diff options
| author | Juan Marín Noguera <juan.marinn@um.es> | 2020-06-13 16:30:14 +0200 |
|---|---|---|
| committer | Juan Marín Noguera <juan.marinn@um.es> | 2020-06-13 16:30:14 +0200 |
| commit | 277fc4296d55660988f4f10164375fc7a0dd864f (patch) | |
| tree | 1914dd0ca9f7f04c148e53915fafb3412d72d6b8 /ts | |
| parent | f3593c2a0022749ab175bffed4df45dd778da9ae (diff) | |
Homotopy
Diffstat (limited to 'ts')
| -rw-r--r-- | ts/n.lyx | 16 | ||||
| -rw-r--r-- | ts/n3.lyx | 115 | ||||
| -rw-r--r-- | ts/n4.lyx | 3092 |
3 files changed, 3140 insertions, 83 deletions
@@ -162,7 +162,7 @@ status open \begin_layout Plain Layout -https://en.wikipedia.org/wiki/Coproduct +https://en.wikipedia.org/ \end_layout \end_inset @@ -212,5 +212,19 @@ filename "n3.lyx" \end_layout +\begin_layout Chapter +Homotopías +\end_layout + +\begin_layout Standard +\begin_inset CommandInset include +LatexCommand input +filename "n4.lyx" + +\end_inset + + +\end_layout + \end_body \end_document @@ -714,7 +714,7 @@ Llamamos \series bold unión disjunta \series default - de dos objetos + de dos conjuntos \begin_inset Formula $X$ \end_inset @@ -722,45 +722,8 @@ unión disjunta \begin_inset Formula $Y$ \end_inset -, -\begin_inset Formula $X\amalg Y$ -\end_inset - -, a un objeto para el que existen -\begin_inset Formula $L:X\to X\amalg Y$ -\end_inset - - y -\begin_inset Formula $R:Y\to X\amalg Y$ -\end_inset - - tales que para cada objeto -\begin_inset Formula $Z$ -\end_inset - -, -\begin_inset Formula $f_{L}:X\to Z$ -\end_inset - - y -\begin_inset Formula $f_{R}:Y\to Z$ -\end_inset - -, existe una única -\begin_inset Formula $f:X\amalg Y\to Z$ -\end_inset - - tal que -\begin_inset Formula $f_{L}=f\circ L$ -\end_inset - - y -\begin_inset Formula $f_{R}:=f\circ R$ -\end_inset - -. - Se puede construir como -\begin_inset Formula $(X\times\{0\})\cup(Y\times\{1\})$ + a +\begin_inset Formula $X\amalg Y:=(X\times\{0\})\cup(Y\times\{1\})$ \end_inset . @@ -773,7 +736,7 @@ unión disjunta \end_inset son espacios topológicos, definimos la topología -\begin_inset Formula ${\cal T}_{X\amalg Y}:=\{U\subseteq X\amalg Y:L^{-1}(U)\in{\cal T}_{X}\land R^{-1}(U)\in{\cal T}_{Y}\}$ +\begin_inset Formula ${\cal T}_{X\amalg Y}:=\{U\subseteq X\amalg Y:\{x:(x,0)\in U\}\in{\cal T}_{X}\land\{y:(y,1)\in U\}\in{\cal T}_{Y}\}$ \end_inset . @@ -785,11 +748,11 @@ Vemos que \end_inset es continua si y sólo si lo son -\begin_inset Formula $f\circ L$ +\begin_inset Formula $f|_{X\times\{0\}}$ \end_inset y -\begin_inset Formula $f\circ R$ +\begin_inset Formula $f|_{Y\times\{1\}}$ \end_inset , y que @@ -797,11 +760,11 @@ Vemos que \end_inset es continua si y sólo si -\begin_inset Formula $f|_{f^{-1}(L(X))}$ +\begin_inset Formula $f|_{f^{-1}(X\times\{1\})}$ \end_inset y -\begin_inset Formula $f|_{f^{-1}(R(Y))}$ +\begin_inset Formula $f|_{f^{-1}(Y\times\{0\})}$ \end_inset lo son. @@ -843,11 +806,11 @@ Sea \end_inset dada por -\begin_inset Formula $f(L(x)):=e^{x_{1}}v_{1}+\sum_{k=2}^{n}x_{k}v_{k}$ +\begin_inset Formula $f(x,0):=e^{x_{1}}v_{1}+\sum_{k=2}^{n}x_{k}v_{k}$ \end_inset y -\begin_inset Formula $f(R(x)):=-e^{x_{1}}v_{1}+\sum_{k=2}^{n}x_{k}v_{k}$ +\begin_inset Formula $f(y,0):=-e^{x_{1}}v_{1}+\sum_{k=2}^{n}x_{k}v_{k}$ \end_inset es un homeomorfismo. @@ -861,8 +824,8 @@ Sea \begin_inset Formula \[ f^{-1}\left(\sum_{k=1}^{n}x_{k}v_{k}\right)=\begin{cases} -L(\log x_{1},x_{2},\dots,x_{n}) & \text{si }x_{1}>0,\\ -R(\log(-x_{1}),x_{2},\dots,x_{n}) & \text{si }x_{1}<0, +((\log x_{1},x_{2},\dots,x_{n}),0), & x_{1}>0;\\ +((\log(-x_{1}),x_{2},\dots,x_{n}),1), & x_{1}<0; \end{cases} \] @@ -890,11 +853,11 @@ Basta tomar el homeomorfismo \end_inset dado por -\begin_inset Formula $f(L(A))=A$ +\begin_inset Formula $f(A,0)=A$ \end_inset , -\begin_inset Formula $f(R(A))=-A$ +\begin_inset Formula $f(A,1)=-A$ \end_inset , y @@ -971,7 +934,7 @@ Sea \end_inset , -\begin_inset Formula $\{L^{-1}(A_{i})\}_{i\in I}$ +\begin_inset Formula $\{U_{i}:=\{x:(x,0)\in A_{i}\}\}_{i\in I}$ \end_inset lo es de @@ -979,16 +942,16 @@ Sea \end_inset y por tanto admite un subrecubrimiento finito -\begin_inset Formula $L^{-1}(A_{i_{1}}),\dots,L^{-1}(A_{i_{n}})$ +\begin_inset Formula $U_{i_{1}},\dots,U_{i_{n}}$ \end_inset . Del mismo modo -\begin_inset Formula $\{R^{-1}(A_{i})\}_{i\in I}$ +\begin_inset Formula $\{V_{j}:=\{y:(y,1)\in A_{i}\}\}_{j\in I}$ \end_inset admite un subrecubrimiento finito -\begin_inset Formula $R^{-1}(A_{j_{1}}),\dots,R^{-1}(A_{j_{m}})$ +\begin_inset Formula $V_{j_{1}},\dots,V_{j_{m}}$ \end_inset de @@ -1029,7 +992,7 @@ Sea \end_inset , -\begin_inset Formula $\{L(A_{i})\}_{i\in I}\cup Y$ +\begin_inset Formula $\{A_{i}\times\{0\}\}_{i\in I}\cup(Y\times\{1\})$ \end_inset es un recubrimiento por abiertos de @@ -1037,7 +1000,7 @@ Sea \end_inset que admite pues un subrecubrimiento finito -\begin_inset Formula $L(A_{1}),\dots,L(A_{n}),Y$ +\begin_inset Formula $A_{1}\times\{0\},\dots,A_{n}\times\{0\},Y\times\{1\}$ \end_inset , con lo que @@ -1092,23 +1055,19 @@ status open \end_inset Sean -\begin_inset Formula $p,q\in X\amalg Y$ +\begin_inset Formula $(p,i),(q,j)\in X\amalg Y$ \end_inset , -\begin_inset Formula $p\neq q$ +\begin_inset Formula $(p,i)\neq(q,j)$ \end_inset . Si -\begin_inset Formula $p,q\in L(X)$ -\end_inset - - o -\begin_inset Formula $p,q\in R(Y)$ +\begin_inset Formula $i=j$ \end_inset - basta tomar los abiertos en +, basta tomar los abiertos en \begin_inset Formula $X$ \end_inset @@ -1117,20 +1076,12 @@ Sean \end_inset . - Si -\begin_inset Formula $p\in L(X)$ -\end_inset - - y -\begin_inset Formula $q\in R(Y)$ + De lo contrario basta tomar +\begin_inset Formula $X\times\{0\}$ \end_inset -, basta tomar -\begin_inset Formula $L(X)$ -\end_inset - - y -\begin_inset Formula $R(Y)$ + e +\begin_inset Formula $Y\times\{1\}$ \end_inset . @@ -1163,19 +1114,19 @@ Sean \end_inset entornos respectivos de -\begin_inset Formula $p$ +\begin_inset Formula $(p,0)$ \end_inset y -\begin_inset Formula $q$ +\begin_inset Formula $(q,0)$ \end_inset disjuntos, y basta tomar -\begin_inset Formula $U\cap X$ +\begin_inset Formula $\{x:(x,0)\in U\}$ \end_inset y -\begin_inset Formula $V\cap X$ +\begin_inset Formula $\{x:(x,0)\in V\}$ \end_inset . @@ -1206,7 +1157,7 @@ Si status open \begin_layout Plain Layout -\begin_inset Formula $\{L(X),R(Y)\}$ +\begin_inset Formula $\{X\times\{0\},Y\times\{1\}\}$ \end_inset es una separación por abiertos. diff --git a/ts/n4.lyx b/ts/n4.lyx new file mode 100644 index 0000000..b292e28 --- /dev/null +++ b/ts/n4.lyx @@ -0,0 +1,3092 @@ +#LyX 2.3 created this file. For more info see http://www.lyx.org/ +\lyxformat 544 +\begin_document +\begin_header +\save_transient_properties true +\origin unavailable +\textclass book +\use_default_options true +\maintain_unincluded_children false +\language spanish +\language_package default +\inputencoding auto +\fontencoding global +\font_roman "default" "default" +\font_sans "default" "default" +\font_typewriter "default" "default" +\font_math "auto" "auto" +\font_default_family default +\use_non_tex_fonts false +\font_sc false +\font_osf false +\font_sf_scale 100 100 +\font_tt_scale 100 100 +\use_microtype false +\use_dash_ligatures true +\graphics default +\default_output_format default +\output_sync 0 +\bibtex_command default +\index_command default +\paperfontsize default +\spacing single +\use_hyperref false +\papersize default +\use_geometry false +\use_package amsmath 1 +\use_package amssymb 1 +\use_package cancel 1 +\use_package esint 1 +\use_package mathdots 1 +\use_package mathtools 1 +\use_package mhchem 1 +\use_package stackrel 1 +\use_package stmaryrd 1 +\use_package undertilde 1 +\cite_engine basic +\cite_engine_type default +\biblio_style plain +\use_bibtopic false +\use_indices false +\paperorientation portrait +\suppress_date false +\justification true +\use_refstyle 1 +\use_minted 0 +\index Index +\shortcut idx +\color #008000 +\end_index +\secnumdepth 3 +\tocdepth 3 +\paragraph_separation indent +\paragraph_indentation default +\is_math_indent 0 +\math_numbering_side default +\quotes_style french +\dynamic_quotes 0 +\papercolumns 1 +\papersides 1 +\paperpagestyle default +\tracking_changes false +\output_changes false +\html_math_output 0 +\html_css_as_file 0 +\html_be_strict false +\end_header + +\begin_body + +\begin_layout Standard +Dos funciones +\begin_inset Formula $f,g:X\to Y$ +\end_inset + + son +\series bold +homotópicas +\series default +, +\begin_inset Formula $f\simeq g$ +\end_inset + +, si existe +\begin_inset Formula $F:X\times[0,1]\to Y$ +\end_inset + + continua tal que +\begin_inset Formula $\forall x\in X,(F(x,0)=f(x)\land F(x,1)=g(x))$ +\end_inset + +, en cuyo caso +\begin_inset Formula $F$ +\end_inset + + es una +\series bold +homotopía +\series default +. + De la continuidad de +\begin_inset Formula $F$ +\end_inset + + se obtiene la de +\begin_inset Formula $f$ +\end_inset + + y +\begin_inset Formula $g$ +\end_inset + +, y si +\begin_inset Formula ${\cal C}(X,Y)$ +\end_inset + + es el espacio de las funciones continuas +\begin_inset Formula $X\to Y$ +\end_inset + +, +\begin_inset Formula $F$ +\end_inset + + es un camino en +\begin_inset Formula ${\cal C}(X,Y)$ +\end_inset + +. +\end_layout + +\begin_layout Standard + +\series bold +Lema del pegamiento: +\series default + Sean +\begin_inset Formula $X:=A\cup B$ +\end_inset + + con +\begin_inset Formula $A$ +\end_inset + + y +\begin_inset Formula $B$ +\end_inset + + cerrados en +\begin_inset Formula $X$ +\end_inset + + y +\begin_inset Formula $f:X\to Y$ +\end_inset + +, si +\begin_inset Formula $f|_{A}$ +\end_inset + + y +\begin_inset Formula $f|_{B}$ +\end_inset + + son continuas con la topología de subespacio, +\begin_inset Formula $f$ +\end_inset + + es continua. +\begin_inset Note Comment +status open + +\begin_layout Plain Layout + +\series bold +Demostración: +\series default + Dado un cerrado +\begin_inset Formula $C\subseteq Y$ +\end_inset + +, +\begin_inset Formula $f^{-1}(C)\cap X$ +\end_inset + + y +\begin_inset Formula $f^{-1}(C)\cap Y$ +\end_inset + + son continuas respectivamente en +\begin_inset Formula $A$ +\end_inset + + y +\begin_inset Formula $B$ +\end_inset + + por hipótesis, luego también lo son en +\begin_inset Formula $X$ +\end_inset + + por ser +\begin_inset Formula $A$ +\end_inset + + y +\begin_inset Formula $B$ +\end_inset + + cerrados, y su unión, +\begin_inset Formula $f^{-1}(C)$ +\end_inset + +, es cerrada. + Por tanto, dado un abierto +\begin_inset Formula $U\subseteq Y$ +\end_inset + +, +\begin_inset Formula $f^{-1}(U)=X\setminus(X\setminus f^{-1}(U))=X\setminus f^{-1}(X\setminus U)$ +\end_inset + +, que es abierto. +\end_layout + +\end_inset + + +\end_layout + +\begin_layout Standard +La relación ser funciones homotópicas es de equivalencia, y llamamos +\begin_inset Formula $[X,Y]:={\cal C}(X,Y)\slash\simeq$ +\end_inset + +. +\begin_inset Note Comment +status open + +\begin_layout Plain Layout + +\series bold +Demostración: +\series default + Sean +\begin_inset Formula $f,g,h:X\to Y$ +\end_inset + + continuas. + +\begin_inset Formula $F(x,t):=f(x)$ +\end_inset + + es una homotopía de +\begin_inset Formula $f$ +\end_inset + + a +\begin_inset Formula $f$ +\end_inset + +, luego +\begin_inset Formula $\simeq$ +\end_inset + + es reflexiva. + Si +\begin_inset Formula $F$ +\end_inset + + es una homotopía de +\begin_inset Formula $f$ +\end_inset + + a +\begin_inset Formula $g$ +\end_inset + +, +\begin_inset Formula $G(x,t):=F(x,1-t)$ +\end_inset + + lo es de +\begin_inset Formula $g$ +\end_inset + + a +\begin_inset Formula $f$ +\end_inset + +, luego +\begin_inset Formula $\simeq$ +\end_inset + + es simétrica. + Si +\begin_inset Formula $F$ +\end_inset + + y +\begin_inset Formula $G$ +\end_inset + + son homotopías respectivas de +\begin_inset Formula $f$ +\end_inset + + a +\begin_inset Formula $g$ +\end_inset + +, +\begin_inset Formula +\[ +H(x,t):=\begin{cases} +F(x,2t), & 0\leq t\leq\frac{1}{2};\\ +G(x,2t-1), & \frac{1}{2}\leq t\leq1; +\end{cases} +\] + +\end_inset + +es una homotopía de +\begin_inset Formula $f$ +\end_inset + + a +\begin_inset Formula $h$ +\end_inset + +, pues +\begin_inset Formula $H|_{X\times[0,\frac{1}{2}]}$ +\end_inset + + y +\begin_inset Formula $H|_{X\times[\frac{1}{2},1]}$ +\end_inset + + son continuas y, por el lema del pegamento, +\begin_inset Formula $H$ +\end_inset + + también, y que +\begin_inset Formula $H(x,0)=f(x)$ +\end_inset + + y +\begin_inset Formula $H(x,1)=h(x)$ +\end_inset + + para todo +\begin_inset Formula $x$ +\end_inset + + es obvio. +\end_layout + +\end_inset + + +\end_layout + +\begin_layout Standard +Sean +\begin_inset Formula $X$ +\end_inset + + un espacio topológico e +\begin_inset Formula $Y\subseteq\mathbb{R}^{n}$ +\end_inset + + un subespacio convexo, todas las funciones continuas +\begin_inset Formula $X\to Y$ +\end_inset + + son homotópicas +\begin_inset Note Comment +status open + +\begin_layout Plain Layout +, pues si +\begin_inset Formula $f,g:X\to Y$ +\end_inset + + son continuas, basta tomar la homotopía +\begin_inset Formula $F:X\times[0,1]\to Y$ +\end_inset + + dada por +\begin_inset Formula $F(x,t):=(1-t)f(x)+tg(x)$ +\end_inset + + +\end_layout + +\end_inset + +. + En particular +\begin_inset Formula $[X,Y]$ +\end_inset + + es unipuntual. + +\end_layout + +\begin_layout Standard +Sean +\begin_inset Formula $f,g:X\to Y$ +\end_inset + + y +\begin_inset Formula $h,j:Y\to Z$ +\end_inset + + funciones continuas, +\begin_inset Formula $F:X\times[0,1]\to Y$ +\end_inset + + una homotopía entre +\begin_inset Formula $f$ +\end_inset + + y +\begin_inset Formula $g$ +\end_inset + + y +\begin_inset Formula $H$ +\end_inset + + una homotopía de +\begin_inset Formula $h$ +\end_inset + + a +\begin_inset Formula $j$ +\end_inset + +, entonces +\begin_inset Formula $(x,t)\mapsto H(F(x,t),t)$ +\end_inset + + es una homotopía de +\begin_inset Formula $h\circ f$ +\end_inset + + a +\begin_inset Formula $j\circ g$ +\end_inset + +. +\end_layout + +\begin_layout Section +Equivalencia homotópica +\end_layout + +\begin_layout Standard +Un subespacio +\begin_inset Formula $Y\subseteq X$ +\end_inset + + es un +\series bold +retracto +\series default + de +\begin_inset Formula $X$ +\end_inset + + si existe +\begin_inset Formula $r:X\to Y$ +\end_inset + + continua tal que +\begin_inset Formula $r|_{Y}=1_{Y}$ +\end_inset + +, en cuyo caso +\begin_inset Formula $r$ +\end_inset + + es una +\series bold +retracción +\series default +. + +\begin_inset Formula $Y$ +\end_inset + + es un +\series bold +retracto de deformación +\series default + de +\begin_inset Formula $X$ +\end_inset + + si existe una retracción +\begin_inset Formula $r:X\to Y$ +\end_inset + + tal que +\begin_inset Formula $i\circ r\simeq1_{X}$ +\end_inset + +, donde +\begin_inset Formula $i:Y\to X$ +\end_inset + + es la inclusión, y es un +\series bold +retracto fuerte de deformación +\series default + si podemos tomar +\begin_inset Formula $r$ +\end_inset + + para el que exista una homotopía +\begin_inset Formula $F$ +\end_inset + + de +\begin_inset Formula $i\circ r$ +\end_inset + + a +\begin_inset Formula $1_{X}$ +\end_inset + + tal que +\begin_inset Formula $\forall(y,t)\in Y\times[0,1],F(y,t)=y$ +\end_inset + +. +\end_layout + +\begin_layout Standard +Dos espacios +\begin_inset Formula $X$ +\end_inset + + es +\begin_inset Formula $Y$ +\end_inset + + son +\series bold +homotópicamente equivalentes +\series default +, +\begin_inset Formula $X\simeq Y$ +\end_inset + +, si existen +\begin_inset Formula $f:X\to Y$ +\end_inset + + y +\begin_inset Formula $g:Y\to X$ +\end_inset + + continuas con +\begin_inset Formula $g\circ f\simeq1_{X}$ +\end_inset + + y +\begin_inset Formula $f\circ g\simeq1_{Y}$ +\end_inset + +, en cuyo caso llamamos +\series bold +equivalencias homotópicas +\series default + a +\begin_inset Formula $f$ +\end_inset + + y +\begin_inset Formula $g$ +\end_inset + +. +\end_layout + +\begin_layout Standard +Dado otro espacio +\begin_inset Formula $Z$ +\end_inset + +, +\begin_inset Formula $\Phi:[X,Z]\to[Y,Z]$ +\end_inset + + dada por +\begin_inset Formula $\Phi([h]):=[h\circ g]$ +\end_inset + + es biyectiva con inversa +\begin_inset Formula $\Phi^{-1}([j])=[j\circ f]$ +\end_inset + +, y +\begin_inset Formula $\Psi:[Z,X]\to[Z,Y]$ +\end_inset + + dada por +\begin_inset Formula $\Psi([h]):=[f\circ h]$ +\end_inset + + es biyectiva con inversa +\begin_inset Formula $\Psi^{-1}([j])=[g\circ j]$ +\end_inset + +. +\begin_inset Note Comment +status open + +\begin_layout Plain Layout + +\series bold +Demostración: +\series default + Si +\begin_inset Formula $h\simeq j$ +\end_inset + +, +\begin_inset Formula $h\circ g\simeq j\circ g$ +\end_inset + +, luego +\begin_inset Formula $\Phi$ +\end_inset + + está bien definida y, análogamente, +\begin_inset Formula $\Psi$ +\end_inset + + está bien definida. + Sean +\begin_inset Formula $\Phi'([j]):=[j\circ f]$ +\end_inset + + y +\begin_inset Formula $\Psi'([j])=[g\circ j]$ +\end_inset + +. + Como +\begin_inset Formula $\Phi(\Phi'([h]))=\Phi([h\circ g])=[h\circ g\circ f]=[h\circ1_{X}]=[h]$ +\end_inset + + y +\begin_inset Formula $\Phi'(\Phi([j]))=\Phi'([j\circ f])=[j\circ f\circ g]=[j\circ1_{Y}]=[j]$ +\end_inset + +, +\begin_inset Formula $\Phi'=\Phi^{-1}$ +\end_inset + +. + Como +\begin_inset Formula $\Psi(\Psi'([h]))=\Psi([g\circ h])=[f\circ g\circ h]=[h]$ +\end_inset + + y +\begin_inset Formula $\Psi'(\Psi([h]))=\Psi'([f\circ h])=[g\circ f\circ h]=[h]$ +\end_inset + +, +\begin_inset Formula $\Psi'=\Psi^{-1}$ +\end_inset + +. +\end_layout + +\end_inset + + +\end_layout + +\begin_layout Standard +Si +\begin_inset Formula $X$ +\end_inset + + e +\begin_inset Formula $Y$ +\end_inset + + son homeomorfismos, +\begin_inset Formula $X\simeq Y$ +\end_inset + + +\begin_inset Note Comment +status open + +\begin_layout Plain Layout +, pues si +\begin_inset Formula $f:X\to Y$ +\end_inset + + es el homeomorfismo y +\begin_inset Formula $g:=f^{-1}:Y\to X$ +\end_inset + +, entonces +\begin_inset Formula $g\circ f=1_{X}$ +\end_inset + + y +\begin_inset Formula $f\circ g=1_{Y}$ +\end_inset + +, luego +\begin_inset Formula $f$ +\end_inset + + y +\begin_inset Formula $g$ +\end_inset + + son equivalencias homotópicas +\end_layout + +\end_inset + +. +\end_layout + +\begin_layout Standard +El recíproco no se cumple: +\end_layout + +\begin_layout Enumerate +La corona circular +\begin_inset Formula $\{(x,y)\in\mathbb{R}^{2}:x^{2}+y^{2}\in[0,1]\}$ +\end_inset + + es homotópicamente equivalente, pero no homeomorfa, a +\begin_inset Formula $\mathbb{S}^{1}$ +\end_inset + +. +\begin_inset Note Comment +status open + +\begin_layout Plain Layout +Sea +\begin_inset Formula $A$ +\end_inset + + la corona. + +\begin_inset Formula $A$ +\end_inset + + no es homeomorfa a +\begin_inset Formula $\mathbb{S}^{1}$ +\end_inset + + porque, al quitar un punto a cada una, +\begin_inset Formula $\mathbb{S}^{1}$ +\end_inset + + queda disconexa pero +\begin_inset Formula $A$ +\end_inset + + no. + Para la homotopía tomamos las funciones +\begin_inset Formula $A\overset{f}{\to}\mathbb{S}^{1}\overset{g}{\to}A$ +\end_inset + + dadas por +\begin_inset Formula $f(x):=\frac{x}{\Vert x\Vert}$ +\end_inset + + y +\begin_inset Formula $g$ +\end_inset + + es la inclusión. + Entonces +\begin_inset Formula $F(x,t):=(1-t)f(x)+tx$ +\end_inset + + es una homotopía de +\begin_inset Formula $g\circ f$ +\end_inset + + a +\begin_inset Formula $1_{A}$ +\end_inset + + y +\begin_inset Formula $f\circ g=1_{\mathbb{S}^{1}}$ +\end_inset + +. +\end_layout + +\end_inset + + +\end_layout + +\begin_layout Enumerate +\begin_inset Formula $\mathbb{R}^{n+1}\setminus\{0\}$ +\end_inset + + es homotópicamente equivalente, pero no homeomorfo, a +\begin_inset Formula $\mathbb{S}^{n}$ +\end_inset + +. +\begin_inset Note Comment +status open + +\begin_layout Plain Layout +No son homeomorfos porque +\begin_inset Formula $\mathbb{S}^{n}$ +\end_inset + + es compacto pero +\begin_inset Formula $\mathbb{R}^{n+1}\setminus\{0\}$ +\end_inset + + no. + Para la homotopía tomamos +\begin_inset Formula $\mathbb{R}^{n+1}\setminus\{0\}\overset{f}{\to}\mathbb{S}^{1}\overset{g}{\to}\mathbb{R}^{n+1}\setminus\{0\}$ +\end_inset + + dadas por +\begin_inset Formula $f(x):=\frac{x}{\Vert x\Vert}$ +\end_inset + + y +\begin_inset Formula $g(x):=x$ +\end_inset + +, y entonces +\begin_inset Formula $F(x,t):=(1-t)f(x)+tx$ +\end_inset + + es una homotopía de +\begin_inset Formula $g\circ f$ +\end_inset + + a +\begin_inset Formula $1_{\mathbb{R}^{n+1}\setminus\{0\}}$ +\end_inset + + y +\begin_inset Formula $f\circ g=1_{\mathbb{S}^{1}}$ +\end_inset + +. +\end_layout + +\end_inset + + +\end_layout + +\begin_layout Standard +\begin_inset Formula $X$ +\end_inset + + es +\series bold +contráctil +\series default + si es homotópicamente equivalente a un espacio unipuntual, y es fácil ver + que todo +\begin_inset Formula $X\subseteq\mathbb{R}^{n}$ +\end_inset + + convexo es contráctil. +\end_layout + +\begin_layout Standard +Sean +\begin_inset Formula $X$ +\end_inset + + e +\begin_inset Formula $Y$ +\end_inset + + espacios topológicos con +\begin_inset Formula $Y$ +\end_inset + + contráctil, todas las funciones continuas +\begin_inset Formula $X\to Y$ +\end_inset + + son homotópicas. +\begin_inset Note Comment +status open + +\begin_layout Plain Layout + +\series bold +Demostración: +\series default + Basta ver que todas son homotópicas a una misma función constante. + Sean +\begin_inset Formula $\{p\}$ +\end_inset + + el espacio unipuntual homotópicamente equivalente a +\begin_inset Formula $Y$ +\end_inset + +; +\begin_inset Formula $h:Y\to\{p\}$ +\end_inset + + y +\begin_inset Formula $j:\{p\}\to Y$ +\end_inset + + las equivalencias homotópicas, e +\begin_inset Formula $y_{0}:=k(p)\in Y$ +\end_inset + +, para +\begin_inset Formula $f:X\to Y$ +\end_inset + +, +\begin_inset Formula $f=1_{Y}\circ f\simeq j\circ h\circ f=(x\mapsto y_{0})$ +\end_inset + +. +\end_layout + +\end_inset + + +\end_layout + +\begin_layout Standard +Todo espacio contráctil es conexo por caminos. +\begin_inset Note Comment +status open + +\begin_layout Plain Layout + +\series bold +Demostración: +\series default + Sean +\begin_inset Formula $X$ +\end_inset + + homotópicamente equivalente a +\begin_inset Formula $\{p\}$ +\end_inset + +, +\begin_inset Formula $X\overset{f}{\to}\{p\}\overset{g}{\to}X$ +\end_inset + + las equivalencias homotópicas, +\begin_inset Formula $x_{0}:=g(p)=g(f(X))$ +\end_inset + + y +\begin_inset Formula $F:X\times[0,1]\to X$ +\end_inset + + la homotopía de +\begin_inset Formula $g\circ f$ +\end_inset + + a +\begin_inset Formula $1_{X}$ +\end_inset + +. + Para +\begin_inset Formula $x\in X$ +\end_inset + +, definimos el camino +\begin_inset Formula $\gamma_{x}(t):=F(x,t)$ +\end_inset + + que une +\begin_inset Formula $x_{0}$ +\end_inset + + a +\begin_inset Formula $x$ +\end_inset + +, y entonces, para +\begin_inset Formula $x,y\in X$ +\end_inset + +, +\begin_inset Formula $(\dot{-}\gamma_{x}(t))\dot{+}\gamma_{y}(t)$ +\end_inset + + es un camino de +\begin_inset Formula $x$ +\end_inset + + a +\begin_inset Formula $y$ +\end_inset + +. +\end_layout + +\end_inset + + +\end_layout + +\begin_layout Standard +Un +\series bold +invariante homotópico +\series default + es una propiedad que se conserva por equivalencias homotópicas. + Son invariantes homotópicos: +\end_layout + +\begin_layout Enumerate +La conexión. +\begin_inset Note Comment +status open + +\begin_layout Plain Layout +Si +\begin_inset Formula $X\simeq Y$ +\end_inset + + con +\begin_inset Formula $X$ +\end_inset + + conexo e +\begin_inset Formula $Y$ +\end_inset + + disconexo, sean +\begin_inset Formula $\{U,V\}$ +\end_inset + + una separación por abiertos de +\begin_inset Formula $Y$ +\end_inset + + y +\begin_inset Formula $X\overset{f}{\to}Y\overset{g}{\to}X$ +\end_inset + + equivalencias homotópicas, como +\begin_inset Formula $f(X)$ +\end_inset + + es conexo, +\begin_inset Formula $f(X)\subseteq U$ +\end_inset + + o +\begin_inset Formula $f(X)\subseteq V$ +\end_inset + +. + Si, por ejemplo, +\begin_inset Formula $f(X)\subseteq U$ +\end_inset + +, dado +\begin_inset Formula $y\in V$ +\end_inset + +, +\begin_inset Formula $f(g(y))=U$ +\end_inset + +, y como +\begin_inset Formula $f\circ g\simeq1_{X}$ +\end_inset + +, existe una homotopía +\begin_inset Formula $F:Y\times[0,1]\to Y$ +\end_inset + + de +\begin_inset Formula $f\circ g$ +\end_inset + + a +\begin_inset Formula $1_{Y}$ +\end_inset + + y por tanto un camino +\begin_inset Formula $\gamma(t):=F(y,t)$ +\end_inset + + de +\begin_inset Formula $f(g(y))\in U$ +\end_inset + + a +\begin_inset Formula $y\in V\#$ +\end_inset + +. +\end_layout + +\end_inset + + +\end_layout + +\begin_layout Enumerate +La conexión por caminos. +\begin_inset Note Comment +status open + +\begin_layout Plain Layout +Si +\begin_inset Formula $X\simeq Y$ +\end_inset + + con +\begin_inset Formula $X$ +\end_inset + + conexo por caminos, sean +\begin_inset Formula $X\overset{f}{\to}Y\overset{g}{\to}X$ +\end_inset + + las equivalencias homotópicas, +\begin_inset Formula $x,y\in Y$ +\end_inset + +, +\begin_inset Formula $\gamma:[0,1]\to X$ +\end_inset + + un camino que une +\begin_inset Formula $g(x)$ +\end_inset + + con +\begin_inset Formula $g(y)$ +\end_inset + +, de modo que +\begin_inset Formula $f\circ\gamma$ +\end_inset + + une +\begin_inset Formula $f(g(x))$ +\end_inset + + con +\begin_inset Formula $f(g(y))$ +\end_inset + +, +\begin_inset Formula $F:Y\times[0,1]\to Y$ +\end_inset + + la homotopía de +\begin_inset Formula $f\circ g$ +\end_inset + + a +\begin_inset Formula $1_{Y}$ +\end_inset + + y, para cada +\begin_inset Formula $p$ +\end_inset + +, +\begin_inset Formula $\sigma_{p}(t):=F(p,t)$ +\end_inset + + un camino que une +\begin_inset Formula $f(g(p))$ +\end_inset + + con +\begin_inset Formula $p$ +\end_inset + +. + Entonces +\begin_inset Formula $(\dot{-}\sigma_{x})\dot{+}(f\circ\gamma)\dot{+}\sigma_{y}$ +\end_inset + + une +\begin_inset Formula $x$ +\end_inset + + con +\begin_inset Formula $y$ +\end_inset + +. +\end_layout + +\end_inset + + +\end_layout + +\begin_layout Standard +La compacidad no es un invariante topológico +\begin_inset Note Comment +status open + +\begin_layout Plain Layout +, pues +\begin_inset Formula $[0,1]\simeq(0,1)$ +\end_inset + + +\end_layout + +\end_inset + +. + Tampoco lo es la propiedad Hausdorff. +\begin_inset Note Comment +status open + +\begin_layout Plain Layout + +\series bold +Demostración: +\series default + Dados +\begin_inset Formula $X:=\{0\}$ +\end_inset + + e +\begin_inset Formula $Y:=\{0,1\}$ +\end_inset + + con sus topologías indiscretas y +\begin_inset Formula $X\overset{f}{\to}Y\overset{g}{\to}X$ +\end_inset + + dadas por +\begin_inset Formula $f(0)=0$ +\end_inset + + y +\begin_inset Formula $g(x)=0$ +\end_inset + + y +\begin_inset Formula +\[ +F(y,t):=\begin{cases} +0, & t\leq\frac{1}{2};\\ +y, & t>\frac{1}{2}; +\end{cases} +\] + +\end_inset + + +\begin_inset Formula $F$ +\end_inset + + es una homotopía de +\begin_inset Formula $(g\circ f)(x)=0$ +\end_inset + + a +\begin_inset Formula $1_{Y}$ +\end_inset + + y +\begin_inset Formula $f\circ g=1_{X}$ +\end_inset + +, luego +\begin_inset Formula $X\simeq Y$ +\end_inset + + pero +\begin_inset Formula $X$ +\end_inset + + es Hausdorff e +\begin_inset Formula $Y$ +\end_inset + + no. +\end_layout + +\end_inset + + +\end_layout + +\begin_layout Section +Circunferencia +\end_layout + +\begin_layout Standard +Llamamos +\series bold +aplicación exponencial +\series default + a +\begin_inset Formula $e:\mathbb{R}\to\mathbb{S}^{1}$ +\end_inset + + dada por +\begin_inset Formula $e(\theta):=(\cos(2\pi\theta),\sin(2\pi\theta))$ +\end_inset + +. + Sean un camino +\begin_inset Formula $\alpha:[0,1]\to\mathbb{S}^{1}$ +\end_inset + + y +\begin_inset Formula $\theta_{0}\in\mathbb{R}$ +\end_inset + + tal que +\begin_inset Formula $e(\theta_{0})=\alpha_{0}$ +\end_inset + +, existe un único camino +\begin_inset Formula $\tilde{\alpha}:[0,1]\to\mathbb{R}$ +\end_inset + + tal que +\begin_inset Formula $e(\tilde{\alpha}(s))=\alpha(s)$ +\end_inset + + y +\begin_inset Formula $\tilde{\alpha}(0)=\theta_{0}$ +\end_inset + +, llamado +\series bold +levantamiento +\series default + de +\begin_inset Formula $\alpha$ +\end_inset + + a través de +\begin_inset Formula $e$ +\end_inset + + determinado por la condición inicial +\begin_inset Formula $\theta_{0}$ +\end_inset + +. +\begin_inset Note Comment +status open + +\begin_layout Plain Layout +Claramente $e$ es continua y sobreyectiva. + Sea un abierto $U +\backslash +subsetneq +\backslash +mathbb{S}^1$, existe $V +\backslash +subseteq +\backslash +mathbb R$ tal que $e|_V:V +\backslash +to U$ es un homeomorfismo, y como esto es periódico, $e^{-1}(U)= +\backslash +bigcup_{n +\backslash +in +\backslash +mathbb Z}V_n$ con $e|_{V_n}:V_n +\backslash +to U$ homeomorfismo. + +\end_layout + +\begin_layout Plain Layout +Como $ +\backslash +alpha$ es continua, para $ +\backslash +theta +\backslash +in[0,1]$ existe un intervalo $I_ +\backslash +theta$ con $ +\backslash +alpha(I_ +\backslash +theta) +\backslash +subseteq U_ +\backslash +theta$ para un cierto $U_ +\backslash +theta +\backslash +ni +\backslash +alpha( +\backslash +theta)$ que queramos (por ejemplo, $B( +\backslash +alpha( +\backslash +theta), +\backslash +varepsilon)$. + Como $ +\backslash +alpha([0,1])$ es compacto, existe un subrecubrimiento finito $ +\backslash +{I_{ +\backslash +theta_1}, +\backslash +dots,I_{ +\backslash +theta_n} +\backslash +}$ (podemos suponer $ +\backslash +theta_1< +\backslash +dots< +\backslash +theta_n$). + En cada $I_k$, $e$ es biyectiva definida salvo suma de un entero, luego + vamos <<enganchando>> y sale. +\end_layout + +\end_inset + + +\end_layout + +\begin_layout Standard +Un +\series bold +lazo +\series default + es un camino en el que el punto inicial y el final coinciden. + Si +\begin_inset Formula $f:\mathbb{S}^{1}\to\mathbb{S}^{1}$ +\end_inset + + es continua, +\begin_inset Formula $\alpha_{f}:=f\circ e:[0,1]\to\mathbb{S}^{1}$ +\end_inset + + es un lazo, y dado +\begin_inset Formula $\theta_{0}\in e^{-1}\{f(1,0)\}$ +\end_inset + +, sea +\begin_inset Formula $\tilde{\alpha}_{f}$ +\end_inset + + el levantamiento de +\begin_inset Formula $\alpha_{f}$ +\end_inset + + a través de +\begin_inset Formula $e$ +\end_inset + + determinado por +\begin_inset Formula $\theta_{0}$ +\end_inset + +, +\begin_inset Formula $\theta_{1}:=\tilde{\alpha}_{f}(1)=:\theta_{0}+n$ +\end_inset + + para algún +\begin_inset Formula $n\in\mathbb{Z}$ +\end_inset + + que no depende de +\begin_inset Formula $\theta_{0}$ +\end_inset + +. + Llamamos +\series bold +grado +\series default + de +\begin_inset Formula $f$ +\end_inset + + a +\begin_inset Formula $\deg f:=n=\tilde{\alpha}_{f}(1)-\tilde{\alpha}_{f}(0)$ +\end_inset + +. + Así: +\begin_inset Note Comment +status open + +\begin_layout Plain Layout + +\backslash +begin{enumerate} +\end_layout + +\begin_layout Plain Layout + +\backslash +item $ +\backslash +alpha_f(s)=f(e(s))=z_0$, $e({ +\backslash +tilde +\backslash +alpha}_f(s))= +\backslash +alpha_f(s)=z_0$, luego ${ +\backslash +tilde +\backslash +alpha}_f(s)$ es constante y el grado es 0. +\end_layout + +\begin_layout Plain Layout + +\backslash +item %TODO +\end_layout + +\begin_layout Plain Layout + +\backslash +item $ +\backslash +alpha_f(s)=f(e(s))=e(s)$, $e({ +\backslash +tilde +\backslash +alpha}_f(s))= +\backslash +alpha_f(s)=e(s)$, tomamos ${ +\backslash +tilde +\backslash +alpha}_f(s):=s$, $ +\backslash +deg(f)={ +\backslash +tilde +\backslash +alpha}_f(1)-{ +\backslash +tilde +\backslash +alpha}_f(0)=1-0=1$. +\end_layout + +\begin_layout Plain Layout + +\backslash +item $ +\backslash +alpha_f(s)=f(e(s))=-e(s)$, $e({ +\backslash +tilde +\backslash +alpha}_f(s))= +\backslash +alpha_f(s)=-e(s)=e(s+ +\backslash +frac12)$, tomamos ${ +\backslash +tilde +\backslash +alpha}_f(s):=s+ +\backslash +frac12$, $ +\backslash +deg(f)=(1+ +\backslash +frac12)-(0+ +\backslash +frac12)=1$. +\end_layout + +\begin_layout Plain Layout + +\backslash +item $ +\backslash +alpha_f(s)=f(e(s))=( +\backslash +cos^2(2 +\backslash +pi s)- +\backslash +sin^2(2 +\backslash +pi s),2 +\backslash +cos(2 +\backslash +pi s) +\backslash +sin(2 +\backslash +pi s))=( +\backslash +cos(4 +\backslash +pi s), +\backslash +sin(4 +\backslash +pi s))=e(2s)$, $e({ +\backslash +tilde +\backslash +alpha}_f(s)=e(2s)$, tomamos ${ +\backslash +tilde +\backslash +alpha}_f(s):=2s$, $ +\backslash +deg(f)=2 +\backslash +cdot1-2 +\backslash +cdot0=2$. +\end_layout + +\begin_layout Plain Layout + +\backslash +item $ +\backslash +alpha_f(s)=f(e(s))=f(e^{2 +\backslash +pi is})=e^{2 +\backslash +pi ins}=e(ns)$, $e({ +\backslash +tilde +\backslash +alpha}_f(s))= +\backslash +alpha_f(s)=e(ns)$, tomamos ${ +\backslash +tilde +\backslash +alpha}_f(s):=ns$, $ +\backslash +deg f={ +\backslash +tilde +\backslash +alpha}_f(1)-{ +\backslash +tilde +\backslash +alpha}_f(0)=n1-n0=n$. +\end_layout + +\begin_layout Plain Layout + +\backslash +item $ +\backslash +alpha_f(s)=f(e(s))=( +\backslash +cos(2 +\backslash +pi s),- +\backslash +sin(2 +\backslash +pi s))=( +\backslash +cos(-2 +\backslash +pi s), +\backslash +sin(-2 +\backslash +pi s))=e(-s)$, tomamos ${ +\backslash +tilde +\backslash +alpha}_f(s):=-s$, $ +\backslash +deg(f)={ +\backslash +tilde +\backslash +alpha}_f(1)-{ +\backslash +tilde +\backslash +alpha}_f(0)=-1-(-0)=-1$. +\end_layout + +\begin_layout Plain Layout + +\backslash +item $ +\backslash +alpha_f(s)=f(e(s))=(- +\backslash +cos(2 +\backslash +pi s), +\backslash +sin(2 +\backslash +pi s))=-( +\backslash +cos(2 +\backslash +pi s),- +\backslash +sin(2 +\backslash +pi s))=( +\backslash +cos(2 +\backslash +pi s- +\backslash +pi),- +\backslash +sin(2 +\backslash +pi s- +\backslash +pi))=( +\backslash +cos( +\backslash +pi-2 +\backslash +pi s), +\backslash +sin( +\backslash +pi-2 +\backslash +pi s))=e( +\backslash +frac12-s)$, tomamos ${ +\backslash +tilde +\backslash +alpha}_f(s):= +\backslash +frac12-s$, $ +\backslash +deg(f)={ +\backslash +tilde +\backslash +alpha}_f(1)-{ +\backslash +tilde +\backslash +alpha}_f(0)= +\backslash +frac12-1- +\backslash +frac12+0=-1$. +\end_layout + +\begin_layout Plain Layout + +\backslash +end{enumerate} +\end_layout + +\end_inset + + +\end_layout + +\begin_layout Enumerate +Si +\begin_inset Formula $f$ +\end_inset + + no es sobreyectiva (por ejemplo, si es constante), +\begin_inset Formula $\deg f=0$ +\end_inset + +. +\end_layout + +\begin_layout Enumerate +\begin_inset Formula $\deg1_{\mathbb{S}^{1}}=1$ +\end_inset + +. +\end_layout + +\begin_layout Enumerate +Si +\begin_inset Formula $f$ +\end_inset + + es la +\series bold +función antípoda +\series default +, +\begin_inset Formula $f(x):=-x$ +\end_inset + +, +\begin_inset Formula $\deg f=1$ +\end_inset + +. +\end_layout + +\begin_layout Enumerate +Si +\begin_inset Formula $f(x,y):=(x^{2}-y^{2},2xy)$ +\end_inset + +, +\begin_inset Formula $\deg f=2$ +\end_inset + +. +\end_layout + +\begin_layout Enumerate +Dado +\begin_inset Formula $n\in\mathbb{Z}$ +\end_inset + +, si +\begin_inset Formula $f(z):=z^{n}$ +\end_inset + + en +\begin_inset Formula $\mathbb{C}$ +\end_inset + +, +\begin_inset Formula $\deg f=n$ +\end_inset + +. +\end_layout + +\begin_layout Enumerate +Si +\begin_inset Formula $f(x,y)=(x,-y)$ +\end_inset + + o +\begin_inset Formula $f(x,y)=(-x,y)$ +\end_inset + +, +\begin_inset Formula $\deg f=-1$ +\end_inset + +. +\end_layout + +\begin_layout Standard +Si +\begin_inset Formula $F:[0,1]\times[0,1]\to\mathbb{S}^{1}$ +\end_inset + + es continua y +\begin_inset Formula $\theta_{0}\in\mathbb{R}$ +\end_inset + + cumple +\begin_inset Formula $e(\theta_{0})=F(0,0)$ +\end_inset + +, existe una única +\begin_inset Formula $\tilde{F}:[0,1]\times[0,1]\to\mathbb{R}$ +\end_inset + + continua con +\begin_inset Formula $e(\tilde{F}(s,t))=F(s,t)$ +\end_inset + + y +\begin_inset Formula $\tilde{F}(0,0)=\theta_{0}$ +\end_inset + +. + +\begin_inset Note Comment +status open + +\begin_layout Plain Layout +Existe una partición $ +\backslash +{I_a +\backslash +} +\backslash +subseteq[0,1]$ y una $ +\backslash +{J_b +\backslash +} +\backslash +subseteq[0,1]$ tal que $F(I_a +\backslash +times I_b) +\backslash +subseteq:V_{ab} +\backslash +subsetneq +\backslash +mathbb{S}^1$. + Para $I_0 +\backslash +times J_0$, con lo que $e^{-1}(V_{ab})=: +\backslash +bigcup_iU_{abi}$. + Entonces, para $I_1 +\backslash +times J_1$ podemos hacer esto y, una vez hecho esto, lo extendemos por continuid +ad <<a la derecha>>, y luego hacemos lo mismo <<hacia arriba>>. +\end_layout + +\end_inset + + +\end_layout + +\begin_layout Standard +\begin_inset Formula $\mathbb{S}^{1}$ +\end_inset + + no es contráctil. + +\begin_inset Note Comment +status open + +\begin_layout Plain Layout +De serlo, habría $f: +\backslash +mathbb{S}^1 +\backslash +to +\backslash +{z_0 +\backslash +}$ y $g: +\backslash +{z_0 +\backslash +} +\backslash +to +\backslash +mathbb{S}^1$ con $g +\backslash +circ f +\backslash +simeq 1_{ +\backslash +mathbb{S}^1}$, pero $g +\backslash +circ f$ es constante y tiene pues grado 0 y $1_{ +\backslash +mathbb{S}^1}$ tiene grado 1.$#$ +\end_layout + +\end_inset + + Como +\series bold +teorema +\series default +, +\begin_inset Formula $f,g:\mathbb{S}^{1}\to\mathbb{S}^{1}$ +\end_inset + + son homotópicas si y sólo si +\begin_inset Formula $\deg f=\deg g$ +\end_inset + +. +\begin_inset Note Comment +status open + +\begin_layout Plain Layout +\begin_inset Formula $z\mapsto z^{n}\simeq z\mapsto z^{m}\iff n=m$ +\end_inset + +: $f_n +\backslash +simeq f_m +\backslash +iff n= +\backslash +deg f_n= +\backslash +deg f_m=m$ +\end_layout + +\begin_layout Plain Layout +Ahora el teorema: +\end_layout + +\begin_layout Plain Layout + +\backslash +begin{itemize} +\end_layout + +\begin_layout Plain Layout + +\backslash +item{$ +\backslash +implies]$} Sea $I:=[0,1]$, existe una homotopía $H: +\backslash +mathbb{S}^1 +\backslash +times I +\backslash +to +\backslash +mathbb{S}^1$ y podemos tomar $F:I +\backslash +times I +\backslash +to +\backslash +mathbb{S}^1$ como $F(s,t):=H(e(s),t)$. + Sea $ +\backslash +alpha_f:I +\backslash +to +\backslash +mathbb{S}^1$ dado por $ +\backslash +alpha_f(s):=f(e(s))$, $ +\backslash +deg f= +\backslash +tilde +\backslash +alpha_f(1)- +\backslash +tilde +\backslash +alpha_f(0)$. + Queremos ver que $ +\backslash +tilde +\backslash +alpha_f(1)- +\backslash +tilde +\backslash +alpha_f(0)= +\backslash +tilde +\backslash +alpha_g(1)- +\backslash +tilde +\backslash +alpha_g(0)$. + Sea $ +\backslash +tilde F:I +\backslash +times I +\backslash +to +\backslash +mathbb R$ el levantamento de $F$. + Entonces $F(s,0)=H(e(s),0)=f(e(s))= +\backslash +alpha_f(s)$, y análogamente $F(s,1)= +\backslash +alpha_g(s)$, luego $F$ es una homotopía entre $ +\backslash +alpha_f$ y $ +\backslash +alpha_g$. + Entonces $e( +\backslash +tilde F(s,0))=F(s,0)= +\backslash +alpha_f(s)$ y $e( +\backslash +tilde F(s,1))= +\backslash +alpha_g(s)$. + Ahora bien, sea $ +\backslash +tilde D(t):= +\backslash +tilde F(1,t)- +\backslash +tilde F(0,t)$, basta ver que $ +\backslash +tilde D$ es constante, pues entonces $ +\backslash +deg f= +\backslash +tilde D(0)$ y $ +\backslash +deg g= +\backslash +tilde D(1)$. + Para ello vemos que $ +\backslash +tilde D(t)$ es entero, pues $e( +\backslash +tilde F(1,1))=F(1,t)=H(e(1),t)=H(e(0),t)=F(0,t)=e( +\backslash +tilde F(1,1))$, y al ser la exponencial la misma, la diferencia es entera. +\end_layout + +\begin_layout Plain Layout + +\backslash +item[$ +\backslash +impliedby]$] Si $f(1,0)=g(1,0)$, como $ +\backslash +alpha_f(0)= +\backslash +alpha_g(0)=f(1,0)=:z_0 +\backslash +in +\backslash +mathbb{S}^1$, sea $ +\backslash +theta_0$ con $e( +\backslash +theta_0)=z_0$, tomando levantamientos con $ +\backslash +tilde +\backslash +alpha_f(0)= +\backslash +tilde +\backslash +alpha_g(0)= +\backslash +theta_0$, como los grados coinciden, $ +\backslash +tilde +\backslash +alpha_f(1)= +\backslash +tilde +\backslash +alpha_g(1)$. + Sea $ +\backslash +tilde F(s,t):=(1-t) +\backslash +tilde +\backslash +alpha_f(s)+t +\backslash +tilde +\backslash +alpha_g(s)$ la homotopía canónica entre $ +\backslash +tilde +\backslash +alpha_f$ y $ +\backslash +tilde +\backslash +alpha_g$. + Defino $F(s,t):=e( +\backslash +tilde F(s,t))$, que claramente es continua con $F(s,0)=e( +\backslash +tilde F(s,0))=e( +\backslash +tilde +\backslash +alpha_f(s))= +\backslash +alpha_f(s)$ y análogamente $F(s,1)= +\backslash +alpha_g(s)$, luego es una homotopía. + Sea $ +\backslash +tilde H(e(s),t):= +\backslash +tilde F(s,t)$, que está bien definida porque $ +\backslash +tilde F(0,t)= +\backslash +tilde F(1,t)$, y definimos $H:=e +\backslash +circ +\backslash +tilde H$, y $H$ es una homotopía entre $f$ y $g$. +\end_layout + +\begin_layout Plain Layout +Sea ahora $f(1,0) +\backslash +neq g(1,0)$. + Sea $g':=R_{ +\backslash +theta_0} +\backslash +circ g$, donde $R_ +\backslash +theta$ es la rotación de ángulo $ +\backslash +theta$ y $ +\backslash +theta_0$ es tal que $R_{ +\backslash +theta_0}(g(1,0))=f(1,0)$. + Las funciones $f$ y $g'$ son homotópicas, y entre $g$ y $g'$ hay una homotopía + $g$ y $g'$ dada por $G(z,t):=R_{ +\backslash +theta_0t}(g(z))$. + Esto completa la prueba. +\end_layout + +\begin_layout Plain Layout + +\backslash +end{itemize} +\end_layout + +\end_inset + + +\end_layout + +\begin_layout Standard +Así, +\begin_inset Formula $[\mathbb{S}^{1},\mathbb{S}^{1}]$ +\end_inset + + es biyectivo con +\begin_inset Formula $\mathbb{Z}$ +\end_inset + + +\begin_inset Note Comment +status open + +\begin_layout Plain Layout +, pues la clase de homotopía de una función continua +\begin_inset Formula $\mathbb{S}^{1}\to\mathbb{S}^{1}$ +\end_inset + + es la de todas las funciones continuas de igual grado +\end_layout + +\end_inset + +. + +\end_layout + +\begin_layout Section +Teorema del punto fijo de Brower +\end_layout + +\begin_layout Standard +Si +\begin_inset Formula $f:\mathbb{S}^{1}\to\mathbb{S}^{1}$ +\end_inset + + es continua, +\begin_inset Formula $\deg f=0$ +\end_inset + + si y sólo si +\begin_inset Formula $f$ +\end_inset + + admite una extensión continua a +\begin_inset Formula $\mathbb{D}^{2}:=B(0,1)\subseteq\mathbb{R}^{2}$ +\end_inset + +, es decir, una función continua +\begin_inset Formula $\hat{f}:\mathbb{D}^{2}\to\mathbb{S}^{1}$ +\end_inset + + con +\begin_inset Formula $\hat{f}(x)=f(x)$ +\end_inset + + para todo +\begin_inset Formula $x\in\mathbb{S}^{1}$ +\end_inset + +. + +\begin_inset Note Comment +status open + +\begin_layout Plain Layout + +\backslash +begin{itemize} +\end_layout + +\begin_layout Plain Layout + +\backslash +item[$ +\backslash +implies]$] Sea $F: +\backslash +mathbb{S}^1 +\backslash +times[0,1] +\backslash +to +\backslash +mathbb{S}^1$ la homotopía de una cierta función constante $c(z):=z_0$ a + $f$ y definimos $ +\backslash +hat f: +\backslash +mathbb{D}^2 +\backslash +to +\backslash +mathbb{S}^1$ como $ +\backslash +hat f(0):=z_0$ y $ +\backslash +hat f(z):=F( +\backslash +frac z{ +\backslash +Vert z +\backslash +Vert}, +\backslash +Vert z +\backslash +Vert)$ para $z +\backslash +neq0$. + Para ver que $ +\backslash +hat f$ es continua también en $z_0$, $ +\backslash +lim_{z +\backslash +to0} +\backslash +hat f(z)= +\backslash +lim_{z +\backslash +to0}F({z +\backslash +over +\backslash +Vert z +\backslash +Vert}, +\backslash +Vert z +\backslash +Vert)=z_0$. + Para $z +\backslash +in +\backslash +mathbb{S}^1$, $ +\backslash +hat f(z)=F(z,1)=f(z)$. +\end_layout + +\begin_layout Plain Layout + +\backslash +item[$ +\backslash +impliedby]$] Definimos $F(z,t):= +\backslash +tilde f(tz)$. + Entonces $F(z,1)= +\backslash +hat f(z)=f(z)$ y $F(z,0)= +\backslash +hat f(0)$ que es constante, y como $F$ es continua, define una homotopía + entre $f$ y una constante. +\end_layout + +\begin_layout Plain Layout + +\backslash +end{itemize} +\end_layout + +\end_inset + + +\end_layout + +\begin_layout Standard +Así, no existe una retracción de +\begin_inset Formula $\mathbb{D}^{2}$ +\end_inset + + a +\begin_inset Formula $\mathbb{S}^{1}$ +\end_inset + +, y por conexión tampoco existe una de +\begin_inset Formula $\mathbb{D}^{1}$ +\end_inset + + a +\begin_inset Formula $\mathbb{S}^{0}$ +\end_inset + +. + +\series bold +Teorema del punto fijo de Brower: +\end_layout + +\begin_layout Enumerate +Toda +\begin_inset Formula $f:\mathbb{D}^{1}\to\mathbb{D}^{1}$ +\end_inset + + continua tiene algún punto fijo. +\begin_inset Note Comment +status open + +\begin_layout Plain Layout +Si $f(-1)=-1$ o $f(1)=1$ hemos terminado. + De lo contrario $f(-1)>-1$ y $f(1)<1$, y definiendo $g(x):=f(x)-x$, $g(-1)>0$ + y $g(1)<0$, y basta aplicar el teorema de Bolzano. +\end_layout + +\end_inset + + +\end_layout + +\begin_layout Enumerate +Toda +\begin_inset Formula $f:\mathbb{D}^{2}\to\mathbb{D}^{2}$ +\end_inset + + tiene un punto fijo. +\begin_inset Note Comment +status open + +\begin_layout Plain Layout +Basta suponer que no lo tiene y construir $g: +\backslash +mathbb{D}^2 +\backslash +to +\backslash +mathbb{S}^1$ continua tal que $g|_{ +\backslash +mathbb{S}^1}=1_{ +\backslash +mathbb{S}^1}$. + Si no lo tiene, definimos $g$ como la función que a cada $z$ le asigna + el punto de corte del segmento $[z,f(z)]$ con la circunferencia más próximo + a $z$. + Este punto está en la imagen de $ +\backslash +gamma(t):=z+t(f(z)-z)$, para algún $t<0$. + Entonces $ +\backslash +gamma(t) +\backslash +in +\backslash +mathbb{S}^1 +\backslash +iff +\backslash +Vert +\backslash +gamma(t) +\backslash +Vert^2=1$, pero +\end_layout + +\begin_layout Plain Layout +$$ +\backslash +Vert +\backslash +gamma(t) +\backslash +Vert^2= +\backslash +langle +\backslash +gamma(t), +\backslash +gamma(t) +\backslash +rangle= +\backslash +Vert z +\backslash +Vert^2+2t +\backslash +langle z,f(z)-z +\backslash +rangle+t^2 +\backslash +Vert f(z)-z +\backslash +Vert^2.$$ Llamando $a(z):= +\backslash +Vert f(z)-z +\backslash +Vert^2$, $b(z):= +\backslash +langle z,f(z)-z +\backslash +rangle$ y $c(z):= +\backslash +Vert z +\backslash +Vert^2-1$, todas continuas, $t$ cumple $a(z)t^2+2b(z)t+c(z)=0$, luego +\end_layout + +\begin_layout Plain Layout +$$t(z)={-2b(z)- +\backslash +sqrt{4b(z)^2-4a(z)c(z)} +\backslash +over2a(z)}={-b(z)- +\backslash +sqrt{b(z)^2-a(z)c(z)} +\backslash +over a(z)}.$$ +\end_layout + +\begin_layout Plain Layout +Esto es correcto porque $a$ no se anula al no haber puntos fijos y porque, + como $a(z)c(z)<0$, $ +\backslash +sqrt{4b(z)^2-4a(z)b(z)}>2b(z)$ y el resultado para $t<0$ es único. +\end_layout + +\end_inset + + +\end_layout + +\begin_layout Section +Teorema de la bola peluda +\end_layout + +\begin_layout Standard +Un +\series bold +campo de vectores +\series default + sobre +\begin_inset Formula $X\subseteq\mathbb{R}^{n}$ +\end_inset + + es una función continua +\begin_inset Formula $v:X\to\mathbb{R}^{n}$ +\end_inset + +, y es +\series bold +tangente +\series default + a +\begin_inset Formula $x$ +\end_inset + + si para todo +\begin_inset Formula $x\in X$ +\end_inset + +, existen un camino +\begin_inset Formula $\gamma:[a,b]\to X$ +\end_inset + + y +\begin_inset Formula $t_{0}\in[0,1]$ +\end_inset + + tales que +\begin_inset Formula $\gamma(t_{0})=x$ +\end_inset + + y +\begin_inset Formula $\gamma'(t_{0})=v(x)$ +\end_inset + +. + Un +\begin_inset Formula $x\in X$ +\end_inset + + es un +\series bold +punto estacionario +\series default + de +\begin_inset Formula $v$ +\end_inset + + si +\begin_inset Formula $v(x)=0$ +\end_inset + +. +\end_layout + +\begin_layout Standard +Como +\series bold +teorema +\series default +, todo campo de vectores +\begin_inset Formula $v:\mathbb{D}^{2}\to\mathbb{R}^{2}$ +\end_inset + +, bien tiene un punto estacionario, bien existen +\begin_inset Formula $p,q\in\mathbb{S}^{1}$ +\end_inset + + tales que +\begin_inset Formula $v(p)$ +\end_inset + + apunta directamente hacia fuera de +\begin_inset Formula $\mathbb{D}^{2}$ +\end_inset + + y +\begin_inset Formula $q$ +\end_inset + + apunta directamente hacia dentro. +\begin_inset Note Comment +status open + +\begin_layout Plain Layout +Supongamos que $v$ no tiene un punto estacionario, y sean $f(z):={v(z) +\backslash +over +\backslash +Vert v(z) +\backslash +Vert}$ y $g(z):=-f(z)$. + Entonces $f,g: +\backslash +mathbb{S}^1 +\backslash +to +\backslash +mathbb{S}^1$ son continuas. + Como $f$ admite una extensión continua a $ +\backslash +mathbb{D}^2$ dada por $F(z,t):={v(tz) +\backslash +over +\backslash +Vert v(tz) +\backslash +Vert$, tiene grado 0. + Si no hubiera $p_0 +\backslash +in +\backslash +mathbb{S}^1$ que apunte directamente hacia dentro, podríamos definir +\end_layout + +\begin_layout Plain Layout +$ +\backslash +tilde F(z,t):={tz+(1-t)v(z) +\backslash +over +\backslash +Vert tz+(1-t)v(z) +\backslash +Vert$ en $ +\backslash +mathbb{S}^1 +\backslash +times[0,1]$, y esta función es continua y cumple $F(z,0)=f(z)$ y $F(z,1)=z$, + luego la identidad es homotópica a $f$ y $f$ tiene grado 1.$#$. + Análogamente y tomando $G(z,t):={tz-(1-t)v(z) +\backslash +over +\backslash +Vert tz-(1-t)v(z) +\backslash +Vert$ se obtiene el otro resultado. +\end_layout + +\end_inset + + +\end_layout + +\begin_layout Standard +Un campo de vectores tangente a +\begin_inset Formula $\mathbb{S}^{2}$ +\end_inset + + es una función continua +\begin_inset Formula $v:\mathbb{S}^{2}\to\mathbb{R}^{3}$ +\end_inset + + con +\begin_inset Formula $v(p)\in T_{p}\mathbb{S}^{2}:=\text{span}\{p\}^{\bot}$ +\end_inset + + para cada +\begin_inset Formula $p\in\mathbb{S}^{2}$ +\end_inset + +. + +\series bold +Teorema de la bola peluda: +\series default + Todo campo de vectores tangente a +\begin_inset Formula $\mathbb{S}^{2}$ +\end_inset + + tiene un punto estacionario. +\begin_inset Note Comment +status open + +\begin_layout Plain Layout +Prueba basada en E. + Curtim "Another proof of hairy ball theorem", AMS Monthly 125 (2018), 462--463. +\end_layout + +\begin_layout Plain Layout +Supongamos que podemos tener un campo de vectores tangencial de vectores + unitarios. + Describimos la esfera como la imagen de $p:[0,1] +\backslash +times[-1,1] +\backslash +to +\backslash +mathbb{S}^2$ dada por $p( +\backslash +theta,t):=( +\backslash +sqrt{1-t^2} +\backslash +cos(2 +\backslash +pi +\backslash +theta), +\backslash +sqrt{1-t^2} +\backslash +sin(2 +\backslash +pi +\backslash +theta),t)$. + Sean $e( +\backslash +theta,t):=(- +\backslash +sin(2 +\backslash +pi +\backslash +theta), +\backslash +cos(2 +\backslash +pi +\backslash +theta),0)$ y $n( +\backslash +theta,t):=(-t( +\backslash +cos(2 +\backslash +pi +\backslash +theta),-t +\backslash +sin(2 +\backslash +pi +\backslash +theta), +\backslash +sqrt{1-t^2})$, $e$ y $n$ son campos tangenciales a $ +\backslash +mathbb{S}^2$ en $p( +\backslash +theta,t)$ y forman una base ortonormal del plano tangente a $p( +\backslash +theta,t)$. + Entonces $H:[0,1] +\backslash +times[-1,1] +\backslash +to +\backslash +mathbb{S}^1$ dada por $H( +\backslash +theta,t)=( +\backslash +langle v,e +\backslash +rangle, +\backslash +langle v,n +\backslash +rangle)( +\backslash +theta,t)$ se puede entender como una homotopía entre ciertos $H( +\backslash +theta,-1)=: +\backslash +alpha( +\backslash +theta)$ y $H( +\backslash +theta,1)=: +\backslash +beta( +\backslash +theta)$. + +\end_layout + +\begin_layout Plain Layout +Sea $v(p( +\backslash +theta,t))=(a( +\backslash +theta,t),b( +\backslash +theta,t),c( +\backslash +theta,t)) +\backslash +in +\backslash +mathbb{R}^3$. + Para $ +\backslash +alpha( +\backslash +theta)$, $ +\backslash +langle v,e +\backslash +rangle( +\backslash +theta,-1)=-a( +\backslash +theta,-1) +\backslash +sin(2 +\backslash +pi +\backslash +theta)+b( +\backslash +theta,-1) +\backslash +cos(2 +\backslash +pi +\backslash +theta)=:-a_s +\backslash +sin(2 +\backslash +pi +\backslash +theta)+b_s +\backslash +cos(2 +\backslash +pi +\backslash +theta)=:- +\backslash +cos(2 +\backslash +pi +\backslash +omega_s) +\backslash +sin(2 +\backslash +pi +\backslash +theta)+ +\backslash +sin(2 +\backslash +pi +\backslash +omega_s) +\backslash +sin(2 +\backslash +pi +\backslash +theta)= +\backslash +sin(2 +\backslash +pi(- +\backslash +theta+ +\backslash +omega_s))$, h análogamente, $ +\backslash +langle v,n +\backslash +rangle( +\backslash +theta,-1)= +\backslash +cos(2 +\backslash +pi(- +\backslash +theta+ +\backslash +omega_s))$. + Para $ +\backslash +beta( +\backslash +theta)$, $ +\backslash +langle v,e +\backslash +rangle( +\backslash +theta,1)=: +\backslash +sin(2 +\backslash +pi(- +\backslash +theta+ +\backslash +omega_r))$ y $ +\backslash +langle v,n +\backslash +rangle( +\backslash +theta,1)= +\backslash +cos(2 +\backslash +pi(- +\backslash +theta+ +\backslash +omega_r))$. + El primer seno de las 4 últimas fómulas se puede poner como $ +\backslash +cos(2 +\backslash +pi( +\backslash +theta+ +\backslash +frac14- +\backslash +omega_s))$ y el primer coseno como $ +\backslash +sin(2 +\backslash +pi( +\backslash +theta+ +\backslash +frac14- +\backslash +omega_s))$. + +\end_layout + +\begin_layout Plain Layout +Nos queda que $ +\backslash +alpha( +\backslash +theta)$ es la curva imagen asociada a la rotación $f$ de ángulo $2 +\backslash +pi( +\backslash +frac14- +\backslash +omega_s)$. + Al ser una rotación, $ +\backslash +deg(f)=1$. + La aplicación $g(e^{i2 +\backslash +pi +\backslash +theta}):=e^{-i2 +\backslash +pi +\backslash +theta}$ es una simetría de $ +\backslash +mathbb{S}^1$ de grado $-1$, luego $g +\backslash +circ f$ es fácil ver que tiene grado $-1$. + Entonces $H$ era una homotopía entre $ +\backslash +alpha$ y $ +\backslash +beta$, cuyos levantamientos deberían ser homotópicos, pero eso no puede + ser porque cada uno representa una función con un grado diferente ($f$ + y $g +\backslash +circ f$, respectivamente). +\end_layout + +\end_inset + + +\end_layout + +\end_body +\end_document |
