/n5.lyx839
2 files changed, 853 insertions, 0 deletions
diff --git a/mc/n.lyx b/mc/n.lyx
index a4af3fb..6720d03 100644
--- a/mc/n.lyx
+++ b/mc/n.lyx
@@ -292,5 +292,19 @@ filename "n4.lyx"
\end_layout
+\begin_layout Chapter
+Reducibilidad
+\end_layout
+
+\begin_layout Standard
+\begin_inset CommandInset include
+LatexCommand input
+filename "n5.lyx"
+
+\end_inset
+
+
+\end_layout
+
\end_body
\end_document
diff --git a/mc/n5.lyx b/mc/n5.lyx
new file mode 100644
index 0000000..a32f40d
--- /dev/null
+++ b/mc/n5.lyx
@@ -0,0 +1,839 @@
+#LyX 2.3 created this file. For more info see http://www.lyx.org/
+\lyxformat 544
+\begin_document
+\begin_header
+\save_transient_properties true
+\origin unavailable
+\textclass book
+\begin_preamble
+\input{../defs}
+\end_preamble
+\use_default_options true
+\maintain_unincluded_children false
+\language spanish
+\language_package default
+\inputencoding auto
+\fontencoding global
+\font_roman "default" "default"
+\font_sans "default" "default"
+\font_typewriter "default" "default"
+\font_math "auto" "auto"
+\font_default_family default
+\use_non_tex_fonts false
+\font_sc false
+\font_osf false
+\font_sf_scale 100 100
+\font_tt_scale 100 100
+\use_microtype false
+\use_dash_ligatures true
+\graphics default
+\default_output_format default
+\output_sync 0
+\bibtex_command default
+\index_command default
+\paperfontsize default
+\spacing single
+\use_hyperref false
+\papersize default
+\use_geometry false
+\use_package amsmath 1
+\use_package amssymb 1
+\use_package cancel 1
+\use_package esint 1
+\use_package mathdots 1
+\use_package mathtools 1
+\use_package mhchem 1
+\use_package stackrel 1
+\use_package stmaryrd 1
+\use_package undertilde 1
+\cite_engine basic
+\cite_engine_type default
+\biblio_style plain
+\use_bibtopic false
+\use_indices false
+\paperorientation portrait
+\suppress_date false
+\justification true
+\use_refstyle 1
+\use_minted 0
+\index Index
+\shortcut idx
+\color #008000
+\end_index
+\secnumdepth 3
+\tocdepth 3
+\paragraph_separation indent
+\paragraph_indentation default
+\is_math_indent 0
+\math_numbering_side default
+\quotes_style french
+\dynamic_quotes 0
+\papercolumns 1
+\papersides 1
+\paperpagestyle default
+\tracking_changes false
+\output_changes false
+\html_math_output 0
+\html_css_as_file 0
+\html_be_strict false
+\end_header
+
+\begin_body
+
+\begin_layout Standard
+Un
+\series bold
+oráculo
+\series default
+ para un lenguaje
+\begin_inset Formula $L$
+\end_inset
+
+ es una caja negra que decide
+\begin_inset Formula $L$
+\end_inset
+
+.
+ Un lenguaje
+\begin_inset Formula $A$
+\end_inset
+
+ se
+\series bold
+reduce
+\series default
+ a un lenguaje
+\begin_inset Formula $B$
+\end_inset
+
+ si existe una
+\begin_inset Formula $\text{MT}$
+\end_inset
+
+ que decide
+\begin_inset Formula $A$
+\end_inset
+
+ usando un oráculo de
+\begin_inset Formula $B$
+\end_inset
+
+.
+
+\end_layout
+
+\begin_layout Standard
+Una
+\series bold
+reducción
+\series default
+ de un lenguaje
+\begin_inset Formula $L_{1}\subseteq\Sigma_{1}^{*}$
+\end_inset
+
+ a un lenguaje
+\begin_inset Formula $L_{2}\subseteq\Sigma_{2}^{*}$
+\end_inset
+
+ es una
+\begin_inset Formula $f:\Sigma_{1}^{*}\to\Sigma_{2}^{*}$
+\end_inset
+
+ tal que
+\begin_inset Formula $\forall w\in\Sigma_{1}^{*},(w\in L_{1}\iff f(w)\in L_{2})$
+\end_inset
+
+.
+ Una función
+\begin_inset Formula $f:\Sigma_{1}^{*}\to\Sigma_{2}^{*}$
+\end_inset
+
+ es
+\series bold
+computable
+\series default
+ si existe una
+\begin_inset Formula $\text{MT}$
+\end_inset
+
+ que siempre termina y que, para una entrada
+\begin_inset Formula $w\in\Sigma_{1}^{*}$
+\end_inset
+
+, termina conteniendo en su cinta únicamente
+\begin_inset Formula $f(w)$
+\end_inset
+
+.
+ Una
+\series bold
+\emph on
+\lang english
+mapping
+\emph default
+\lang spanish
+ reducción
+\series default
+ de
+\begin_inset Formula $L_{1}\subseteq\Sigma_{1}^{*}$
+\end_inset
+
+ a
+\begin_inset Formula $L_{2}\subseteq\Sigma_{2}^{*}$
+\end_inset
+
+ es una reducción computable de
+\begin_inset Formula $L_{1}$
+\end_inset
+
+ a
+\begin_inset Formula $L_{2}$
+\end_inset
+
+.
+ Si existe decimos que
+\begin_inset Formula $L_{1}$
+\end_inset
+
+ se puede
+\series bold
+reducir
+\series default
+ a
+\begin_inset Formula $L_{2}$
+\end_inset
+
+,
+\begin_inset Formula $L_{1}\leq_{\text{m}}L_{2}$
+\end_inset
+
+, y esta relación es claramente transitiva.
+\end_layout
+
+\begin_layout Standard
+
+\series bold
+Teoremas de reducibilidad:
+\end_layout
+
+\begin_layout Enumerate
+Si
+\begin_inset Formula $A\leq_{\text{m}}B$
+\end_inset
+
+ y
+\begin_inset Formula $A\notin{\cal DEC}$
+\end_inset
+
+ entonces
+\begin_inset Formula $B\notin{\cal DEC}$
+\end_inset
+
+.
+\end_layout
+
+\begin_deeper
+\begin_layout Standard
+Si
+\begin_inset Formula $B\in{\cal DEC}$
+\end_inset
+
+, sean
+\begin_inset Formula ${\cal H}$
+\end_inset
+
+ una
+\begin_inset Formula $\text{MT}$
+\end_inset
+
+ que decide
+\begin_inset Formula $B$
+\end_inset
+
+ y
+\begin_inset Formula ${\cal F}$
+\end_inset
+
+ una que calcula una
+\emph on
+\lang english
+mapping
+\emph default
+\lang spanish
+ reducción de
+\begin_inset Formula $A$
+\end_inset
+
+ a
+\begin_inset Formula $B$
+\end_inset
+
+, una
+\begin_inset Formula $\text{MT}$
+\end_inset
+
+ que ejecuta
+\begin_inset Formula ${\cal F}$
+\end_inset
+
+ y luego
+\begin_inset Formula ${\cal H}$
+\end_inset
+
+ decide
+\begin_inset Formula $A$
+\end_inset
+
+, luego
+\begin_inset Formula $A\in{\cal DEC}$
+\end_inset
+
+.
+\end_layout
+
+\end_deeper
+\begin_layout Enumerate
+Si
+\begin_inset Formula $A\leq_{\text{m}}B$
+\end_inset
+
+ y
+\begin_inset Formula $A\notin{\cal RE}$
+\end_inset
+
+ entonces
+\begin_inset Formula $B\notin{\cal RE}$
+\end_inset
+
+.
+\end_layout
+
+\begin_deeper
+\begin_layout Standard
+Análogo.
+\end_layout
+
+\end_deeper
+\begin_layout Standard
+Ejemplos:
+\end_layout
+
+\begin_layout Enumerate
+
+\series bold
+Problema de la parada.
+
+\series default
+
+\begin_inset Formula
+\[
+\text{HALT}^{\text{MT}}\coloneqq\{\langle{\cal M},w\rangle:{\cal M}\text{ es una MT que para con entrada }w\}\notin{\cal DEC}.
+\]
+
+\end_inset
+
+
+\end_layout
+
+\begin_deeper
+\begin_layout Standard
+Sea
+\begin_inset Formula ${\cal M}'$
+\end_inset
+
+ es una
+\begin_inset Formula $\text{MT}$
+\end_inset
+
+ que ejecuta
+\begin_inset Formula ${\cal M}$
+\end_inset
+
+, acepta si
+\begin_inset Formula ${\cal M}$
+\end_inset
+
+ acepta y entra en bucle infinito en otro caso,
+\begin_inset Formula $\langle{\cal M},w\rangle\mapsto\langle{\cal M}',w\rangle$
+\end_inset
+
+ es una
+\emph on
+\lang english
+mapping
+\emph default
+\lang spanish
+ reducción de
+\begin_inset Formula $K$
+\end_inset
+
+ a
+\begin_inset Formula $\text{HALT}^{\text{MT}}$
+\end_inset
+
+, y
+\begin_inset Formula $K\notin{\cal DEC}$
+\end_inset
+
+.
+\end_layout
+
+\end_deeper
+\begin_layout Enumerate
+\begin_inset Formula $\text{EMPTY}^{\text{MT}}\coloneqq\{\langle{\cal M}\rangle:{\cal M}\text{ es una MT que no acepta ninguna cadena}\}\notin{\cal DEC}$
+\end_inset
+
+.
+\end_layout
+
+\begin_deeper
+\begin_layout Standard
+Dadas una
+\begin_inset Formula $\text{MT}$
+\end_inset
+
+
+\begin_inset Formula ${\cal M}$
+\end_inset
+
+ y una cadena
+\begin_inset Formula $w$
+\end_inset
+
+, definimos
+\begin_inset Formula ${\cal M}_{w}$
+\end_inset
+
+ como una máquina que comprueba si la entrada es
+\begin_inset Formula $w$
+\end_inset
+
+, rechaza si no lo es y ejecuta
+\begin_inset Formula ${\cal M}$
+\end_inset
+
+, de modo que
+\begin_inset Formula
+\[
+L({\cal M}_{w})=\begin{cases}
+\{w\}, & w\in L({\cal M});\\
+\emptyset, & \text{en otro caso},
+\end{cases}
+\]
+
+\end_inset
+
+y
+\begin_inset Formula $\langle{\cal M},w\rangle\mapsto\langle{\cal M}_{w}\rangle$
+\end_inset
+
+ es una
+\emph on
+\lang english
+mapping
+\emph default
+\lang spanish
+ reducción de
+\begin_inset Formula $K$
+\end_inset
+
+ a
+\begin_inset Formula $\overline{\text{EMPTY}^{\text{MT}}}$
+\end_inset
+
+, con lo que
+\begin_inset Formula $\overline{\text{EMPTY}^{\text{MT}}}\notin{\cal DEC}$
+\end_inset
+
+ y por tanto
+\begin_inset Formula $\text{EMPTY}^{\text{MT}}\notin{\cal DEC}$
+\end_inset
+
+.
+\end_layout
+
+\end_deeper
+\begin_layout Enumerate
+\begin_inset Formula $\text{Pass}\coloneqq\{\langle{\cal M},w,q\rangle:{\cal M}\text{ es una MT que, con entrada }w\text{, pasa por el estado \ensuremath{q}}\}\notin{\cal DEC}$
+\end_inset
+
+.
+\end_layout
+
+\begin_deeper
+\begin_layout Standard
+\begin_inset Formula $\langle{\cal M},w\rangle\mapsto\langle{\cal M},w,q_{f}\rangle$
+\end_inset
+
+, donde
+\begin_inset Formula $q_{f}$
+\end_inset
+
+ es el estado final de
+\begin_inset Formula ${\cal M}$
+\end_inset
+
+, es una
+\emph on
+\lang english
+mapping
+\emph default
+\lang spanish
+ reducción de
+\begin_inset Formula $K$
+\end_inset
+
+ a
+\begin_inset Formula $\text{Pass}$
+\end_inset
+
+, pues si
+\begin_inset Formula ${\cal M}$
+\end_inset
+
+ acepta
+\begin_inset Formula $w$
+\end_inset
+
+, pasa por
+\begin_inset Formula $q_{f}$
+\end_inset
+
+ cuando tiene entrada
+\begin_inset Formula $w$
+\end_inset
+
+, y si no la acepta es porque no pasa por
+\begin_inset Formula $q_{f}$
+\end_inset
+
+.
+\end_layout
+
+\end_deeper
+\begin_layout Standard
+Un lenguaje
+\begin_inset Formula $L\in{\cal RE}$
+\end_inset
+
+ es
+\series bold
+completo
+\series default
+ para
+\begin_inset Formula ${\cal RE}$
+\end_inset
+
+ si todo
+\begin_inset Formula $L'\in{\cal RE}$
+\end_inset
+
+ se puede reducir a
+\begin_inset Formula $L$
+\end_inset
+
+.
+ Entonces:
+\end_layout
+
+\begin_layout Enumerate
+\begin_inset Formula $K$
+\end_inset
+
+ es completo en
+\begin_inset Formula ${\cal RE}$
+\end_inset
+
+.
+\end_layout
+
+\begin_deeper
+\begin_layout Standard
+Dado
+\begin_inset Formula $L\in{\cal RE}$
+\end_inset
+
+, sea
+\begin_inset Formula ${\cal M}$
+\end_inset
+
+ una máquina que enumera
+\begin_inset Formula $L$
+\end_inset
+
+,
+\begin_inset Formula $\langle w\rangle\mapsto\langle{\cal M},w\rangle$
+\end_inset
+
+ es una
+\emph on
+\lang english
+mapping
+\emph default
+\lang spanish
+ reducción de
+\begin_inset Formula $L$
+\end_inset
+
+ a
+\begin_inset Formula $K$
+\end_inset
+
+.
+\end_layout
+
+\end_deeper
+\begin_layout Enumerate
+Si
+\begin_inset Formula $L$
+\end_inset
+
+ es completo en
+\begin_inset Formula ${\cal RE}$
+\end_inset
+
+ y
+\begin_inset Formula $L'\in{\cal RE}$
+\end_inset
+
+ cumple
+\begin_inset Formula $L\leq_{\text{m}}L'$
+\end_inset
+
+,
+\begin_inset Formula $L'$
+\end_inset
+
+ es completo en
+\begin_inset Formula ${\cal RE}$
+\end_inset
+
+.
+\end_layout
+
+\begin_layout Standard
+Una
+\series bold
+propiedad
+\series default
+ de los lenguajes recursivamente enumerables es una proposición cuya única
+ variable libre se refiere a un lenguaje en
+\begin_inset Formula ${\cal RE}$
+\end_inset
+
+, y se puede identificar con la subclase de los lenguajes en
+\begin_inset Formula ${\cal RE}$
+\end_inset
+
+ que cumplen la propiedad.
+ Es
+\series bold
+trivial
+\series default
+ si es
+\begin_inset Formula $\emptyset$
+\end_inset
+
+ o
+\begin_inset Formula ${\cal RE}$
+\end_inset
+
+.
+ Así,
+\begin_inset Formula ${\cal REG}$
+\end_inset
+
+,
+\begin_inset Formula ${\cal CF}$
+\end_inset
+
+,
+\begin_inset Formula ${\cal DEC}$
+\end_inset
+
+ y
+\begin_inset Formula $\{L\text{ es finito}\}$
+\end_inset
+
+ son propiedades no triviales.
+\end_layout
+
+\begin_layout Standard
+
+\series bold
+Teorema de Rice:
+\series default
+ Para una propiedad
+\begin_inset Formula $P$
+\end_inset
+
+ de
+\begin_inset Formula ${\cal RE}$
+\end_inset
+
+ no trivial,
+\begin_inset Formula
+\[
+{\cal L}_{P}\coloneqq\{\langle{\cal M}\rangle:{\cal M}\text{ es una MT con }L(M)\in P\}\notin{\cal DEC}.
+\]
+
+\end_inset
+
+
+\series bold
+Demostración:
+\series default
+ Supongamos
+\begin_inset Formula ${\cal L}_{P}\in{\cal DEC}$
+\end_inset
+
+, con lo que existe
+\begin_inset Formula ${\cal M}_{P}$
+\end_inset
+
+ que decide
+\begin_inset Formula ${\cal L}_{P}$
+\end_inset
+
+.
+ Como
+\begin_inset Formula $P$
+\end_inset
+
+ es no trivial, existen
+\begin_inset Formula $L_{1}\in{\cal L}_{P}$
+\end_inset
+
+ y
+\begin_inset Formula $L_{2}\in{\cal RE}\setminus{\cal L}_{P}$
+\end_inset
+
+, y podemos tomar que uno de los dos sea
+\begin_inset Formula $\emptyset$
+\end_inset
+
+.
+ Si, por ejemplo,
+\begin_inset Formula $L_{2}=\emptyset$
+\end_inset
+
+, sea
+\begin_inset Formula ${\cal M}_{L_{1}}$
+\end_inset
+
+ una
+\begin_inset Formula $\text{MT}$
+\end_inset
+
+ que enumera
+\begin_inset Formula $L_{1}$
+\end_inset
+
+, para cada
+\begin_inset Formula $\text{MT}$
+\end_inset
+
+
+\begin_inset Formula ${\cal M}$
+\end_inset
+
+ y cada cadena
+\begin_inset Formula $w$
+\end_inset
+
+, definimos
+\begin_inset Formula ${\cal M}_{w}$
+\end_inset
+
+ como una
+\begin_inset Formula $\text{MT}$
+\end_inset
+
+ que, ante una entrada
+\begin_inset Formula $x$
+\end_inset
+
+, ejecuta
+\begin_inset Formula ${\cal M}$
+\end_inset
+
+ con entrada
+\begin_inset Formula $w$
+\end_inset
+
+, entra en bucle infinito si
+\begin_inset Formula ${\cal M}$
+\end_inset
+
+ rechaza, y en otro caso ejecuta
+\begin_inset Formula ${\cal M}_{L_{1}}$
+\end_inset
+
+ con entrada
+\begin_inset Formula $x$
+\end_inset
+
+ y devuelve el resultado de esta última máquina.
+ Entonces
+\begin_inset Formula
+\[
+L({\cal M}_{w})=\begin{cases}
+L_{1}, & w\in L({\cal M});\\
+\emptyset, & \text{en otro caso},
+\end{cases}
+\]
+
+\end_inset
+
+luego
+\begin_inset Formula $\langle{\cal M},w\rangle\mapsto\langle{\cal M}_{w}\rangle$
+\end_inset
+
+ es una
+\emph on
+\lang english
+mapping
+\emph default
+\lang spanish
+ reducción de
+\begin_inset Formula $K$
+\end_inset
+
+ a
+\begin_inset Formula ${\cal L}_{P}$
+\end_inset
+
+ y basta aplicar el primer teorema de reducibilidad.
+ Si
+\begin_inset Formula $L_{1}=\emptyset$
+\end_inset
+
+ esto permite probar que
+\begin_inset Formula ${\cal RE}\setminus{\cal L}_{P}\notin{\cal DEC}$
+\end_inset
+
+ y por tanto
+\begin_inset Formula ${\cal L}_{P}\notin{\cal DEC}$
+\end_inset
+
+.
+\end_layout
+
+\begin_layout Standard
+Un lenguaje es
+\series bold
+indecidible
+\series default
+ si no es
+\begin_inset Formula ${\cal RE}$
+\end_inset
+
+, pero existen
+\series bold
+grados de indecidibilidad
+\series default
+ según los oráculos que hacen falta para poder enumerarlo.
+\end_layout
+
+\end_body
+\end_document