diff options
| -rw-r--r-- | cc/n1.lyx | 89 | ||||
| -rw-r--r-- | ga/n1.lyx | 17 |
2 files changed, 18 insertions, 88 deletions
@@ -6,7 +6,7 @@ \origin unavailable \textclass book \begin_preamble -\usepackage{tikz} +\input{spec} \end_preamble \use_default_options true \maintain_unincluded_children false @@ -81,93 +81,6 @@ \begin_body \begin_layout Standard -\begin_inset ERT -status open - -\begin_layout Plain Layout - - -\backslash -def -\backslash -program#1#2{-- ++(1.5,0) -- ++(0,1) arc(-90:90:0.5) -- ++(-1.5,0) arc(90:270:0.5) - -- ++(0,-1) ++(0.75,0.5) node{#2} ++(0,1) node{#1} ++(-0.75,-1.5)} -\end_layout - -\begin_layout Plain Layout - - -\backslash -def -\backslash -translator#1#2#3{-- ++(1.5,0) -- ++(0,1) -- ++(0.7,0) -- ++(0,1) -- ++(-2.9,0) - -- ++(0,-1) -- ++(0.7,0) -- ++(0,-1) ++(0,1.5) node{#1} ++(0.75,0) node{$ -\backslash -longrightarrow$} ++(0.75,0) node{#2} ++(-0.75,-1) node{#3} ++(-0.75,-0.5)} -\end_layout - -\begin_layout Plain Layout - - -\backslash -def -\backslash -machine#1{-- ++(0.75,-0.5) -- ++(0.75,0.5) -- ++(0,1) -- ++(-1.5,0) -- ++(0,-1) - ++(0.75,0.5) node{#1} ++(-0.75,-0.5)} -\end_layout - -\begin_layout Plain Layout - - -\backslash -def -\backslash -run#1{++(0,1) #1 ++(0,-1)} -\end_layout - -\begin_layout Plain Layout - - -\backslash -def -\backslash -source#1{++(-2.2,1) #1 ++(2.2,-1)} -\end_layout - -\begin_layout Plain Layout - - -\backslash -def -\backslash -object#1{++(2.2,1) #1 ++(-2.2,-1)} -\end_layout - -\begin_layout Plain Layout - - -\backslash -def -\backslash -interpreter#1#2{-- ++(1.5,0) -- ++(0,2) -- ++(-1.5,0) -- ++(0,-2) ++(0.75,0.5) - node{#2} ++(0,1) node{#1} ++(-0.75,-1.5)} -\end_layout - -\begin_layout Plain Layout - - -\backslash -def -\backslash -interpret#1{++(0,2) #1 ++(0,-2)} -\end_layout - -\end_inset - - -\end_layout - -\begin_layout Standard Un \series bold lenguaje de programación @@ -2929,6 +2929,23 @@ conjugación \end_inset tenemos un automorfismo. + Entonces llamamos +\series bold +norma +\series default + a la aplicación +\begin_inset Formula $N:\mathbb{Z}[\sqrt{d}]\to\mathbb{Z}$ +\end_inset + + o +\begin_inset Formula $N:\mathbb{Q}[\sqrt{d}]\to\mathbb{Q}$ +\end_inset + + dada por +\begin_inset Formula $N(a+b\sqrt{d}):=(a+b\sqrt{d})(a-b\sqrt{d})=a^{2}-b^{2}d$ +\end_inset + +. \end_layout \begin_layout Enumerate |
