diff options
| author | Juan Marín Noguera <juan.marinn@um.es> | 2021-01-25 20:59:54 +0100 |
|---|---|---|
| committer | Juan Marín Noguera <juan.marinn@um.es> | 2021-01-25 21:00:03 +0100 |
| commit | 15d899d1be917ed1063adc6bc93a7b8fe18b4d4c (patch) | |
| tree | c42cf2bb4e224be5618b1be5686fbe8ffdb54416 /mne/n3.lyx | |
| parent | 237ce2df30aeb7b6ae0831d76803228a043b78dc (diff) | |
MNED tema 3
Diffstat (limited to 'mne/n3.lyx')
| -rw-r--r-- | mne/n3.lyx | 550 |
1 files changed, 550 insertions, 0 deletions
diff --git a/mne/n3.lyx b/mne/n3.lyx new file mode 100644 index 0000000..2c12115 --- /dev/null +++ b/mne/n3.lyx @@ -0,0 +1,550 @@ +#LyX 2.3 created this file. For more info see http://www.lyx.org/ +\lyxformat 544 +\begin_document +\begin_header +\save_transient_properties true +\origin unavailable +\textclass book +\use_default_options true +\maintain_unincluded_children false +\language spanish +\language_package default +\inputencoding auto +\fontencoding global +\font_roman "default" "default" +\font_sans "default" "default" +\font_typewriter "default" "default" +\font_math "auto" "auto" +\font_default_family default +\use_non_tex_fonts false +\font_sc false +\font_osf false +\font_sf_scale 100 100 +\font_tt_scale 100 100 +\use_microtype false +\use_dash_ligatures true +\graphics default +\default_output_format default +\output_sync 0 +\bibtex_command default +\index_command default +\paperfontsize default +\spacing single +\use_hyperref false +\papersize default +\use_geometry false +\use_package amsmath 1 +\use_package amssymb 1 +\use_package cancel 1 +\use_package esint 1 +\use_package mathdots 1 +\use_package mathtools 1 +\use_package mhchem 1 +\use_package stackrel 1 +\use_package stmaryrd 1 +\use_package undertilde 1 +\cite_engine basic +\cite_engine_type default +\biblio_style plain +\use_bibtopic false +\use_indices false +\paperorientation portrait +\suppress_date false +\justification true +\use_refstyle 1 +\use_minted 0 +\index Index +\shortcut idx +\color #008000 +\end_index +\secnumdepth 3 +\tocdepth 3 +\paragraph_separation indent +\paragraph_indentation default +\is_math_indent 0 +\math_numbering_side default +\quotes_style french +\dynamic_quotes 0 +\papercolumns 1 +\papersides 1 +\paperpagestyle default +\tracking_changes false +\output_changes false +\html_math_output 0 +\html_css_as_file 0 +\html_be_strict false +\end_header + +\begin_body + +\begin_layout Standard +Dados un problema de valores iniciales +\begin_inset Formula +\[ +\left\{ \begin{aligned}\dot{x}(t) & =f(t,x(t)),\\ +x(a) & =x_{0} +\end{aligned} +\right. +\] + +\end_inset + +y una solución aproximada +\begin_inset Formula $(t_{i},\omega_{i})_{i=0}^{n}$ +\end_inset + + del problema, llamamos +\series bold +solución local +\series default + +\begin_inset Formula $z_{i}$ +\end_inset + + a la solución del problema +\begin_inset Formula +\[ +\left\{ \begin{aligned}\dot{z}_{i}(t) & =f(t,z_{i}(t)),\\ +z_{i}(t_{i}) & =\omega_{i}. +\end{aligned} +\right. +\] + +\end_inset + +Como +\series bold +teorema +\series default +, si +\begin_inset Formula $f$ +\end_inset + + es lipschitziana de constante +\begin_inset Formula $k>0$ +\end_inset + + y existe +\begin_inset Formula $\varepsilon>0$ +\end_inset + + tal que +\begin_inset Formula $\Vert z_{i}(t_{i+1})-\omega_{i+1}\Vert\leq\varepsilon(t_{i+1}-t_{i})$ +\end_inset + + para cada +\begin_inset Formula $i\in\{0,\dots,n-1\}$ +\end_inset + +, entonces +\begin_inset Formula +\[ +\Vert y(t_{n})-\omega_{n}\Vert\leq e^{k(t_{n}-a)}\Vert y(t_{0})-\omega_{0}\Vert+\frac{e^{k(t_{n}-a)}-1}{k}\varepsilon. +\] + +\end_inset + +Si el método es un +\series bold +método en diferencias +\series default +, uno de la forma +\begin_inset Formula $t_{i+1}=t_{i}+h_{i}$ +\end_inset + + y +\begin_inset Formula $\omega_{i+1}=\omega_{i}+h_{i}Ø(t_{i},\omega_{i},h_{i})$ +\end_inset + +, y si +\begin_inset Formula $z_{i}(t_{i})\cong x(t_{i})\cong\omega_{i}$ +\end_inset + +, el +\series bold +criterio de error local +\series default + para algún +\begin_inset Formula $\varepsilon>0$ +\end_inset + + e +\begin_inset Formula $i\in\{0,\dots,n-1\}$ +\end_inset + + consiste en que +\begin_inset Formula +\[ +\Vert\tau_{i+1}(h_{i})\Vert:=\frac{\Vert x(t_{i+1})-x(t_{i})-h_{i}Ø(t_{i},x(t_{i}),h_{i})\Vert}{h_{i}}\leq\varepsilon. +\] + +\end_inset + +Si +\begin_inset Formula $z_{i}(t_{i})\approxeq x(t_{i})\approxeq\omega_{i}$ +\end_inset + +, se tiene +\begin_inset Formula +\[ +\Vert\tau_{i+1}(h_{i})\Vert\approx\cong\frac{\Vert z_{i}(t_{i+1})-\omega_{i+1}\Vert}{h}. +\] + +\end_inset + +Queremos ajustar el paso automáticamente para mantener el error local dentro + de ciertos límites y economizar en número de cálculos. +\end_layout + +\begin_layout Section +Extrapolación de Richardson +\end_layout + +\begin_layout Standard +Como +\series bold +teorema +\series default +, si el método en diferencias +\begin_inset Formula $\omega_{i+1}=\omega_{i}+h_{i}Ø(t_{i},\omega_{i},h_{i})$ +\end_inset + + verifica en cada paso que +\begin_inset Formula $z_{i}(t_{i+1})=\omega_{i+1}+cz_{i}^{(k+1)}(t_{i})h^{k+1}+O(h^{k+2})$ +\end_inset + + para ciertos +\begin_inset Formula $c\in\mathbb{R}$ +\end_inset + + y +\begin_inset Formula $k\in\mathbb{N}$ +\end_inset + +, sean +\begin_inset Formula $h:=h_{i}$ +\end_inset + + y +\begin_inset Formula $(t_{i+1},Y)$ +\end_inset + + el resultado de dar dos pasos desde +\begin_inset Formula $(t_{i},\omega_{i})$ +\end_inset + + con el método de paso fijo +\begin_inset Formula $\xi_{j+1}=\xi_{j}+\frac{h}{2}Ø(t_{j},\xi_{j},\frac{h}{2})$ +\end_inset + +, entonces +\begin_inset Formula +\[ +z_{i}(t_{i+1})=Y+2cz_{i}^{(k+1)}(t_{i})\left(\frac{h}{2}\right)^{k+1}+O(h^{k+2}). +\] + +\end_inset + + +\end_layout + +\begin_layout Standard +En estas condiciones: +\end_layout + +\begin_layout Enumerate +\begin_inset Formula +\[ +z_{i}(t_{i+1})=\frac{2^{k}Y-\omega_{i+1}}{2^{k}-1}+O(h^{k+2}). +\] + +\end_inset + + +\end_layout + +\begin_deeper +\begin_layout Standard +Multiplicando por +\begin_inset Formula $2^{k}$ +\end_inset + + el resultado del teorema y restando la fórmula de la hipótesis, +\begin_inset Formula +\begin{align*} +(2^{k}-1)z_{i}(t_{i+1}) & =2^{k}Y+2^{k+1}cz_{i}^{(k+1)}(t_{i})\left(\frac{h}{2}\right)^{k+1}-cz_{i}^{(k+1)}(t_{i})h^{k+1}-\omega_{i+1}+O(h^{k+2})\\ + & \overset{2^{k}\left(\frac{h}{2}\right)^{k+1}=h^{k+1}}{=}2^{k}Y-\omega_{i+1}. +\end{align*} + +\end_inset + + +\end_layout + +\end_deeper +\begin_layout Enumerate +\begin_inset Formula +\[ +z_{i}(t_{i+1})-\omega_{i+1}=\frac{2^{k}}{2^{k}-1}(Y-\omega_{i+1})+O(h^{k+2}). +\] + +\end_inset + + +\end_layout + +\begin_deeper +\begin_layout Standard +Restando +\begin_inset Formula $\omega_{i+1}$ +\end_inset + + a ambas partes de lo anterior. +\end_layout + +\end_deeper +\begin_layout Standard +Para un +\begin_inset Formula $\varepsilon>0$ +\end_inset + +, queremos que +\begin_inset Formula $\Vert z_{i}(t_{i+1})-\omega_{i+1}\Vert<\varepsilon h_{i}$ +\end_inset + +. + El siguiente es un método práctico para dar un paso de tamaño adaptativo: +\end_layout + +\begin_layout Enumerate +Dar un paso con +\begin_inset Formula $h$ +\end_inset + + para obtener +\begin_inset Formula $\omega_{i+1}$ +\end_inset + + y dos con +\begin_inset Formula $\frac{h}{2}$ +\end_inset + + para obtener +\begin_inset Formula $Y_{h}$ +\end_inset + +. +\end_layout + +\begin_layout Enumerate +Obtener el error +\begin_inset Formula $E:=\frac{2^{k}}{2^{k}-1}\Vert Y-\omega_{i+1}\Vert\approx\Vert z_{i}(t_{i+1})-\omega_{i+1}\Vert$ +\end_inset + +. +\end_layout + +\begin_layout Enumerate +Si +\begin_inset Formula $E>\varepsilon h$ +\end_inset + +, ajustar +\begin_inset Formula $h$ +\end_inset + + y volver a intentar desde el principio. +\end_layout + +\begin_layout Enumerate +Aceptar el paso +\begin_inset Formula $(t_{i}+h,\omega_{i+1})$ +\end_inset + + y ajustar +\begin_inset Formula $h$ +\end_inset + + para el siguiente paso. +\end_layout + +\begin_layout Standard +Para ajustar el paso: +\end_layout + +\begin_layout Enumerate +Calcular +\begin_inset Formula $q:=\left(\frac{\varepsilon h}{2E}\right)^{1/k}$ +\end_inset + + y +\begin_inset Formula $q':=\min\{4,\max\{0.1,q\}\}$ +\end_inset + +, y hacer +\begin_inset Formula $h\gets q'h$ +\end_inset + +. +\end_layout + +\begin_deeper +\begin_layout Standard +Para cierta constante +\begin_inset Formula $C$ +\end_inset + +, si +\begin_inset Formula $y$ +\end_inset + + es el resultado de aplicar un paso de tamaño +\begin_inset Formula $qh$ +\end_inset + +, +\begin_inset Formula $\Vert z_{i}(t_{i}+qh)-y\Vert\approx C(qh)^{k+1}=Cq^{k+1}h^{k+1}\approx q^{k+1}\Vert z_{i}(t_{i+1})-\omega_{i+1}\Vert\approx q^{k+1}E$ +\end_inset + +, pero +\begin_inset Formula $q^{k+1}E\leq\varepsilon qh\iff q^{k}E\leq\varepsilon h\iff q\leq\left(\frac{\varepsilon h}{E}\right)^{1/k}$ +\end_inset + +. + Entonces usamos +\begin_inset Formula $2E$ +\end_inset + + en vez de +\begin_inset Formula $E$ +\end_inset + + para tener cierto margen para evitar re-calcular y añadimos límites en + +\begin_inset Formula $q'$ +\end_inset + + por estabilidad. +\end_layout + +\end_deeper +\begin_layout Enumerate +Usando umbrales +\begin_inset Formula $h_{\min}$ +\end_inset + + y +\begin_inset Formula $h_{\max}$ +\end_inset + + para el paso, si +\begin_inset Formula $|h|<h_{\min}$ +\end_inset + +, informamos de un error, pues los errores de redondeo serían demasiado + grandes, y si +\begin_inset Formula $|h|>h_{\max}$ +\end_inset + +, hacemos +\begin_inset Formula $h\gets h_{\max}\text{sgn}h$ +\end_inset + +. +\end_layout + +\begin_layout Section +Método de Runge-Kutta-Fehlberg +\end_layout + +\begin_layout Standard +Dados dos métodos de Runge-Kutta con los mismos pasos, +\begin_inset Formula $(\omega_{i})$ +\end_inset + + de orden +\begin_inset Formula $p$ +\end_inset + + y +\begin_inset Formula $(\tilde{\omega}_{i})$ +\end_inset + + de orden +\begin_inset Formula $p+1$ +\end_inset + +, +\begin_inset Formula $z_{i}(t_{i+1})-\omega_{i+1}\approx\tilde{\omega}_{i+1}-\omega_{i+1}$ +\end_inset + +. + En efecto, para ciertos +\begin_inset Formula $C_{1},C_{2}\in\mathbb{R}$ +\end_inset + +, +\begin_inset Formula $z_{i}(t_{i}+h)-\omega_{i+1}\approx C_{1}h^{p+1}+O(h^{p+2})$ +\end_inset + + y +\begin_inset Formula $\tilde{z}_{i}(t_{i+1})-\tilde{\omega}_{i+1}\approx C_{2}h^{p+2}+O(h^{p+3})$ +\end_inset + +, luego +\begin_inset Formula $z_{i}(t_{i}+h)-\omega_{i+1}\approx\tilde{z}_{i}(t_{i+1})-\tilde{\omega}_{i+1}+\tilde{\omega}_{i+1}-\omega_{i+1}\approx\tilde{\omega}_{i+1}-\omega_{i+1}+O(h^{p+2})$ +\end_inset + +. +\end_layout + +\begin_layout Standard +El +\series bold +método de Runge-Kutta-Fehlberg +\series default + consiste en usar esta aproximación del error +\begin_inset Formula $E$ +\end_inset + + en el método anterior de paso adaptativo con los siguientes dos métodos + de Runge-Kutta que tienen los mismos +\begin_inset Formula $k_{i}$ +\end_inset + +: +\end_layout + +\begin_layout Standard +\begin_inset Formula +\[ +\begin{array}{c|ccccc} +\frac{1}{4} & \frac{1}{4}\\ +\frac{3}{8} & \frac{3}{32} & \frac{9}{32}\\ +\frac{12}{13} & \frac{1932}{2197} & -\frac{7200}{2197} & \frac{7296}{2197}\\ +1 & \frac{439}{216} & -8 & \frac{3680}{513} & -\frac{845}{4104}\\ +\frac{1}{2} & -\frac{8}{27} & 2 & -\frac{443}{332} & \frac{1859}{4104} & -\frac{11}{40}\\ +\hline \omega: & \frac{25}{216} & \frac{1408}{2565} & \frac{2197}{4104} & -\frac{1}{5}\\ +\tilde{\omega}: & \frac{16}{135} & \frac{6656}{12825} & \frac{28561}{56430} & -\frac{9}{50} & \frac{2}{55} +\end{array} +\] + +\end_inset + + +\end_layout + +\begin_layout Standard +El método +\begin_inset Formula $\omega$ +\end_inset + + es de orden 4 y +\begin_inset Formula $\tilde{\omega}$ +\end_inset + + es de orden 5. +\end_layout + +\end_body +\end_document |
