diff options
| author | Juan Marín Noguera <juan.marinn@um.es> | 2021-01-05 21:57:03 +0100 |
|---|---|---|
| committer | Juan Marín Noguera <juan.marinn@um.es> | 2021-01-05 21:57:03 +0100 |
| commit | 4eb4cc069454b1c36fd3a9044615bae4df8338de (patch) | |
| tree | 2a462102b0f91b4a2a0202d13bfbbbf04204a250 /mne | |
| parent | 90cf063c82be58d69b44d80955ae9500823c6d44 (diff) | |
RungeKutta
Diffstat (limited to 'mne')
| -rw-r--r-- | mne/n.lyx | 26 | ||||
| -rw-r--r-- | mne/n2.lyx | 446 |
2 files changed, 442 insertions, 30 deletions
@@ -140,6 +140,32 @@ F. Notas de clase. \end_layout +\begin_layout Itemize + +\lang english +Wikipedia, the Free Encyclopedia +\lang spanish + ( +\begin_inset Flex URL +status open + +\begin_layout Plain Layout + +https://en.wikipedia.org/ +\end_layout + +\end_inset + +). + +\emph on +\lang english +Runge-Kutta methods +\emph default +\lang spanish +. +\end_layout + \begin_layout Chapter Introducción \end_layout @@ -470,34 +470,6 @@ Métodos de Taylor \end_layout \begin_layout Standard -Dado un método de paso fijo de la forma -\begin_inset Formula $\omega_{0}:=\alpha$ -\end_inset - -, -\begin_inset Formula $\omega_{i+1}:=\omega_{i}+hØ(t_{i},\omega_{i})$ -\end_inset - -, llamamos -\series bold -error local de truncamiento -\series default - en -\begin_inset Formula $i\in\{1,\dots,n\}$ -\end_inset - - a -\begin_inset Formula -\[ -\tau_{i}(h):=\frac{x(t_{i})-x(t_{i-1})}{h}-Ø(t_{i-1},x_{i-1}). -\] - -\end_inset - - -\end_layout - -\begin_layout Standard El \series bold método de Taylor @@ -534,13 +506,41 @@ donde . Por ejemplo, \begin_inset Formula +\begin{align*} +f'(t_{i}) & =\ddot{x}(t_{i})=\frac{\partial f}{\partial t}(t,x(t))+\frac{\partial f}{\partial x}(t,x(t))\dot{x}(t)=\frac{\partial f}{\partial t}(t_{i},\omega_{i})+\frac{\partial f}{\partial x}(t_{i},\omega_{i})f(t_{i},\omega_{i}), +\end{align*} + +\end_inset + +El método de Euler es el método de Taylor de orden 1. +\end_layout + +\begin_layout Standard +Dado un método de paso fijo de la forma +\begin_inset Formula $\omega_{0}:=\alpha$ +\end_inset + +, +\begin_inset Formula $\omega_{i+1}:=\omega_{i}+hØ(t_{i},\omega_{i})$ +\end_inset + +, llamamos +\series bold +error local de truncamiento +\series default + en +\begin_inset Formula $i\in\{1,\dots,n\}$ +\end_inset + + a +\begin_inset Formula \[ -f'(t_{i})=\ddot{x}(t_{i})=\frac{\partial f}{\partial t}(t,x(t))+\frac{\partial f}{\partial x}(t,x(t))\dot{x}(t)=\frac{\partial f}{\partial t}(t_{i},\omega_{i})+\frac{\partial f}{\partial x}(t_{i},\omega_{i})f(t_{i},\omega_{i}). +\tau_{i}(h):=\frac{x(t_{i})-x(t_{i-1})}{h}-Ø(t_{i-1},x_{i-1}). \] \end_inset -El método de Euler es el método de Taylor de orden 1. + \end_layout \begin_layout Standard @@ -604,5 +604,391 @@ pero . \end_layout +\begin_layout Standard +Decimos que un método de paso fijo es de orden +\begin_inset Formula $p$ +\end_inset + + si su error local de truncamiento con +\begin_inset Formula $f\in{\cal C}^{\infty}$ +\end_inset + + es +\begin_inset Formula $O(h^{p})$ +\end_inset + +. +\end_layout + +\begin_layout Section +Métodos de Runge-Kutta +\end_layout + +\begin_layout Standard +Los métodos de Taylor tienen mucha precisión, pero requieren trabajo previo + y son difíciles de reutilizar, por lo que intentamos +\begin_inset Quotes cld +\end_inset + +imitar +\begin_inset Quotes crd +\end_inset + + la precisión de estos con operaciones que no requieran derivar +\begin_inset Formula $f$ +\end_inset + +. + Los +\series bold +métodos de Runge-Kutta +\series default + tienen la forma +\begin_inset Formula +\begin{align*} +\omega_{i+1} & :=\omega_{i}+h\sum_{j=1}^{s}b_{j}k_{j}, & k_{1} & :=f(t_{i},\omega_{i}), & k_{j>1} & :=(t_{i}+c_{j}h,\omega_{i}+h(a_{j,1}k_{1}+\dots+a_{j,j-1}k_{j-1})), +\end{align*} + +\end_inset + +para ciertos +\begin_inset Formula $s\in\mathbb{N}$ +\end_inset + + y +\begin_inset Formula $(a_{ij})_{1\leq j<i\leq s},(b_{j})_{j=1}^{s},(c_{i})_{i=2}^{s}$ +\end_inset + + reales. + Estos métodos se pueden representar con una +\series bold +tabla de Butcher +\series default +: +\begin_inset Formula +\[ +\begin{array}{c|ccccc} +c_{2} & a_{21}\\ +c_{3} & a_{31} & a_{32}\\ +\vdots & \vdots & \vdots & \ddots\\ +c_{s} & a_{s1} & a_{s2} & \cdots & a_{s,s-1}\\ +\hline & b_{1} & b_{2} & \cdots & b_{s-1} & b_{s} +\end{array} +\] + +\end_inset + + +\end_layout + +\begin_layout Standard +El +\series bold +método del punto medio +\series default + tiene tabla +\begin_inset Formula +\[ +\begin{array}{c|cc} +\frac{1}{2} & \frac{1}{2}\\ +\hline & 0 & 1 +\end{array}, +\] + +\end_inset + + y es de orden 2. + +\series bold +Demostración: +\series default + Por Taylor, +\begin_inset Formula +\begin{align*} +f(t+\tfrac{h}{2},x+\tfrac{h}{2}f(t,x))= & f(t,x)+\frac{h}{2}\frac{\partial f}{\partial t}(t,x)+\frac{h}{2}f(t,x)\frac{\partial f}{\partial x}(t,x)+\\ + & +\frac{h^{2}}{8}\frac{\partial^{2}f}{\partial t^{2}}(\xi_{1},\mu_{1})+\frac{h^{2}}{4}f(t,x)\frac{\partial^{2}f}{\partial t\partial x}(\xi_{2},\mu_{2})+\frac{h^{2}}{8}f(t,x)^{2}\frac{\partial^{2}f}{\partial x^{2}}(\xi_{3},\mu_{3}). +\end{align*} + +\end_inset + +El método de Taylor de orden 2 viene dado por +\begin_inset Formula $\omega_{i+1}=\omega_{i}+h(f(t_{i},\omega_{i})+\frac{h}{2}f'(t_{i},\omega_{i}))$ +\end_inset + +, pero +\begin_inset Formula +\[ +f(t,x)+\frac{h}{2}f'(t,x)=f(t,x)+\frac{h}{2}\frac{\partial f}{\partial t}(t,x)+\frac{h}{2}f(t,x)\frac{\partial f}{\partial x}(t,x), +\] + +\end_inset + +luego como las dobles derivadas parciales son continuas y por tanto su imagen + por +\begin_inset Formula $[a,b]$ +\end_inset + + es compacta, la diferencia de error local entre ambos métodos es +\begin_inset Formula $O(h^{2})$ +\end_inset + +, que se suma al error de +\begin_inset Formula $O(h^{2})$ +\end_inset + + del método de Taylor de orden 2. +\end_layout + +\begin_layout Standard +No existe un método de Runge-Kutta de orden 3 con solo 2 evaluaciones de + +\begin_inset Formula $f$ +\end_inset + +. + +\end_layout + +\begin_layout Standard + +\series bold +Demostración: +\series default + Como +\begin_inset Formula +\begin{align*} +f' & =\frac{\partial f}{\partial t}+f\frac{\partial f}{\partial x},\\ +f'' & =\frac{\partial f'(t,x(t))}{\partial t}=\frac{\partial^{2}f}{\partial t^{2}}+f\frac{\partial^{2}f}{\partial x\partial t}+\left(\frac{\partial f}{\partial t}+f\frac{\partial f}{\partial x}\right)\frac{\partial f}{\partial x}+f\left(\frac{\partial^{2}f}{\partial x\partial t}+f\frac{\partial^{2}f}{\partial x^{2}}\right)\\ + & =\frac{\partial^{2}f}{\partial t^{2}}+\frac{\partial f}{\partial t}\frac{\partial f}{\partial x}+f\left(\frac{\partial f}{\partial x}\right)^{2}+2f\frac{\partial^{2}f}{\partial x\partial t}+f^{2}\frac{\partial^{2}f}{\partial x^{2}}, +\end{align*} + +\end_inset + +el método de Taylor de orden 3 es +\begin_inset Formula $\omega_{i+1}=\omega_{i}+hØ(t_{i},\omega_{i})$ +\end_inset + +, con +\begin_inset Formula +\begin{align*} +Ø(t,x) & =f(t,x)+\frac{h}{2}f'(t,x)+\frac{h^{2}}{6}f''(t,x)\\ + & =f+\frac{h}{2}\left(\frac{\partial f}{\partial t}+f\frac{\partial f}{\partial x}\right)+\frac{h^{2}}{6}\left(\frac{\partial^{2}f}{\partial t^{2}}+\frac{\partial f}{\partial t}\frac{\partial f}{\partial x}+f\left(\frac{\partial f}{\partial x}\right)^{2}+2f\frac{\partial^{2}f}{\partial x\partial t}+f^{2}\frac{\partial^{2}f}{\partial x^{2}}\right), +\end{align*} + +\end_inset + +pero los métodos de 2 evaluaciones tienen la forma +\begin_inset Formula +\begin{multline*} +b_{1}f(t,x)+b_{2}f(t+c_{2},x+a_{21}f(t,x))=\\ +=b_{1}f+b_{2}f+b_{2}c_{2}\frac{\partial f}{\partial t}+b_{2}a_{21}f\frac{\partial f}{\partial x}+b_{2}\frac{a_{21}^{2}}{2}\frac{\partial^{2}f}{\partial t^{2}}+b_{2}c_{2}a_{21}f\frac{\partial^{2}f}{\partial t\partial x}+b_{2}\frac{a_{21}^{2}}{2}f^{2}\frac{\partial^{2}f}{\partial x^{2}}+O(h^{3}). +\end{multline*} + +\end_inset + +Para que ambas coincidieran en los términos hasta el orden 2, la última + fórmula debería tener un término proporcional a +\begin_inset Formula $f\left(\frac{\partial f}{\partial x}\right)^{2}$ +\end_inset + +, pero no lo tiene. +\end_layout + +\begin_layout Standard +Otros métodos son el +\series bold +método de Euler modificado +\series default +, con tabla +\begin_inset Formula +\[ +\begin{array}{c|cc} +1 & 1\\ +\hline & \frac{1}{2} & \frac{1}{2} +\end{array}, +\] + +\end_inset + +y el +\series bold +método de Heun +\series default +, con tabla +\begin_inset Formula +\[ +\begin{array}{c|cc} +\frac{2}{3} & \frac{2}{3}\\ +\hline & \frac{1}{4} & \frac{3}{4} +\end{array}, +\] + +\end_inset + +ambos de orden 2. +\end_layout + +\begin_layout Standard +El método de Runge-Kutta más usado es el de orden 4 ( +\series bold +RK4 +\series default +): +\end_layout + +\begin_layout Standard +\begin_inset Formula +\[ +\begin{array}{c|cccc} +\frac{1}{2} & \frac{1}{2}\\ +\frac{1}{2} & 0 & \frac{1}{2}\\ +1 & 0 & 0 & 1\\ +\hline & \frac{1}{6} & \frac{1}{3} & \frac{1}{3} & \frac{1}{6} +\end{array} +\] + +\end_inset + +La siguiente tabla muestra el máximo orden alcanzable con métodos de Runge-Kutta + en función del número de evaluaciones de +\begin_inset Formula $f$ +\end_inset + +: +\end_layout + +\begin_layout Standard +\align center +\begin_inset Tabular +<lyxtabular version="3" rows="2" columns="5"> +<features tabularvalignment="middle"> +<column alignment="center" valignment="top"> +<column alignment="center" valignment="top"> +<column alignment="center" valignment="top"> +<column alignment="center" valignment="top"> +<column alignment="center" valignment="top"> +<row> +<cell alignment="center" valignment="top" topline="true" bottomline="true" leftline="true" usebox="none"> +\begin_inset Text + +\begin_layout Plain Layout +Evaluaciones ( +\begin_inset Formula $s$ +\end_inset + +) +\end_layout + +\end_inset +</cell> +<cell alignment="center" valignment="top" topline="true" bottomline="true" leftline="true" usebox="none"> +\begin_inset Text + +\begin_layout Plain Layout +\begin_inset Formula $\leq4$ +\end_inset + + +\end_layout + +\end_inset +</cell> +<cell alignment="center" valignment="top" topline="true" bottomline="true" leftline="true" usebox="none"> +\begin_inset Text + +\begin_layout Plain Layout +5–7 +\end_layout + +\end_inset +</cell> +<cell alignment="center" valignment="top" topline="true" bottomline="true" leftline="true" usebox="none"> +\begin_inset Text + +\begin_layout Plain Layout +8–9 +\end_layout + +\end_inset +</cell> +<cell alignment="center" valignment="top" topline="true" bottomline="true" leftline="true" rightline="true" usebox="none"> +\begin_inset Text + +\begin_layout Plain Layout +\begin_inset Formula $\geq10$ +\end_inset + + +\end_layout + +\end_inset +</cell> +</row> +<row> +<cell alignment="center" valignment="top" topline="true" bottomline="true" leftline="true" usebox="none"> +\begin_inset Text + +\begin_layout Plain Layout +Mejor orden +\end_layout + +\end_inset +</cell> +<cell alignment="center" valignment="top" topline="true" bottomline="true" leftline="true" usebox="none"> +\begin_inset Text + +\begin_layout Plain Layout +\begin_inset Formula $s$ +\end_inset + + +\end_layout + +\end_inset +</cell> +<cell alignment="center" valignment="top" topline="true" bottomline="true" leftline="true" usebox="none"> +\begin_inset Text + +\begin_layout Plain Layout +\begin_inset Formula $s-1$ +\end_inset + + +\end_layout + +\end_inset +</cell> +<cell alignment="center" valignment="top" topline="true" bottomline="true" leftline="true" usebox="none"> +\begin_inset Text + +\begin_layout Plain Layout +\begin_inset Formula $s-2$ +\end_inset + + +\end_layout + +\end_inset +</cell> +<cell alignment="center" valignment="top" topline="true" bottomline="true" leftline="true" rightline="true" usebox="none"> +\begin_inset Text + +\begin_layout Plain Layout +\begin_inset Formula $s-3$ +\end_inset + + +\end_layout + +\end_inset +</cell> +</row> +</lyxtabular> + +\end_inset + + +\end_layout + \end_body \end_document |
