diff options
| author | Juan Marín Noguera <juan.marinn@um.es> | 2020-04-15 17:24:35 +0200 |
|---|---|---|
| committer | Juan Marín Noguera <juan.marinn@um.es> | 2020-04-15 17:24:35 +0200 |
| commit | 28df8e706ec4b9e775102a459b60928295f01d29 (patch) | |
| tree | 950061d301c95c7f07a686182186774b69163bd2 /ts | |
| parent | 488681461f36eba32b7a5a3d62935ae83a76e7c7 (diff) | |
ts/n3
Diffstat (limited to 'ts')
| -rw-r--r-- | ts/n.lyx | 29 | ||||
| -rw-r--r-- | ts/n2.lyx | 44 | ||||
| -rw-r--r-- | ts/n3.lyx | 2902 |
3 files changed, 2931 insertions, 44 deletions
@@ -155,6 +155,21 @@ Essential Topology, Martin D. Crossley (2005), Springer. \end_layout +\begin_layout Itemize +Wikipedia, the Free Encyclopedia, +\begin_inset Flex URL +status open + +\begin_layout Plain Layout + +https://en.wikipedia.org/wiki/Coproduct +\end_layout + +\end_inset + +. +\end_layout + \begin_layout Chapter Espacios topológicos \end_layout @@ -183,5 +198,19 @@ filename "n2.lyx" \end_layout +\begin_layout Chapter +Homeomorfismos y construcciones topológicas +\end_layout + +\begin_layout Standard +\begin_inset CommandInset include +LatexCommand input +filename "n3.lyx" + +\end_inset + + +\end_layout + \end_body \end_document @@ -1864,50 +1864,6 @@ compacto Así: \end_layout -\begin_layout Standard -\begin_inset Note Note -status open - -\begin_layout Plain Layout -\begin_inset Formula $\mathbb{S}^{1}$ -\end_inset - -, -\begin_inset Formula $[a,b]$ -\end_inset - -, no -\begin_inset Formula $\mathbb{R}$ -\end_inset - -, espacio topológico finito, discreto, -\begin_inset Formula $(a,b)$ -\end_inset - -, -\begin_inset Formula $(a,b]$ -\end_inset - -, -\begin_inset Formula $[a,b)$ -\end_inset - -, -\begin_inset Formula $(a,+\infty)$ -\end_inset - -, -\begin_inset Formula $(-\infty,b)$ -\end_inset - -. -\end_layout - -\end_inset - - -\end_layout - \begin_layout Enumerate Todo espacio topológico finito es compacto. \begin_inset Note Comment diff --git a/ts/n3.lyx b/ts/n3.lyx new file mode 100644 index 0000000..bf5be1d --- /dev/null +++ b/ts/n3.lyx @@ -0,0 +1,2902 @@ +#LyX 2.3 created this file. For more info see http://www.lyx.org/ +\lyxformat 544 +\begin_document +\begin_header +\save_transient_properties true +\origin unavailable +\textclass book +\use_default_options true +\maintain_unincluded_children false +\language spanish +\language_package default +\inputencoding auto +\fontencoding global +\font_roman "default" "default" +\font_sans "default" "default" +\font_typewriter "default" "default" +\font_math "auto" "auto" +\font_default_family default +\use_non_tex_fonts false +\font_sc false +\font_osf false +\font_sf_scale 100 100 +\font_tt_scale 100 100 +\use_microtype false +\use_dash_ligatures true +\graphics default +\default_output_format default +\output_sync 0 +\bibtex_command default +\index_command default +\paperfontsize default +\spacing single +\use_hyperref false +\papersize default +\use_geometry false +\use_package amsmath 1 +\use_package amssymb 1 +\use_package cancel 1 +\use_package esint 1 +\use_package mathdots 1 +\use_package mathtools 1 +\use_package mhchem 1 +\use_package stackrel 1 +\use_package stmaryrd 1 +\use_package undertilde 1 +\cite_engine basic +\cite_engine_type default +\biblio_style plain +\use_bibtopic false +\use_indices false +\paperorientation portrait +\suppress_date false +\justification true +\use_refstyle 1 +\use_minted 0 +\index Index +\shortcut idx +\color #008000 +\end_index +\secnumdepth 3 +\tocdepth 3 +\paragraph_separation indent +\paragraph_indentation default +\is_math_indent 0 +\math_numbering_side default +\quotes_style french +\dynamic_quotes 0 +\papercolumns 1 +\papersides 1 +\paperpagestyle default +\tracking_changes false +\output_changes false +\html_math_output 0 +\html_css_as_file 0 +\html_be_strict false +\end_header + +\begin_body + +\begin_layout Standard +Un +\series bold +homeomorfismo +\series default + es una biyección +\begin_inset Formula $f:X\to Y$ +\end_inset + + continua con inversa continua. + Si existe, +\begin_inset Formula $X$ +\end_inset + + e +\begin_inset Formula $Y$ +\end_inset + + son +\series bold +homeomorfos +\series default + ( +\begin_inset Formula $X\cong Y$ +\end_inset + +). + Esta relación es de equivalencia. + Una función +\begin_inset Formula $f:X\to Y$ +\end_inset + + es un +\series bold +embebimiento +\series default + si su restricción de rango +\begin_inset Formula $\hat{f}:X\to f(X)$ +\end_inset + + es un homeomorfismo. +\end_layout + +\begin_layout Standard +Algunos homeomorfismos: +\end_layout + +\begin_layout Enumerate +Los isomorfismos lineales entre +\begin_inset Formula $\mathbb{R}^{n}$ +\end_inset + + y +\begin_inset Formula $\mathbb{R}^{m}$ +\end_inset + + son homeomorfismos. +\begin_inset Note Comment +status open + +\begin_layout Plain Layout +Son biyecciones que, al ser lineales en +\begin_inset Formula $\mathbb{R}^{n}$ +\end_inset + +, son continuas, y como su inversa es también lineal, es continua. +\end_layout + +\end_inset + + +\end_layout + +\begin_layout Enumerate +Los intervalos abiertos y acotados de +\begin_inset Formula $\mathbb{R}$ +\end_inset + + son homeomorfos entre sí, al igual que los cerrados y acotados. + +\end_layout + +\begin_layout Enumerate +Las funciones +\begin_inset Formula $f,g:(-1,1)\to\mathbb{R}$ +\end_inset + + dadas por +\begin_inset Formula $f(x):=\tan(\frac{\pi}{2}x)$ +\end_inset + + y +\begin_inset Formula $g(x):=\frac{x}{1-x^{2}}$ +\end_inset + + son homeomorfismos. +\end_layout + +\begin_layout Enumerate +Sea +\begin_inset Formula $N:=(0,\dots,0,1)\in\mathbb{R}^{n+1}$ +\end_inset + +, la +\series bold +proyección estereográfica +\series default +, que asigna a cada +\begin_inset Formula $x\in\mathbb{S}^{n}\setminus N$ +\end_inset + + el punto de corte de +\begin_inset Formula $\mathbb{R}^{n}\times\{-1\}$ +\end_inset + + con la recta +\begin_inset Formula $\overrightarrow{Nx}$ +\end_inset + +, es un homeomorfismo. +\begin_inset Note Comment +status open + +\begin_layout Plain Layout +Sean +\begin_inset Formula $\pi:=\mathbb{R}^{n}\times\{-1\}$ +\end_inset + + y +\series bold + +\begin_inset Formula $g:\mathbb{S}^{n}\setminus N\to\pi$ +\end_inset + + +\series default + la proyección estereográfica. + Si +\begin_inset Formula $y:=g(x)$ +\end_inset + +, +\begin_inset Formula $(y_{1},\dots,y_{n},-1)=(0,\dots,0,1)+\mu(x_{1},\dots,x_{n},x_{n+1}-1)$ +\end_inset + +, y como +\begin_inset Formula $-1=1+\mu(x_{n+1}-1)$ +\end_inset + +, +\begin_inset Formula $\mu=\frac{1}{1-x_{n+1}}$ +\end_inset + + e +\begin_inset Formula $(y_{1},\dots,y_{n})=\frac{1}{1-x_{n+1}}(x_{1},\dots,x_{n})$ +\end_inset + +, y +\begin_inset Formula $g$ +\end_inset + + está bien definida. + Partiendo de +\begin_inset Formula $(y_{1},\dots,y_{n})$ +\end_inset + +, +\begin_inset Formula $(x_{1},\dots,x_{n+1})=(ty_{1},\dots,ty_{n},1-t)$ +\end_inset + + para un cierto +\begin_inset Formula $t$ +\end_inset + +, pero como +\begin_inset Formula $x_{1}^{2}+\dots+x_{n}^{2}+x_{n+1}^{2}=t^{2}(y_{1}^{2}+\dots+y_{n}^{2})+(1-t)^{2}=(1+y_{1}^{2}+\dots+y_{n}^{2})t^{2}-2t+1=1$ +\end_inset + +, se tiene +\begin_inset Formula $t\in\{0,\frac{2}{1+y_{1}^{2}+\dots+y_{n}^{2}}\}$ +\end_inset + +, y como +\begin_inset Formula $t\neq0$ +\end_inset + + porque +\begin_inset Formula $x\neq N$ +\end_inset + + es +\begin_inset Formula $t=\frac{2}{1+y_{1}^{2}+\dots+y_{n}^{2}}$ +\end_inset + +, y +\begin_inset Formula $g$ +\end_inset + + es biyectiva. + A partir de las fórmulas obtenidas es claro que +\begin_inset Formula $g$ +\end_inset + + y +\begin_inset Formula $g^{-1}$ +\end_inset + + son continuas, luego +\begin_inset Formula $g$ +\end_inset + + es un homeomorfismo. +\end_layout + +\end_inset + + +\end_layout + +\begin_layout Enumerate +\begin_inset Formula $\mathbb{S}^{n}\setminus\{p\}$ +\end_inset + + y +\begin_inset Formula $\mathbb{R}^{n}$ +\end_inset + + son homeomorfos. +\begin_inset Note Comment +status open + +\begin_layout Plain Layout +\begin_inset Formula $\mathbb{S}^{n}\setminus\{N:=(0,\dots,0,1)\}$ +\end_inset + + y +\begin_inset Formula $\mathbb{S}^{n}\setminus\{p\}$ +\end_inset + +, así como +\begin_inset Formula $\mathbb{R}^{n}$ +\end_inset + + y +\begin_inset Formula $\pi:=\mathbb{R}^{n}\times\{-1\}$ +\end_inset + +, son linealmente isomorfos, por lo que son homeomorfos y +\begin_inset Formula $\mathbb{S}^{n}\setminus\{p\}\cong S\setminus\{N\}\cong\pi\cong\mathbb{R}^{n}$ +\end_inset + +. +\end_layout + +\end_inset + + +\end_layout + +\begin_layout Enumerate +El disco +\begin_inset Formula $\mathbb{D}^{n}:=\overline{B}_{d_{2}}(0;1)\subseteq\mathbb{R}^{n}$ +\end_inset + + es homeomorfo a +\begin_inset Formula $[-1,1]^{n}$ +\end_inset + +. +\begin_inset Note Comment +status open + +\begin_layout Plain Layout +Sea +\begin_inset Formula $f:\mathbb{D}^{n}\to[-1,1]^{n}$ +\end_inset + + dada por +\begin_inset Formula $f(x):=x\frac{\Vert x\Vert_{\infty}}{\Vert x\Vert_{2}}$ +\end_inset + + para +\begin_inset Formula $x\neq0$ +\end_inset + + y +\begin_inset Formula $f(0):=0$ +\end_inset + +, queremos ver que +\begin_inset Formula $f$ +\end_inset + + es biyectiva con inversa +\begin_inset Formula $g(y):=y\frac{\Vert y\Vert_{2}}{\Vert y\Vert_{\infty}}$ +\end_inset + + para +\begin_inset Formula $y\neq0$ +\end_inset + + y +\begin_inset Formula $g(0)=0$ +\end_inset + +. + En efecto, para +\begin_inset Formula $x\neq0$ +\end_inset + + +\begin_inset Formula +\[ +g(f(x))=g\left(x\frac{\Vert x\Vert_{\infty}}{\Vert x\Vert_{2}}\right)=x\frac{\Vert x\Vert_{\infty}}{\Vert x\Vert_{2}}\frac{\Vert x\Vert_{2}\frac{\Vert x\Vert_{\infty}}{\Vert x\Vert_{2}}}{\Vert x\Vert_{\infty}\frac{\Vert x\Vert_{\infty}}{\Vert x\Vert_{2}}}=x, +\] + +\end_inset + +y +\begin_inset Formula $g(f(0))=0$ +\end_inset + +, luego +\begin_inset Formula $g\circ f=1_{\mathbb{D}^{n}}$ +\end_inset + +, y análogamente +\begin_inset Formula $f\circ g=1_{[-1,1]^{n}}$ +\end_inset + +. + La continuidad en puntos distintos de 0 es clara. + Para el 0, +\begin_inset Formula $\lim_{x\to0}\Vert f(x)\Vert_{2}=\lim_{x\to0}\Vert x\Vert_{2}\frac{\Vert x\Vert_{\infty}}{\Vert x\Vert_{2}}=\lim_{x\to0}\Vert x\Vert_{\infty}=0=\Vert f(0)\Vert$ +\end_inset + +, y análogamente +\begin_inset Formula $\lim_{g\to0}\Vert g(x)\Vert_{2}=\Vert g(0)\Vert$ +\end_inset + +. +\end_layout + +\end_inset + + +\end_layout + +\begin_layout Enumerate +Dados dos espacios topológicos +\begin_inset Formula $X$ +\end_inset + + e +\begin_inset Formula $Y$ +\end_inset + +, si para cierto +\begin_inset Formula $x\in X$ +\end_inset + + y para todo +\begin_inset Formula $y\in Y$ +\end_inset + +, +\begin_inset Formula $X\setminus\{x\}$ +\end_inset + + e +\begin_inset Formula $Y\setminus\{y\}$ +\end_inset + + no son homeomorfos, +\begin_inset Formula $X$ +\end_inset + + e +\begin_inset Formula $Y$ +\end_inset + + tampoco lo son. +\begin_inset Note Comment +status open + +\begin_layout Plain Layout +Si lo fueran, sea +\begin_inset Formula $f:X\to Y$ +\end_inset + + el homeomorfismo, +\begin_inset Formula $f$ +\end_inset + + también sería un homeomorfismo entre +\begin_inset Formula $X\setminus\{x\}$ +\end_inset + + e +\begin_inset Formula $Y\setminus\{f(x)\}\#$ +\end_inset + +. +\end_layout + +\end_inset + + +\end_layout + +\begin_layout Standard +Un +\series bold +invariante topológico +\series default + es una propiedad que pueden tener espacios topológicos que se conserva + por homeomorfismos, y que podemos usar para saber si dos espacios son o + no homeomorfos. + Como +\series bold +teorema +\series default +, la conexión, la conexión por caminos, la compacidad, ser Hausdorff y los + axiomas de numerabilidad +\begin_inset Formula $\text{1A}\mathbb{N}$ +\end_inset + + y +\begin_inset Formula $\text{2A}\mathbb{N}$ +\end_inset + + son invariantes topológicos. + Así: +\end_layout + +\begin_layout Enumerate +Un intervalo cerrado y uno abierto no son homeomorfos. +\begin_inset Note Comment +status open + +\begin_layout Plain Layout +Al quitar un punto al abierto este queda disconexo, pero no al quitar un + extremo del cerrado. +\end_layout + +\end_inset + + +\end_layout + +\begin_layout Enumerate +\begin_inset Formula $\mathbb{S}^{1}$ +\end_inset + + y un intervalo (incluyendo +\begin_inset Formula $\mathbb{R}$ +\end_inset + +) no son homeomorfos. +\begin_inset Note Comment +status open + +\begin_layout Plain Layout +Si el intervalo es unipuntual esto es obvio. + En otro caso, al quitar un punto intermedio al intervalo este queda disconexo, + lo que no ocurre con ningún punto de +\begin_inset Formula $\mathbb{S}^{1}$ +\end_inset + +. +\end_layout + +\end_inset + + +\end_layout + +\begin_layout Standard +Una función +\begin_inset Formula $f:X\to Y$ +\end_inset + + es +\series bold +abierta +\series default + si transforma abiertos de +\begin_inset Formula $X$ +\end_inset + + en abiertos de +\begin_inset Formula $Y$ +\end_inset + +, y es +\series bold +cerrada +\series default + si transforma cerrados de +\begin_inset Formula $X$ +\end_inset + + en cerrados de +\begin_inset Formula $Y$ +\end_inset + +. + Si +\begin_inset Formula $f$ +\end_inset + + es biyectiva, +\begin_inset Formula $f$ +\end_inset + + es abierta si y sólo si es cerrada, y es un homeomorfismo si y sólo si + es continua y abierta. +\end_layout + +\begin_layout Standard +Si +\begin_inset Formula $f:X\to Y$ +\end_inset + + es continua con +\begin_inset Formula $X$ +\end_inset + + compacto e +\begin_inset Formula $Y$ +\end_inset + + Hausdorff, +\begin_inset Formula $f$ +\end_inset + + es cerrada. +\begin_inset Note Comment +status open + +\begin_layout Plain Layout +En efecto, dado +\begin_inset Formula $U\subseteq X$ +\end_inset + + cerrado, +\begin_inset Formula $U$ +\end_inset + + es compacto, luego +\begin_inset Formula $f(U)$ +\end_inset + + también y, por ser +\begin_inset Formula $Y$ +\end_inset + + Hausdorff, +\begin_inset Formula $f(U)$ +\end_inset + + es cerrado. +\end_layout + +\end_inset + + En particular, si además +\begin_inset Formula $f$ +\end_inset + + biyectiva, es un homeomorfismo. +\end_layout + +\begin_layout Standard +Un espacio +\begin_inset Formula $Y$ +\end_inset + + compacto y Hausdorff es una +\series bold +compactificación +\series default + de un subespacio +\begin_inset Formula $X\subseteq Y$ +\end_inset + + si +\begin_inset Formula $\overline{X}=Y$ +\end_inset + +. + Si +\begin_inset Formula $Y\setminus X$ +\end_inset + + es unipuntual, llamamos a este punto +\begin_inset Formula $\infty$ +\end_inset + + y decimos que +\begin_inset Formula $Y$ +\end_inset + + es la +\series bold +compactificación por un punto +\series default + de +\begin_inset Formula $X$ +\end_inset + +. + Por ejemplo, +\begin_inset Formula $\mathbb{R}^{n}\cup\{\infty\}\cong\mathbb{S}^{n}$ +\end_inset + +. + Llamamos +\series bold +esfera de Riemann +\series default + a +\begin_inset Formula $\mathbb{R}^{2}\cup\{\infty\}$ +\end_inset + +. +\end_layout + +\begin_layout Section +Uniones disjuntas +\end_layout + +\begin_layout Standard +Llamamos +\series bold +unión disjunta +\series default + de dos objetos +\begin_inset Formula $X$ +\end_inset + + e +\begin_inset Formula $Y$ +\end_inset + +, +\begin_inset Formula $X\amalg Y$ +\end_inset + +, a un objeto para el que existen +\begin_inset Formula $L:X\to X\amalg Y$ +\end_inset + + y +\begin_inset Formula $R:Y\to X\amalg Y$ +\end_inset + + tales que para cada objeto +\begin_inset Formula $Z$ +\end_inset + +, +\begin_inset Formula $f_{L}:X\to Z$ +\end_inset + + y +\begin_inset Formula $f_{R}:Y\to Z$ +\end_inset + +, existe una única +\begin_inset Formula $f:X\amalg Y\to Z$ +\end_inset + + tal que +\begin_inset Formula $f_{L}=f\circ L$ +\end_inset + + y +\begin_inset Formula $f_{R}:=f\circ R$ +\end_inset + +. + Se puede construir como +\begin_inset Formula $(X\times\{0\})\cup(Y\times\{1\})$ +\end_inset + +. + Si +\begin_inset Formula $(X,{\cal T}_{X})$ +\end_inset + + e +\begin_inset Formula $(Y,{\cal T}_{Y})$ +\end_inset + + son espacios topológicos, definimos la topología +\begin_inset Formula ${\cal T}_{X\amalg Y}:=\{U\subseteq X\amalg Y:L^{-1}(U)\in{\cal T}_{X}\land R^{-1}(U)\in{\cal T}_{Y}\}$ +\end_inset + +. +\end_layout + +\begin_layout Standard +Vemos que +\begin_inset Formula $f:X\amalg Y\to Z$ +\end_inset + + es continua si y sólo si lo son +\begin_inset Formula $f\circ L$ +\end_inset + + y +\begin_inset Formula $f\circ R$ +\end_inset + +, y que +\begin_inset Formula $f:Z\to X\amalg Y$ +\end_inset + + es continua si y sólo si +\begin_inset Formula $f|_{f^{-1}(L(X))}$ +\end_inset + + y +\begin_inset Formula $f|_{f^{-1}(R(Y))}$ +\end_inset + + lo son. + Entonces: +\end_layout + +\begin_layout Enumerate +Si +\begin_inset Formula $H$ +\end_inset + + es un hiperplano de +\begin_inset Formula $\mathbb{R}^{n}$ +\end_inset + +, +\begin_inset Formula $\mathbb{R}^{n}\amalg\mathbb{R}^{n}\cong\mathbb{R}^{n}\setminus H$ +\end_inset + +. +\begin_inset Note Comment +status open + +\begin_layout Plain Layout +Sea +\begin_inset Formula $(v_{1},\dots,v_{n})$ +\end_inset + + una base de +\begin_inset Formula $\mathbb{R}^{n}$ +\end_inset + + donde +\begin_inset Formula $H=\langle v_{2},\dots,v_{n}\rangle$ +\end_inset + +, queremos ver que +\begin_inset Formula $f:\mathbb{R}^{n}\amalg\mathbb{R}^{n}\to\mathbb{R}^{n}\setminus H$ +\end_inset + + dada por +\begin_inset Formula $f(L(x)):=e^{x_{1}}v_{1}+\sum_{k=2}^{n}x_{k}v_{k}$ +\end_inset + + y +\begin_inset Formula $f(R(x)):=-e^{x_{1}}v_{1}+\sum_{k=2}^{n}x_{k}v_{k}$ +\end_inset + + es un homeomorfismo. + Al ser la composición de una transformación ortonormal con una exponencial, + +\begin_inset Formula $f$ +\end_inset + + es continua. + Su inversa viene dada por +\begin_inset Formula +\[ +f^{-1}\left(\sum_{k=1}^{n}x_{k}v_{k}\right)=\begin{cases} +L(\log x_{1},x_{2},\dots,x_{n}) & \text{si }x_{1}>0,\\ +R(\log(-x_{1}),x_{2},\dots,x_{n}) & \text{si }x_{1}<0, +\end{cases} +\] + +\end_inset + +que es claramente continua. +\end_layout + +\end_inset + + +\end_layout + +\begin_layout Enumerate +\begin_inset Formula ${\cal SO}(3)\amalg{\cal SO}(3)\cong{\cal O}(3)$ +\end_inset + +. +\begin_inset Note Comment +status open + +\begin_layout Plain Layout +Basta tomar el homeomorfismo +\begin_inset Formula $f$ +\end_inset + + dado por +\begin_inset Formula $f(L(A))=A$ +\end_inset + +, +\begin_inset Formula $f(R(A))=-A$ +\end_inset + +, y +\begin_inset Formula $f^{-1}(A)$ +\end_inset + + es +\begin_inset Formula $A$ +\end_inset + + si +\begin_inset Formula $|A|=1$ +\end_inset + + o +\begin_inset Formula $-A$ +\end_inset + + si +\begin_inset Formula $|A|=-1$ +\end_inset + +. +\end_layout + +\end_inset + + +\end_layout + +\begin_layout Standard +Como +\series bold +teoremas +\series default +: +\end_layout + +\begin_layout Enumerate +\begin_inset Formula $X$ +\end_inset + + e +\begin_inset Formula $Y$ +\end_inset + + son compactos si y sólo si lo es +\begin_inset Formula $X\amalg Y$ +\end_inset + +. +\begin_inset Note Comment +status open + +\begin_layout Enumerate +\begin_inset Argument item:1 +status open + +\begin_layout Plain Layout +\begin_inset Formula $\implies]$ +\end_inset + + +\end_layout + +\end_inset + +Sea +\begin_inset Formula $\{A_{i}\}_{i\in I}$ +\end_inset + + un recubrimiento por abiertos de +\begin_inset Formula $X\amalg Y$ +\end_inset + +, +\begin_inset Formula $\{L^{-1}(A_{i})\}_{i\in I}$ +\end_inset + + lo es de +\begin_inset Formula $X$ +\end_inset + + y por tanto admite un subrecubrimiento finito +\begin_inset Formula $L^{-1}(A_{i_{1}}),\dots,L^{-1}(A_{i_{n}})$ +\end_inset + +. + Del mismo modo +\begin_inset Formula $\{R^{-1}(A_{i})\}_{i\in I}$ +\end_inset + + admite un subrecubrimiento finito +\begin_inset Formula $R^{-1}(A_{j_{1}}),\dots,R^{-1}(A_{j_{m}})$ +\end_inset + + de +\begin_inset Formula $Y$ +\end_inset + +, luego +\begin_inset Formula $A_{i_{1}},\dots,A_{i_{n}},A_{j_{1}},\dots,A_{j_{m}}$ +\end_inset + + es un subrecubrimiento finito de +\begin_inset Formula $X\amalg Y$ +\end_inset + +. +\end_layout + +\begin_deeper +\begin_layout Enumerate +\begin_inset Argument item:1 +status open + +\begin_layout Plain Layout +\begin_inset Formula $\impliedby]$ +\end_inset + + +\end_layout + +\end_inset + +Sea +\begin_inset Formula $\{A_{i}\}_{i\in I}$ +\end_inset + + un recubrimiento por abiertos de +\begin_inset Formula $X$ +\end_inset + +, +\begin_inset Formula $\{L(A_{i})\}_{i\in I}\cup Y$ +\end_inset + + es un recubrimiento por abiertos de +\begin_inset Formula $X\amalg Y$ +\end_inset + + que admite pues un subrecubrimiento finito +\begin_inset Formula $L(A_{1}),\dots,L(A_{n}),Y$ +\end_inset + +, con lo que +\begin_inset Formula $A_{1},\dots,A_{n}$ +\end_inset + + es un subrecubrimiento finito de +\begin_inset Formula $X$ +\end_inset + +. + Para +\begin_inset Formula $Y$ +\end_inset + + es análogo. +\end_layout + +\end_deeper +\end_inset + + +\end_layout + +\begin_layout Enumerate +\begin_inset Formula $X$ +\end_inset + + e +\begin_inset Formula $Y$ +\end_inset + + son Hausdorff si y sólo si lo es +\begin_inset Formula $X\amalg Y$ +\end_inset + +. +\begin_inset Note Comment +status open + +\begin_layout Enumerate +\begin_inset Argument item:1 +status open + +\begin_layout Plain Layout +\begin_inset Formula $\implies]$ +\end_inset + + +\end_layout + +\end_inset + +Sean +\begin_inset Formula $p,q\in X\amalg Y$ +\end_inset + +, +\begin_inset Formula $p\neq q$ +\end_inset + +. + Si +\begin_inset Formula $p,q\in L(X)$ +\end_inset + + o +\begin_inset Formula $p,q\in R(Y)$ +\end_inset + + basta tomar los abiertos en +\begin_inset Formula $X$ +\end_inset + + o en +\begin_inset Formula $Y$ +\end_inset + +. + Si +\begin_inset Formula $p\in L(X)$ +\end_inset + + y +\begin_inset Formula $q\in R(Y)$ +\end_inset + +, basta tomar +\begin_inset Formula $L(X)$ +\end_inset + + y +\begin_inset Formula $R(Y)$ +\end_inset + +. +\end_layout + +\begin_deeper +\begin_layout Enumerate +\begin_inset Argument item:1 +status open + +\begin_layout Plain Layout +\begin_inset Formula $\impliedby]$ +\end_inset + + +\end_layout + +\end_inset + +Sean +\begin_inset Formula $p,q\in X$ +\end_inset + +, +\begin_inset Formula $p\neq q$ +\end_inset + +, existen +\begin_inset Formula $U,V\subseteq X\amalg Y$ +\end_inset + + entornos respectivos de +\begin_inset Formula $p$ +\end_inset + + y +\begin_inset Formula $q$ +\end_inset + + disjuntos, y basta tomar +\begin_inset Formula $U\cap X$ +\end_inset + + y +\begin_inset Formula $V\cap X$ +\end_inset + +. + Para +\begin_inset Formula $Y$ +\end_inset + + es análogo. +\end_layout + +\end_deeper +\end_inset + + +\end_layout + +\begin_layout Enumerate +Si +\begin_inset Formula $X,Y\neq\emptyset$ +\end_inset + +, +\begin_inset Formula $X\amalg Y$ +\end_inset + + es disconexo. +\begin_inset Note Comment +status open + +\begin_layout Plain Layout +\begin_inset Formula $\{L(X),R(Y)\}$ +\end_inset + + es una separación por abiertos. +\end_layout + +\end_inset + + +\end_layout + +\begin_layout Enumerate +Si +\begin_inset Formula $Z$ +\end_inset + + es disconexo, +\begin_inset Formula $Z\cong X\amalg Y$ +\end_inset + + para ciertos +\begin_inset Formula $X,Y\neq\emptyset$ +\end_inset + +. +\begin_inset Note Comment +status open + +\begin_layout Plain Layout +Sea +\begin_inset Formula $\{U,V\}$ +\end_inset + + una separación por abiertos de +\begin_inset Formula $Z$ +\end_inset + +, basta tomar +\begin_inset Formula $U\amalg V$ +\end_inset + +. +\end_layout + +\end_inset + + +\end_layout + +\begin_layout Section +Espacios producto +\end_layout + +\begin_layout Standard +Dados dos espacios topológicos +\begin_inset Formula $(X,{\cal T}_{X})$ +\end_inset + + e +\begin_inset Formula $(Y,{\cal T}_{Y})$ +\end_inset + +, llamamos +\series bold +topología producto +\series default + en +\begin_inset Formula $X\times Y$ +\end_inset + + a la generada por la base +\begin_inset Formula ${\cal T}_{X}\times{\cal T}_{Y}$ +\end_inset + +. +\end_layout + +\begin_layout Enumerate +\begin_inset Formula $\mathbb{R}^{m}\times\mathbb{R}^{n}\cong\mathbb{R}^{m+n}$ +\end_inset + +. +\begin_inset Note Comment +status open + +\begin_layout Plain Layout +Claramente +\begin_inset Formula $f:\mathbb{R}^{m}\times\mathbb{R}^{n}\to\mathbb{R}^{m+n}$ +\end_inset + + dada por +\begin_inset Formula $f((x_{1},\dots,x_{m}),(y_{1},\dots,y_{n})):=(x_{1},\dots,x_{m},y_{1},\dots,y_{n})$ +\end_inset + + es biyectiva. + Dados abiertos +\begin_inset Formula $U=:\bigcup_{x\in U}B_{\infty}(x,\varepsilon_{x})\subseteq\mathbb{R}^{m}$ +\end_inset + + y +\begin_inset Formula $V=:\bigcup_{y\in V}B_{\infty}(y,\delta_{y})\subseteq\mathbb{R}^{n}$ +\end_inset + +, +\begin_inset Formula $f(U\times V)=\bigcup_{x\in U}\bigcup_{y\in V}f(B_{\infty}(x,\varepsilon_{x}),B_{\infty}(y,\delta_{y}))$ +\end_inset + +, y basta ver que los productos de bolas son abiertos, pero para +\begin_inset Formula $(z,w)\in f(B_{\infty}(x,\varepsilon_{x}),B_{\infty}(y,\delta_{y}))$ +\end_inset + +, sean +\begin_inset Formula $a:=d_{\infty}(z,x)<\varepsilon_{x}$ +\end_inset + + y +\begin_inset Formula $b:=d_{\infty}(w,y)<\delta_{y}$ +\end_inset + +, la bola +\begin_inset Formula $B((z,w),\min\{\varepsilon_{x}-a,\delta_{y}-b\})\subseteq f(B_{\infty}(x,\varepsilon_{x}),B_{\infty}(y,\delta_{y}))$ +\end_inset + +, luego +\begin_inset Formula $f$ +\end_inset + + es abierta. + Por otro lado, sea +\begin_inset Formula $W=:\bigcup_{(z,w)\in W}B_{\infty}((z,w),\varepsilon_{z,w})\subseteq\mathbb{R}^{n}$ +\end_inset + + abierto, +\begin_inset Formula $f^{-1}(W)=\bigcup_{(z,w)\in W}f^{-1}(B_{\infty}((z,w),\varepsilon_{z,w}))=\bigcup_{(z,w)\in W}(B_{\infty}(z,\varepsilon_{z,w})\times B_{\infty}(w,\varepsilon_{z,w}))$ +\end_inset + +, luego +\begin_inset Formula $f$ +\end_inset + + es continua. +\end_layout + +\end_inset + + +\end_layout + +\begin_layout Enumerate +\begin_inset Formula $\mathbb{R}\amalg\mathbb{R}\cong\mathbb{R}\times\mathbb{S}^{0}$ +\end_inset + +. +\begin_inset Note Comment +status open + +\begin_layout Plain Layout +Claramente +\begin_inset Formula $f:\mathbb{R}\amalg\mathbb{R}\to\mathbb{R}\times\mathbb{S}^{0}$ +\end_inset + + dada por +\begin_inset Formula $f(L(x)):=(x,-1)$ +\end_inset + + y +\begin_inset Formula $f(R(y)):=(y,1)$ +\end_inset + + es biyectiva. + Además, +\begin_inset Formula $f\circ L$ +\end_inset + +, +\begin_inset Formula $f\circ R$ +\end_inset + +, +\begin_inset Formula $f^{-1}|_{f(L(X))}$ +\end_inset + + y +\begin_inset Formula $f^{-1}|_{f(R(X))}$ +\end_inset + + son continuas, luego +\begin_inset Formula $f$ +\end_inset + + es continua y abierta. +\end_layout + +\end_inset + + +\end_layout + +\begin_layout Standard +Como +\series bold +teoremas +\series default +: +\end_layout + +\begin_layout Enumerate +Las +\series bold +proyecciones +\series default + +\begin_inset Formula $\pi_{1}:X\times Y\to X$ +\end_inset + + y +\begin_inset Formula $\pi_{2}:X\times Y\to Y$ +\end_inset + + dadas por +\begin_inset Formula $\pi_{1}(a,b):=a$ +\end_inset + + y +\begin_inset Formula $\pi_{2}(a,b):=b$ +\end_inset + + son continuas. +\begin_inset Note Comment +status open + +\begin_layout Plain Layout +Dado un abierto +\begin_inset Formula $U\subseteq X$ +\end_inset + +, +\begin_inset Formula $\pi_{1}^{-1}(U)=U\times Y$ +\end_inset + +, y para +\begin_inset Formula $\pi_{2}$ +\end_inset + + es análogo. +\end_layout + +\end_inset + + +\end_layout + +\begin_layout Enumerate +Sean +\begin_inset Formula $a:X\to Y$ +\end_inset + + y +\begin_inset Formula $b:X\to Z$ +\end_inset + +, +\begin_inset Formula $f:X\to Y\times Z$ +\end_inset + + dada por +\begin_inset Formula $f(x):=(a(x),b(x))$ +\end_inset + + es continua si y sólo si lo son +\begin_inset Formula $a$ +\end_inset + + y +\begin_inset Formula $b$ +\end_inset + +. +\begin_inset Note Comment +status open + +\begin_layout Enumerate +\begin_inset Argument item:1 +status open + +\begin_layout Plain Layout +\begin_inset Formula $\implies]$ +\end_inset + + +\end_layout + +\end_inset + +Dado un abierto +\begin_inset Formula $U\subseteq Y$ +\end_inset + +, +\begin_inset Formula $a^{-1}(U)=\{x\in X:a(x)\in U\}=f^{-1}(U\times Y)$ +\end_inset + +, que es abierto por la hipótesis. + Para +\begin_inset Formula $b$ +\end_inset + + es análogo. +\end_layout + +\begin_deeper +\begin_layout Enumerate +\begin_inset Argument item:1 +status open + +\begin_layout Plain Layout +\begin_inset Formula $\impliedby]$ +\end_inset + + +\end_layout + +\end_inset + +Dado un elemento básico +\begin_inset Formula $U\times V\subseteq Y\times Z$ +\end_inset + +, +\begin_inset Formula $f^{-1}(U\times)=\{x\in X:a(x)\in U,b(x)\in V\}=a^{-1}(U)\cap b^{-1}(V)$ +\end_inset + +, que es abierto. +\end_layout + +\end_deeper +\end_inset + + +\end_layout + +\begin_layout Enumerate +Para +\begin_inset Formula $k\in\{0,1,2\}$ +\end_inset + + y +\begin_inset Formula $X,Y\neq\emptyset$ +\end_inset + +, +\begin_inset Formula $X\times Y$ +\end_inset + + es +\begin_inset Formula $T_{k}$ +\end_inset + + si y sólo si lo son +\begin_inset Formula $X$ +\end_inset + + e +\begin_inset Formula $Y$ +\end_inset + +. +\begin_inset Note Comment +status open + +\begin_layout Enumerate +\begin_inset Argument item:1 +status open + +\begin_layout Plain Layout +\begin_inset Formula $\implies]$ +\end_inset + + +\end_layout + +\end_inset + +Sean +\begin_inset Formula $p,p'\in X$ +\end_inset + +, +\begin_inset Formula $p\neq p'$ +\end_inset + +, y +\begin_inset Formula $q\in Y$ +\end_inset + + cualquiera, existen entornos de +\begin_inset Formula $(p,q)$ +\end_inset + + y +\begin_inset Formula $(p',q)$ +\end_inset + + que cumplen la propiedad y podemos suponer básicos. + Sean +\begin_inset Formula $U\times V$ +\end_inset + + y +\begin_inset Formula $U'\times V'$ +\end_inset + + estos entornos. + Para +\begin_inset Formula $k=2$ +\end_inset + +, si hubiera un +\begin_inset Formula $x\in U\cap U'$ +\end_inset + + sería +\begin_inset Formula $(x,q)\in(U\times V)\cap(U'\times V')\#$ +\end_inset + +, y para +\begin_inset Formula $k\in\{0,1\}$ +\end_inset + +, si por ejemplo +\begin_inset Formula $(p',q)\notin U\times V$ +\end_inset + +, entonces +\begin_inset Formula $p'\notin U$ +\end_inset + +. + En cualquier caso podemos tomar +\begin_inset Formula $U$ +\end_inset + + y +\begin_inset Formula $U'$ +\end_inset + + y tenemos que +\begin_inset Formula $X$ +\end_inset + + es +\begin_inset Formula $T_{k}$ +\end_inset + +. + Para +\begin_inset Formula $Y$ +\end_inset + + es análogo. +\end_layout + +\begin_deeper +\begin_layout Enumerate +\begin_inset Argument item:1 +status open + +\begin_layout Plain Layout +\begin_inset Formula $\impliedby]$ +\end_inset + + +\end_layout + +\end_inset + +Sean +\begin_inset Formula $(p,q),(p',q')\in X\times Y$ +\end_inset + +, +\begin_inset Formula $(p,q)\neq(p',q')$ +\end_inset + +. + Si +\begin_inset Formula $p\neq p'$ +\end_inset + +, existen entornos +\begin_inset Formula $U\in{\cal E}(p)$ +\end_inset + + y +\begin_inset Formula $V\in{\cal E}(q)$ +\end_inset + + que cumplen la propiedad correspondiente según +\begin_inset Formula $k$ +\end_inset + +, y basta tomar +\begin_inset Formula $U\times Y$ +\end_inset + + y +\begin_inset Formula $V\times Y$ +\end_inset + +, y de lo contrario +\begin_inset Formula $q\neq q'$ +\end_inset + + y se hace el mismo argumento. +\end_layout + +\end_deeper +\end_inset + + +\end_layout + +\begin_layout Enumerate +\begin_inset Formula $X\times Y$ +\end_inset + + es conexo si y sólo si lo son +\begin_inset Formula $X$ +\end_inset + + e +\begin_inset Formula $Y$ +\end_inset + +. +\begin_inset Note Comment +status open + +\begin_layout Enumerate +\begin_inset Argument item:1 +status open + +\begin_layout Plain Layout +\begin_inset Formula $\implies]$ +\end_inset + + +\end_layout + +\end_inset + +Por la continuidad de las proyecciones. +\end_layout + +\begin_deeper +\begin_layout Enumerate +\begin_inset Argument item:1 +status open + +\begin_layout Plain Layout +\begin_inset Formula $\impliedby]$ +\end_inset + + +\end_layout + +\end_inset + +Dado +\begin_inset Formula $y_{0}\in Y$ +\end_inset + +, +\begin_inset Formula $X\times\{y_{0}\}$ +\end_inset + + es conexo por homeomorfismo con +\begin_inset Formula $X$ +\end_inset + +, y análogamente, para +\begin_inset Formula $x\in X$ +\end_inset + +, +\begin_inset Formula $\{x\}\times Y$ +\end_inset + + es conexo, y por el criterio del peine, +\begin_inset Formula $X\times Y=(X\times\{y_{0}\})\cup\bigcup_{x\in X}(\{x\}\times Y)$ +\end_inset + + es conexo. +\end_layout + +\end_deeper +\end_inset + + +\end_layout + +\begin_layout Enumerate +\begin_inset Formula $X\times Y$ +\end_inset + + es +\begin_inset Formula $\text{1A}\mathbb{N}$ +\end_inset + + si y sólo si lo son +\begin_inset Formula $X$ +\end_inset + + e +\begin_inset Formula $Y$ +\end_inset + +. +\begin_inset Note Comment +status open + +\begin_layout Enumerate +\begin_inset Argument item:1 +status open + +\begin_layout Plain Layout +\begin_inset Formula $\implies]$ +\end_inset + + +\end_layout + +\end_inset + +Sean +\begin_inset Formula $(x,y)\in X\times Y$ +\end_inset + + y +\begin_inset Formula ${\cal B}$ +\end_inset + + una base numerable de entornos numerable de +\begin_inset Formula $(x,y)$ +\end_inset + +, que podemos suponer básicos, para todo +\begin_inset Formula $U\in{\cal E}(x)$ +\end_inset + + existe +\begin_inset Formula $V\times W\in{\cal B}$ +\end_inset + + contenido en +\begin_inset Formula $U\times Y$ +\end_inset + +, con lo que +\begin_inset Formula $V\subseteq U$ +\end_inset + + y +\begin_inset Formula $\{V\}_{V\times W\in{\cal B}}$ +\end_inset + + es una base numerable de entornos de +\begin_inset Formula $x\in X$ +\end_inset + +. + Para +\begin_inset Formula $Y$ +\end_inset + + es análogo. +\end_layout + +\begin_deeper +\begin_layout Enumerate +\begin_inset Argument item:1 +status open + +\begin_layout Plain Layout +\begin_inset Formula $\impliedby]$ +\end_inset + + +\end_layout + +\end_inset + +Sean +\begin_inset Formula $(x,y)\in X\times Y$ +\end_inset + +, +\begin_inset Formula ${\cal B}$ +\end_inset + + una base numerable de entornos de +\begin_inset Formula $x$ +\end_inset + + y +\begin_inset Formula ${\cal B}'$ +\end_inset + + una base numerable de entornos de +\begin_inset Formula $y$ +\end_inset + +, dado +\begin_inset Formula $U\in{\cal E}(x,y)$ +\end_inset + +, existen +\begin_inset Formula $V\in{\cal E}(x)$ +\end_inset + + y +\begin_inset Formula $W\in{\cal E}(y)$ +\end_inset + + con +\begin_inset Formula $V\times W\subseteq U$ +\end_inset + +, +\begin_inset Formula $V_{0}\in{\cal B}$ +\end_inset + + contenida en +\begin_inset Formula $V$ +\end_inset + + y +\begin_inset Formula $W_{0}\in{\cal B}'$ +\end_inset + + contenida en +\begin_inset Formula $W$ +\end_inset + +, luego +\begin_inset Formula $V_{0}\times W_{0}\subseteq U$ +\end_inset + + y +\begin_inset Formula $\{B\times B'\}_{B\in{\cal B},B'\in{\cal B}'}$ +\end_inset + + es base numerable de entornos de +\begin_inset Formula $X\times Y$ +\end_inset + +. +\end_layout + +\end_deeper +\end_inset + + +\end_layout + +\begin_layout Enumerate +\begin_inset Formula $X\times Y$ +\end_inset + + es +\begin_inset Formula $\text{2A}\mathbb{N}$ +\end_inset + + si y sólo si lo son +\begin_inset Formula $X$ +\end_inset + + e +\begin_inset Formula $Y$ +\end_inset + +. +\begin_inset Note Comment +status open + +\begin_layout Enumerate +\begin_inset Argument item:1 +status open + +\begin_layout Plain Layout +\begin_inset Formula $\implies]$ +\end_inset + + +\end_layout + +\end_inset + +Sea +\begin_inset Formula ${\cal B}$ +\end_inset + + una base numerable de +\begin_inset Formula $X\times Y$ +\end_inset + +, todo +\begin_inset Formula $U\in{\cal B}$ +\end_inset + + se puede escribir como +\begin_inset Formula $U=:\bigcup_{i\in I}(V_{i}\times W_{i})$ +\end_inset + +, luego +\begin_inset Formula $\pi_{1}(U)=\bigcup_{i\in I}\pi_{1}(V_{i}\times W_{i})=\bigcup_{i\in I}V_{i}$ +\end_inset + + es abierto. + Entonces, dado un abierto +\begin_inset Formula $A\subseteq X$ +\end_inset + +, existe +\begin_inset Formula ${\cal U}\subseteq{\cal B}$ +\end_inset + + tal que +\begin_inset Formula $\bigcup_{U\in{\cal {\cal U}}}U=A\times Y$ +\end_inset + +, luego +\begin_inset Formula $A=\pi_{1}(A\times Y)=\bigcup_{U\in{\cal U}}\pi_{1}(U)$ +\end_inset + + y +\begin_inset Formula $\{\pi_{1}(U)\}_{U\in{\cal B}}$ +\end_inset + + es base de +\begin_inset Formula $X$ +\end_inset + +. + Para +\begin_inset Formula $Y$ +\end_inset + + es análogo. +\end_layout + +\begin_deeper +\begin_layout Enumerate +\begin_inset Argument item:1 +status open + +\begin_layout Plain Layout +\begin_inset Formula $\impliedby]$ +\end_inset + + +\end_layout + +\end_inset + +Sean +\begin_inset Formula ${\cal B}$ +\end_inset + + y +\begin_inset Formula ${\cal B}'$ +\end_inset + + bases respectivas de +\begin_inset Formula $X$ +\end_inset + + e +\begin_inset Formula $Y$ +\end_inset + +, todo abierto en +\begin_inset Formula $X\times Y$ +\end_inset + + se puede escribir de la forma +\begin_inset Formula $\bigcup_{i\in I}(V_{i}\times W_{i})$ +\end_inset + +, pero si +\begin_inset Formula ${\cal V}_{i}\subseteq{\cal B}$ +\end_inset + + y +\begin_inset Formula ${\cal W}_{i}\subseteq{\cal B}'$ +\end_inset + + son tales que +\begin_inset Formula $\bigcup{\cal V}_{i}=V_{i}$ +\end_inset + + y +\begin_inset Formula $\bigcup{\cal W}'_{i}=W_{i}$ +\end_inset + +, entonces +\begin_inset Formula $V_{i}\times W_{i}=\bigcup_{A\in{\cal V}_{i},B\in{\cal W}_{i}}(A\times B)$ +\end_inset + +, luego +\begin_inset Formula $\bigcup_{i\in I}(V_{i}\times W_{i})=\bigcup_{i\in I,A\in{\cal V}_{i},B\in{\cal W}_{i}}(A\times B)$ +\end_inset + + y +\begin_inset Formula $\{A\times B\}_{A\in{\cal B},B\in{\cal B}'}$ +\end_inset + + es base numerable de +\begin_inset Formula $X\times Y$ +\end_inset + +. +\end_layout + +\end_deeper +\end_inset + + +\end_layout + +\begin_layout Standard + +\series bold +Lema del tubo: +\series default + Si +\begin_inset Formula $Y$ +\end_inset + + es compacto, sea +\begin_inset Formula $W\subseteq X\times Y$ +\end_inset + + abierto con +\begin_inset Formula $\{x_{0}\}\times Y\subseteq W$ +\end_inset + + para cierto +\begin_inset Formula $x_{0}$ +\end_inset + +, existe +\begin_inset Formula $U\in{\cal E}(x_{0})$ +\end_inset + + tal que +\begin_inset Formula $U\times Y\subseteq W$ +\end_inset + +. +\begin_inset Note Comment +status open + +\begin_layout Plain Layout + +\series bold +Demostración: +\series default + Para +\begin_inset Formula $y\in Y$ +\end_inset + +, existe un entorno básico +\begin_inset Formula $U_{y}\times V_{y}\in{\cal E}(x_{0},y)$ +\end_inset + + contenido en +\begin_inset Formula $W$ +\end_inset + +, con lo que +\begin_inset Formula $\{V_{y}\}_{y\in Y}$ +\end_inset + + es un recubrimiento abierto de +\begin_inset Formula $Y$ +\end_inset + + que admite un subrecubrimiento finito +\begin_inset Formula $\{V_{y_{1}},\dots,V_{y_{n}}\}$ +\end_inset + +. + Sea +\begin_inset Formula $U:=\bigcap_{k=1}^{n}U_{y_{k}}$ +\end_inset + +, entonces +\begin_inset Formula $U\times Y=U\times\bigcup_{k}V_{y_{k}}\subseteq\bigcup_{k}(U_{y_{k}}\times V_{y_{k}})\subseteq W$ +\end_inset + +. +\end_layout + +\end_inset + + +\end_layout + +\begin_layout Standard + +\series bold +Teorema de Tychonov: +\series default + +\begin_inset Formula $X\times Y$ +\end_inset + + es compacto si y sólo si lo son +\begin_inset Formula $X$ +\end_inset + + e +\begin_inset Formula $Y$ +\end_inset + +. + Por ejemplo, el cilindro +\begin_inset Formula $C\cong\mathbb{S}^{1}\times[0,1]$ +\end_inset + + y el toro +\begin_inset Formula $\mathbb{T}\cong\mathbb{S}^{1}\times\mathbb{S}^{1}$ +\end_inset + + son compactos. +\begin_inset Note Comment +status open + +\begin_layout Itemize +\begin_inset Argument item:1 +status open + +\begin_layout Plain Layout +\begin_inset Formula $\implies]$ +\end_inset + + +\end_layout + +\end_inset + +Sea +\begin_inset Formula $\{A_{i}\}_{i\in I}$ +\end_inset + + un recubrimiento de +\begin_inset Formula $X$ +\end_inset + +, +\begin_inset Formula $\{A_{i}\times Y\}_{i\in I}$ +\end_inset + + es un recubrimiento de +\begin_inset Formula $X\times Y$ +\end_inset + + que admite un subrecubrimiento finito +\begin_inset Formula $\{A_{i_{1}}\times Y,\dots,A_{i_{n}}\times Y\}$ +\end_inset + +, con lo que +\begin_inset Formula $\{A_{i_{1}},\dots,A_{i_{n}}\}$ +\end_inset + + es un subrecubrimiento finito de +\begin_inset Formula $\{A_{i}\}_{i\in I}$ +\end_inset + +. + Para +\begin_inset Formula $Y$ +\end_inset + + es análogo. +\end_layout + +\begin_layout Itemize +\begin_inset Argument item:1 +status open + +\begin_layout Plain Layout +\begin_inset Formula $\impliedby]$ +\end_inset + + +\end_layout + +\end_inset + +Sean +\begin_inset Formula $\{A_{i}\}_{i\in I}$ +\end_inset + + un recubrimiento de +\begin_inset Formula $X\times Y$ +\end_inset + +, que por ahora supondremos formado por elementos básicos +\begin_inset Formula $A_{i}=:U_{i}\times V_{i}$ +\end_inset + +. + Para +\begin_inset Formula $x\in X$ +\end_inset + +, sea +\begin_inset Formula $I_{x}:=\{i\in I:x\in U_{i}\}$ +\end_inset + +, +\begin_inset Formula $\bigcup_{i\in I_{x}}V_{i}=Y$ +\end_inset + +, luego +\begin_inset Formula $\{V_{i}\}_{i\in I_{x}}$ +\end_inset + + es un recubrimiento abierto de +\begin_inset Formula $Y$ +\end_inset + + que admite un subrecubrimiento finito +\begin_inset Formula $\{A_{i_{x,1}},\dots,V_{i_{x,p_{x}}}\}$ +\end_inset + +. + Por el lema del tubo, como +\begin_inset Formula $\{x\}\times Y\subseteq\bigcup_{k=1}^{p_{x}}A_{i_{x,k}}$ +\end_inset + +, existe +\begin_inset Formula $W_{x}\in{\cal E}(x)$ +\end_inset + + tal que +\begin_inset Formula $W_{x}\times Y\subseteq\bigcup_{k=1}^{p_{x}}A_{i_{x,k}}$ +\end_inset + +. + Así, +\begin_inset Formula $\{W_{x}\}_{x\in X}$ +\end_inset + + es un recubrimiento de +\begin_inset Formula $X$ +\end_inset + + que admite un subrecubrimiento finito +\begin_inset Formula $\{W_{x_{1}},\dots,W_{x_{n}}\}$ +\end_inset + +, con lo que +\begin_inset Formula $\bigcup_{j=1}^{n}\bigcup_{k=1}^{p_{x_{j}}}A_{i_{x_{j},k}}\supseteq\bigcup_{j=1}^{n}(W_{x_{j}}\times Y)=X\times Y$ +\end_inset + +, y +\begin_inset Formula $\{A_{i_{x_{j},k}}\}_{j\in\{1,\dots,n\},k\in\{1,\dots,p_{x_{k}}\}}$ +\end_inset + + es un subrecubrimiento finito de +\begin_inset Formula $\{A_{i}\}_{i\in I}$ +\end_inset + +. +\end_layout + +\end_inset + + +\end_layout + +\begin_layout Section +Espacios cociente +\end_layout + +\begin_layout Standard +Dado un espacio topológico +\begin_inset Formula $(X,{\cal T})$ +\end_inset + + y una relación de equivalencia +\begin_inset Formula $\sim$ +\end_inset + + en +\begin_inset Formula $X$ +\end_inset + +, llamamos +\series bold +topología cociente +\series default + en +\begin_inset Formula $X/\sim$ +\end_inset + + a +\begin_inset Formula $\{V\subseteq(X/\sim):p^{-1}(V)\in{\cal T}\}$ +\end_inset + +, donde +\begin_inset Formula $p:X\to X/\sim$ +\end_inset + + es la +\series bold +proyección canónica +\series default + o +\series bold +aplicación cociente +\series default + +\begin_inset Formula $p(x):=\overline{x}:=[x]$ +\end_inset + + que a cada +\begin_inset Formula $x$ +\end_inset + + le asigna su clase de equivalencia u +\series bold +órbita +\series default +. +\end_layout + +\begin_layout Standard +Toda aplicación cociente es continua, por lo que si +\begin_inset Formula $X$ +\end_inset + + es compacto, conexo o conexo por caminos, +\begin_inset Formula $X/\sim$ +\end_inset + + también. + Ser Hausdorff no se conserva, pues +\begin_inset Formula $\mathbb{R}\amalg\mathbb{R}$ +\end_inset + + es Hausdorff pero +\begin_inset Formula $(\mathbb{R}\amalg\mathbb{R})/\sim$ +\end_inset + + con +\begin_inset Formula $L(x)\sim L(y):\iff x=y$ +\end_inset + +, +\begin_inset Formula $R(x)\sim R(y):\iff x=y$ +\end_inset + +, +\begin_inset Formula $L(x)\sim R(y):\iff x=y\neq0$ +\end_inset + +, no lo es. +\end_layout + +\begin_layout Standard +Si +\begin_inset Formula $A\subseteq X$ +\end_inset + +, llamamos +\begin_inset Formula $X/A:=X/\sim_{A}$ +\end_inset + + donde +\begin_inset Formula $a\sim_{A}b:\iff a=b\lor a,b\in A$ +\end_inset + +. + En el espacio cociente, llamamos +\begin_inset Formula $*$ +\end_inset + + a la clase +\begin_inset Formula $A$ +\end_inset + + y +\begin_inset Formula $a$ +\end_inset + + a la clase +\begin_inset Formula $\{a\}$ +\end_inset + + para cada +\begin_inset Formula $a\in X\setminus A$ +\end_inset + +. + +\end_layout + +\begin_layout Standard +Ejemplos: +\end_layout + +\begin_layout Enumerate +Sea +\begin_inset Formula $X:=\mathbb{D}^{2}$ +\end_inset + +, +\begin_inset Formula $X/\partial X\cong\mathbb{S}^{2}$ +\end_inset + +. +\begin_inset Note Comment +status open + +\begin_layout Plain Layout +Vemos que +\begin_inset Formula $\partial X=\mathbb{S}^{1}$ +\end_inset + +. + Sea +\begin_inset Formula $f:\mathbb{D}^{2}/\mathbb{S}^{1}\to\mathbb{S}^{2}$ +\end_inset + + dada por +\begin_inset Formula +\[ +f(x,y):=\left(x\frac{\sin(\pi\Vert(x,y)\Vert)}{\Vert(x,y)\Vert},y\frac{\sin(\pi\Vert(x,y)\Vert)}{\Vert(x,y)\Vert},\cos(\pi\Vert(x,y)\Vert)\right) +\] + +\end_inset + +para +\begin_inset Formula $(x,y)\in B(0,1)\setminus\{0\}$ +\end_inset + +, +\begin_inset Formula $f(0):=(0,0,1)$ +\end_inset + + y +\begin_inset Formula $f(*):=(0,0,-1)$ +\end_inset + +. + Es claro que +\begin_inset Formula $f$ +\end_inset + + es continua en +\begin_inset Formula $B(0,1)\setminus\{0\}$ +\end_inset + +. + Para ver que lo es en 0 y en +\begin_inset Formula $*$ +\end_inset + +, vemos que +\begin_inset Formula +\begin{align*} +\lim_{(x,y)\to0}f(x,y) & =\lim_{(x,y)\to0}\left(x\frac{\sin(\pi\Vert(x,y)\Vert)}{\Vert(x,y)\Vert},y\frac{\sin(\pi\Vert(x,y)\Vert)}{\Vert(x,y)\Vert},\cos(\pi\Vert(x,y)\Vert)\right)\\ + & =\lim_{(x,y)\to0}(\pi x,\pi y,\cos(\pi\Vert(x,y)\Vert))=(0,0,1);\\ +\lim_{\Vert(x,y)\Vert\to1}f(x,y) & =\lim_{\Vert(x,y)\Vert\to1}\left(x\frac{\sin(\pi\Vert(x,y)\Vert)}{\Vert(x,y)\Vert},y\frac{\sin(\pi\Vert(x,y)\Vert)}{\Vert(x,y)\Vert},\cos(\pi\Vert(x,y)\Vert)\right)=(0,0,-1). +\end{align*} + +\end_inset + +Sea +\begin_inset Formula $(a,b,c)\in\mathbb{S}^{1}\setminus\{(0,0,1),(0,0,-1)\}$ +\end_inset + +, queremos encontrar +\begin_inset Formula $(x,y)$ +\end_inset + + con +\begin_inset Formula $f(x,y)=(a,b,c)$ +\end_inset + +. + Como +\begin_inset Formula $c=\cos(\pi\Vert(x,y)\Vert)$ +\end_inset + +, tenemos +\begin_inset Formula $\Vert(x,y)\Vert=\frac{1}{\pi}\arccos c\in(0,1)$ +\end_inset + +. + De aquí podemos hallar +\begin_inset Formula $\frac{\sin(\pi\Vert(x,y)\Vert)}{\Vert(x,y)\Vert}$ +\end_inset + + y despejar +\begin_inset Formula $x$ +\end_inset + + e +\begin_inset Formula $y$ +\end_inset + +, con +\begin_inset Formula $x=a\frac{\Vert(x,y)\Vert}{\sin(\pi\Vert(x,y)\Vert)}=\frac{a}{\pi}\frac{\arccos c}{\sin\arccos c}$ +\end_inset + + y, análogamente, +\begin_inset Formula $y=\frac{b\arccos c}{\pi\sin\arccos c}$ +\end_inset + +. + Para ver que efectivamente +\begin_inset Formula $(x,y)\in B(0,1)\setminus\{0\}$ +\end_inset + +, +\begin_inset Formula +\[ +\left\Vert \left(\frac{a\arccos c}{\pi\sin\arccos c},\frac{b\arccos c}{\pi\sin\arccos c}\right)\right\Vert ^{2}=\frac{(a^{2}+b^{2})\arccos^{2}c}{\pi^{2}\sin^{2}\arccos c}=\frac{(1-c^{2})\arccos^{2}c}{\pi^{2}(1-c^{2})}\in(0,1). +\] + +\end_inset + +Por tanto +\begin_inset Formula $f$ +\end_inset + + es biyectiva, y claramente las fórmulas dadas para +\begin_inset Formula $x$ +\end_inset + + e +\begin_inset Formula $y$ +\end_inset + + son continuas. + Para ver que +\begin_inset Formula $f^{-1}$ +\end_inset + + es continua también en 0 y +\begin_inset Formula $*$ +\end_inset + +, tomando límites, +\begin_inset Formula +\begin{align*} +\lim_{(a,b,c)\to(0,0,1)}\left\Vert f^{-1}(a,b,c)\right\Vert & =\lim_{c\to1}\sqrt{\frac{\arccos^{2}c}{\pi^{2}}}=\lim_{c\to1}\left|\frac{\arccos c}{\pi}\right|=\frac{0}{\pi}=0;\\ +\lim_{(a,b,c)\to(0,0,-1)}\left\Vert f^{-1}(a,b,c)\right\Vert & =\lim_{c\to-1}\left|\frac{\arccos c}{\pi}\right|=\left|\frac{\pi}{\pi}\right|=1. +\end{align*} + +\end_inset + + +\end_layout + +\end_inset + + +\end_layout + +\begin_layout Enumerate +Para +\begin_inset Formula $n\geq1$ +\end_inset + +, sea +\begin_inset Formula $X:=[0,1]^{n}$ +\end_inset + +, +\begin_inset Formula $X/\partial X\cong\mathbb{S}^{n}$ +\end_inset + +. +\end_layout + +\begin_layout Enumerate +Sean +\begin_inset Formula $X:=\mathbb{R}^{3}\setminus\{0\}$ +\end_inset + + y +\begin_inset Formula $x\sim y:\iff\exists\lambda\in\mathbb{R}:y=\lambda x$ +\end_inset + +, +\begin_inset Formula $X/\sim$ +\end_inset + + es homeomorfo al plano proyectivo +\begin_inset Formula $\mathbb{RP}^{2}$ +\end_inset + +. +\end_layout + +\begin_layout Standard +Además, sea +\begin_inset Formula $X:=[0,1]\times[0,1]$ +\end_inset + +: +\end_layout + +\begin_layout Enumerate +Si +\begin_inset Formula $(x,y)\sim(x',y'):\iff x-x'\in\mathbb{Z}\land y=y'$ +\end_inset + +, +\begin_inset Formula $X/\sim$ +\end_inset + + es homeomorfo al cilindro. +\end_layout + +\begin_layout Enumerate +Si +\begin_inset Formula $(x,y)\sim(x',y'):\iff(x,y)=(x',y')\lor(x-x'\in\{\pm1\}\land y=1-y')$ +\end_inset + +, +\begin_inset Formula $X/\sim$ +\end_inset + + es homeomorfo a la cinta de Möbius. +\end_layout + +\begin_layout Enumerate +Si +\begin_inset Formula $(x,y)\sim(x',y'):\iff(x-x'\in\mathbb{Z}\land y=y')\lor(x=1-x'\land y-y'\in\{\pm1\})$ +\end_inset + +, +\begin_inset Formula $X/\sim$ +\end_inset + + es homeomorfo a la botella de Klein. +\end_layout + +\begin_layout Standard +Como +\series bold +teorema +\series default +, sean +\begin_inset Formula $X$ +\end_inset + + e +\begin_inset Formula $Y$ +\end_inset + + espacios topológicos, +\begin_inset Formula $\sim$ +\end_inset + + una relación de equivalencia en +\begin_inset Formula $X$ +\end_inset + + y +\begin_inset Formula $g:X\to Y$ +\end_inset + + tal que +\begin_inset Formula $\forall x,y\in X,(x\sim y\implies g(x)=g(y))$ +\end_inset + +, +\begin_inset Formula $g$ +\end_inset + + induce una única función +\begin_inset Formula $f:{X/\sim}\to Y$ +\end_inset + + tal que +\begin_inset Formula $f\circ p=g$ +\end_inset + +, y +\begin_inset Formula $f$ +\end_inset + + es continua si y sólo si lo es +\begin_inset Formula $g$ +\end_inset + +. + Por tanto existe una biyección entre las funciones continuas +\begin_inset Formula ${X/\sim}\to Y$ +\end_inset + + y las funciones continuas +\begin_inset Formula $X\to Y$ +\end_inset + + constantes en las órbitas. +\end_layout + +\begin_layout Standard +Una relación de equivalencia +\begin_inset Formula $\sim$ +\end_inset + + en +\begin_inset Formula $(X,{\cal T})$ +\end_inset + + es +\series bold +abierta +\series default + si +\begin_inset Formula $\forall U\in{\cal T},p^{-1}(p(U))\in{\cal T}$ +\end_inset + +. + Entonces: +\end_layout + +\begin_layout Enumerate +\begin_inset Formula $\sim$ +\end_inset + + es abierta si y sólo si +\begin_inset Formula $p:X\to X/\sim$ +\end_inset + + es abierta. +\end_layout + +\begin_layout Enumerate +Si +\begin_inset Formula $\sim$ +\end_inset + + es abierta y +\begin_inset Formula $X$ +\end_inset + + es +\begin_inset Formula $\text{2A}\mathbb{N}$ +\end_inset + +, +\begin_inset Formula $X/\sim$ +\end_inset + + es +\begin_inset Formula $\text{2A}\mathbb{N}$ +\end_inset + +. +\end_layout + +\begin_layout Enumerate +Si +\begin_inset Formula $\sim$ +\end_inset + + es abierta, +\begin_inset Formula $X/\sim$ +\end_inset + + es Hausdorff si y sólo si +\begin_inset Formula $\{(x,y)\in X\times X:x\sim y\}$ +\end_inset + + es cerrado en +\begin_inset Formula $X\times X$ +\end_inset + +. +\end_layout + +\end_body +\end_document |
