diff options
| -rw-r--r-- | gcs/n3.lyx | 15 |
1 files changed, 9 insertions, 6 deletions
@@ -1794,10 +1794,15 @@ curvatura geodésica . En efecto, -\begin_inset Formula $\langle\frac{D\alpha'}{ds}(s),\alpha'(s)\rangle=\langle\alpha''(s)-\langle\alpha''(s),N(\alpha(s))\rangle N(\alpha(s)),\alpha'(s)\rangle=\langle\alpha''(s),\alpha'(s)\rangle-\langle\alpha''(s),N(\alpha(s))\rangle\langle N(\alpha(s)),\alpha'(s)\rangle=0$ +\begin_inset Formula +\begin{multline*} +\langle\frac{D\alpha'}{ds}(s),\alpha'(s)\rangle=\langle\alpha''(s)-\langle\alpha''(s),N(\alpha(s))\rangle N(\alpha(s)),\alpha'(s)\rangle=\\ +=\langle\alpha''(s),\alpha'(s)\rangle-\langle\alpha''(s),N(\alpha(s))\rangle\langle N(\alpha(s)),\alpha'(s)\rangle=0, +\end{multline*} + \end_inset -, y +y \begin_inset Formula $\kappa_{g}(s)=\langle\frac{D\alpha'}{ds}(s),J\alpha'(s)\rangle=\langle\alpha''(s),J\alpha'(s)\rangle$ \end_inset @@ -3186,14 +3191,12 @@ F & G f & g \end{pmatrix}\begin{pmatrix}G & -F\\ -F & E -\end{pmatrix}=\frac{1}{EG-F^{2}}\begin{pmatrix}fF-eG & eF-fE\\ -gF-fG & fF-gE -\end{pmatrix}. +\end{pmatrix}, \] \end_inset - +lo que nos da las fórmulas de Weingarten. \end_layout \begin_layout Standard |
