aboutsummaryrefslogtreecommitdiff
diff options
context:
space:
mode:
-rw-r--r--ealg/n6.lyx91
1 files changed, 86 insertions, 5 deletions
diff --git a/ealg/n6.lyx b/ealg/n6.lyx
index d517fda..50e4d95 100644
--- a/ealg/n6.lyx
+++ b/ealg/n6.lyx
@@ -1775,19 +1775,100 @@ Todo
\end_inset
es separable.
-
-\begin_inset Note Note
-status open
+ Todo
+\begin_inset Formula $\alpha\in F$
+\end_inset
-\begin_layout Plain Layout
+ está en
+\begin_inset Formula $L$
+\end_inset
+
+ y por tanto es separable sobre
+\begin_inset Formula $K$
+\end_inset
+, luego
+\begin_inset Formula $K\subseteq F$
+\end_inset
+
+ es separable.
\end_layout
+\end_deeper
+\begin_layout Standard
+Si
+\begin_inset Formula $K\subseteq L$
+\end_inset
+
+ es una extensión normal, separable y finita,
+\begin_inset Formula $|\text{Gal}(L/K)|=[L:K]$
+\end_inset
+
+.
+ Si el cuerpo
+\begin_inset Formula $K$
+\end_inset
+
+ es perfecto, para
+\begin_inset Formula $f\in K[X]\setminus K$
\end_inset
+,
+\begin_inset Formula $G_{f}$
+\end_inset
+ es el grupo de Galois de una extensión normal, separable y finita.
+ Dada una extensión
+\begin_inset Formula $K\subseteq L$
+\end_inset
+
+ y
+\begin_inset Formula $S\subseteq L$
+\end_inset
+
+ con
+\begin_inset Formula $L=K(S)$
+\end_inset
+
+, si todo elemento de
+\begin_inset Formula $S$
+\end_inset
+
+ es separable sobre
+\begin_inset Formula $K$
+\end_inset
+
+,
+\begin_inset Formula $K\subseteq L$
+\end_inset
+
+ es separable.
+\end_layout
+
+\begin_layout Standard
+Como
+\series bold
+teorema
+\series default
+, la separabilidad es multiplicativa en torres y estable por levantamientos,
+ y si
+\begin_inset Formula $K\subseteq L$
+\end_inset
+
+ es una extensión separable y
+\begin_inset Formula $N$
+\end_inset
+
+ es una clausura normal de
+\begin_inset Formula $K\subseteq L$
+\end_inset
+
+, entonces
+\begin_inset Formula $K\subseteq N$
+\end_inset
+
+ es separable.
\end_layout
-\end_deeper
\end_body
\end_document