diff options
| -rw-r--r-- | af/n.lyx | 197 | ||||
| -rw-r--r-- | af/n1.lyx | 3781 |
2 files changed, 3978 insertions, 0 deletions
diff --git a/af/n.lyx b/af/n.lyx new file mode 100644 index 0000000..c17fff5 --- /dev/null +++ b/af/n.lyx @@ -0,0 +1,197 @@ +#LyX 2.3 created this file. For more info see http://www.lyx.org/ +\lyxformat 544 +\begin_document +\begin_header +\save_transient_properties true +\origin unavailable +\textclass book +\begin_preamble +\input{../defs} +\newenvironment{nproof}{}{} +% So far I haven't found a way inside LaTeX to change nproofs to +% comments, so I guess that'll have to be a Perl or Awk script. +\end_preamble +\use_default_options true +\begin_modules +algorithm2e +\end_modules +\maintain_unincluded_children false +\language spanish +\language_package default +\inputencoding auto +\fontencoding global +\font_roman "default" "default" +\font_sans "default" "default" +\font_typewriter "default" "default" +\font_math "auto" "auto" +\font_default_family default +\use_non_tex_fonts false +\font_sc false +\font_osf false +\font_sf_scale 100 100 +\font_tt_scale 100 100 +\use_microtype false +\use_dash_ligatures true +\graphics default +\default_output_format default +\output_sync 0 +\bibtex_command default +\index_command default +\paperfontsize 10 +\spacing single +\use_hyperref false +\papersize a5paper +\use_geometry true +\use_package amsmath 1 +\use_package amssymb 1 +\use_package cancel 1 +\use_package esint 1 +\use_package mathdots 1 +\use_package mathtools 1 +\use_package mhchem 1 +\use_package stackrel 1 +\use_package stmaryrd 1 +\use_package undertilde 1 +\cite_engine basic +\cite_engine_type default +\biblio_style plain +\use_bibtopic false +\use_indices false +\paperorientation portrait +\suppress_date false +\justification true +\use_refstyle 1 +\use_minted 0 +\index Index +\shortcut idx +\color #008000 +\end_index +\leftmargin 0.2cm +\topmargin 0.7cm +\rightmargin 0.2cm +\bottommargin 0.7cm +\secnumdepth 3 +\tocdepth 3 +\paragraph_separation indent +\paragraph_indentation default +\is_math_indent 0 +\math_numbering_side default +\quotes_style swiss +\dynamic_quotes 0 +\papercolumns 1 +\papersides 1 +\paperpagestyle empty +\listings_params "basicstyle={\ttfamily}" +\tracking_changes false +\output_changes false +\html_math_output 0 +\html_css_as_file 0 +\html_be_strict false +\end_header + +\begin_body + +\begin_layout Title +Análisis Funcional +\end_layout + +\begin_layout Date +\begin_inset Note Note +status open + +\begin_layout Plain Layout + +\end_layout + +\end_inset + + +\end_layout + +\begin_layout Standard +\begin_inset ERT +status open + +\begin_layout Plain Layout + + +\backslash +def +\backslash +cryear{2021} +\end_layout + +\end_inset + + +\end_layout + +\begin_layout Standard +\begin_inset CommandInset include +LatexCommand input +filename "../license.lyx" + +\end_inset + + +\end_layout + +\begin_layout Standard +Bibliografía: +\end_layout + +\begin_layout Itemize +Bernardo Cascales, José Manuel Mira, José Orihuela, Matías Raja. + +\emph on +Análisis Funcional +\emph default + (1 +\begin_inset Formula $^{\text{a}}$ +\end_inset + + ed., 2010). +\end_layout + +\begin_layout Itemize + +\lang english +Eric Shapiro. + +\emph on +Constructing the real numbers (2)—Cauchy Sequences +\emph default +. + Algebrology. + +\lang spanish + Recuperado de +\begin_inset Flex URL +status open + +\begin_layout Plain Layout + +https://algebrology.eshapiro.net/constructing-the-real-numbers-2-cauchy-sequences/ +\end_layout + +\end_inset + +. +\end_layout + +\begin_layout Chapter +Espacios de Hilbert +\end_layout + +\begin_layout Standard +\begin_inset CommandInset include +LatexCommand input +filename "n1.lyx" + +\end_inset + + +\end_layout + +\end_body +\end_document diff --git a/af/n1.lyx b/af/n1.lyx new file mode 100644 index 0000000..4057223 --- /dev/null +++ b/af/n1.lyx @@ -0,0 +1,3781 @@ +#LyX 2.3 created this file. For more info see http://www.lyx.org/ +\lyxformat 544 +\begin_document +\begin_header +\save_transient_properties true +\origin unavailable +\textclass book +\begin_preamble +\input{../defs} +\end_preamble +\use_default_options true +\maintain_unincluded_children false +\language spanish +\language_package default +\inputencoding auto +\fontencoding global +\font_roman "default" "default" +\font_sans "default" "default" +\font_typewriter "default" "default" +\font_math "auto" "auto" +\font_default_family default +\use_non_tex_fonts false +\font_sc false +\font_osf false +\font_sf_scale 100 100 +\font_tt_scale 100 100 +\use_microtype false +\use_dash_ligatures true +\graphics default +\default_output_format default +\output_sync 0 +\bibtex_command default +\index_command default +\paperfontsize default +\spacing single +\use_hyperref false +\papersize default +\use_geometry false +\use_package amsmath 1 +\use_package amssymb 1 +\use_package cancel 1 +\use_package esint 1 +\use_package mathdots 1 +\use_package mathtools 1 +\use_package mhchem 1 +\use_package stackrel 1 +\use_package stmaryrd 1 +\use_package undertilde 1 +\cite_engine basic +\cite_engine_type default +\biblio_style plain +\use_bibtopic false +\use_indices false +\paperorientation portrait +\suppress_date false +\justification true +\use_refstyle 1 +\use_minted 0 +\index Index +\shortcut idx +\color #008000 +\end_index +\secnumdepth 3 +\tocdepth 3 +\paragraph_separation indent +\paragraph_indentation default +\is_math_indent 0 +\math_numbering_side default +\quotes_style french +\dynamic_quotes 0 +\papercolumns 1 +\papersides 1 +\paperpagestyle default +\tracking_changes false +\output_changes false +\html_math_output 0 +\html_css_as_file 0 +\html_be_strict false +\end_header + +\begin_body + +\begin_layout Standard +Salvo que se indique lo contrario, al hablar de espacios vectoriales entenderemo +s que lo son sobre +\begin_inset Formula $\mathbb{R}$ +\end_inset + + o +\begin_inset Formula $\mathbb{C}$ +\end_inset + +. +\end_layout + +\begin_layout Section +Espacios de Banach +\end_layout + +\begin_layout Standard +Dados un +\begin_inset Formula $\mathbb{K}$ +\end_inset + +-espacio vectorial +\begin_inset Formula $X$ +\end_inset + + y +\begin_inset Formula $A\subseteq X$ +\end_inset + +, llamamos +\begin_inset Formula $\text{span}A$ +\end_inset + + al menor subespacio vectorial de +\begin_inset Formula $X$ +\end_inset + + que contiene a +\begin_inset Formula $A$ +\end_inset + +, y decimos que una +\begin_inset Formula $q:X\to\mathbb{R}$ +\end_inset + + es: +\end_layout + +\begin_layout Enumerate + +\series bold +Subaditiva +\series default + si +\begin_inset Formula $\forall x,y\in X,q(x+y)\leq q(x)+q(y)$ +\end_inset + +. +\end_layout + +\begin_layout Enumerate + +\series bold +Positivamente homogénea +\series default + si +\begin_inset Formula $\forall a\in\mathbb{K}\cap\mathbb{R}^{+},\forall x\in X,q(ax)=aq(x)$ +\end_inset + +. +\end_layout + +\begin_layout Enumerate + +\series bold +Absolutamente homogénea +\series default + si +\begin_inset Formula $\forall a\in\mathbb{K},\forall x\in X,q(ax)=|a|q(x)$ +\end_inset + +. +\end_layout + +\begin_layout Enumerate +Una +\series bold +seminorma +\series default + si es subaditiva y absolutamente homogénea. +\end_layout + +\begin_layout Enumerate +Una +\series bold +norma +\series default + si es una seminorma con +\begin_inset Formula $q^{-1}(0)=0$ +\end_inset + +. +\end_layout + +\begin_layout Standard +Toda norma es definida positiva +\begin_inset ERT +status open + +\begin_layout Plain Layout + + +\backslash +begin{nproof} +\end_layout + +\end_inset + +, pues si +\begin_inset Formula $x\in X\setminus0$ +\end_inset + +, +\begin_inset Formula $q(x)=|-1|q(x)=q(-x)\neq0$ +\end_inset + +, pero +\begin_inset Formula $0=q(0)=q(x-x)\leq q(x)+q(-x)=2q(x)$ +\end_inset + + y +\begin_inset Formula $q(x)>0$ +\end_inset + + +\begin_inset ERT +status open + +\begin_layout Plain Layout + + +\backslash +end{nproof} +\end_layout + +\end_inset + +. +\end_layout + +\begin_layout Standard +Un +\series bold +espacio normado +\series default + es un +\begin_inset Formula $\mathbb{K}$ +\end_inset + +-espacio vectorial +\begin_inset Formula $X$ +\end_inset + + con una norma +\begin_inset Formula $\Vert\cdot\Vert:X\to\mathbb{R}$ +\end_inset + +. + Todo espacio normado +\begin_inset Formula $(X,\Vert\cdot\Vert)$ +\end_inset + + es un espacio métrico con la distancia +\begin_inset Formula $(x,y)\mapsto\Vert x-y\Vert$ +\end_inset + +, y llamamos +\begin_inset Formula $B_{X}\coloneqq B[0,1]=\overline{B(0,1)}=\{x\in X:\Vert x\Vert\leq1\}$ +\end_inset + + y conjunto de +\series bold +vectores unitarios +\series default + a +\begin_inset Formula $S_{X}\coloneqq\partial B(0,1)=\{x\in X:\Vert x\Vert=1\}$ +\end_inset + +. + La norma es uniformemente continua en este espacio métrico +\begin_inset ERT +status open + +\begin_layout Plain Layout + + +\backslash +begin{nproof} +\end_layout + +\end_inset + +, pues para +\begin_inset Formula $\varepsilon>0$ +\end_inset + +, si +\begin_inset Formula $x,y\in X$ +\end_inset + + cumplen +\begin_inset Formula $\Vert x-y\Vert<\varepsilon$ +\end_inset + +, por subaditividad es +\begin_inset Formula $\Vert x\Vert\leq\Vert x-y\Vert+\Vert y\Vert$ +\end_inset + + y por tanto +\begin_inset Formula $\left|\Vert x\Vert-\Vert y\Vert\right|=\Vert x\Vert-\Vert y\Vert\leq\Vert x-y\Vert<\varepsilon$ +\end_inset + + +\begin_inset ERT +status open + +\begin_layout Plain Layout + + +\backslash +end{nproof} +\end_layout + +\end_inset + +. + Un vector es +\series bold +unitario +\series default + si tiene norma 1. + Un +\series bold +espacio de Banach +\series default + es un espacio normado completo. +\end_layout + +\begin_layout Standard +Sea +\begin_inset Formula $(X,\Vert\cdot\Vert)$ +\end_inset + + un +\begin_inset Formula $\mathbb{K}$ +\end_inset + +-espacio normado: +\end_layout + +\begin_layout Enumerate +Todo subespacio vectorial de +\begin_inset Formula $X$ +\end_inset + + es normado con la norma inducida. +\end_layout + +\begin_layout Enumerate +\begin_inset Formula $s:X\times X\to X$ +\end_inset + + y +\begin_inset Formula $p:\mathbb{K}\times X\to X$ +\end_inset + + dadas por +\begin_inset Formula $s(x,y)\coloneqq x+y$ +\end_inset + + y +\begin_inset Formula $p(a,x)\coloneqq ax$ +\end_inset + + son continuas. +\begin_inset ERT +status open + +\begin_layout Plain Layout + + +\backslash +begin{nproof} +\end_layout + +\end_inset + + +\end_layout + +\begin_deeper +\begin_layout Standard +Sea +\begin_inset Formula $A\subseteq X$ +\end_inset + + abierto, queremos ver que +\begin_inset Formula $s^{-1}(A)$ +\end_inset + + y +\begin_inset Formula $p^{-1}(A)$ +\end_inset + + son abiertos con la topología producto. + Sean +\begin_inset Formula $(x,y)\in s^{-1}(A)$ +\end_inset + + y +\begin_inset Formula $b\coloneqq s(x,y)$ +\end_inset + +, existe +\begin_inset Formula $\varepsilon>0$ +\end_inset + + tal que +\begin_inset Formula $B(b,\varepsilon)\subseteq A$ +\end_inset + +, pero entonces, para +\begin_inset Formula $(x',y')\in B(x,\frac{\varepsilon}{2})\times B(y,\frac{\varepsilon}{2})$ +\end_inset + +, +\begin_inset Formula +\[ +\Vert s(x',y')-b\Vert=\Vert\cancel{b}+(x'-x)+(y'-y)\cancel{-b}\Vert\leq\Vert x'-x\Vert+\Vert y'-y\Vert<\varepsilon, +\] + +\end_inset + +luego +\begin_inset Formula $s(x',y')\in B(x,\frac{\varepsilon}{2})\subseteq A$ +\end_inset + +. + Sean +\begin_inset Formula $(a,x)\subseteq p^{-1}(A)$ +\end_inset + + y +\begin_inset Formula $b\coloneqq p(a,x)$ +\end_inset + +, existe +\begin_inset Formula $\varepsilon\in(0,1)$ +\end_inset + + tal que +\begin_inset Formula $B(b,\varepsilon)\subseteq A$ +\end_inset + +, pero entonces para +\begin_inset Formula $(a',x')\in B(a,\frac{\varepsilon}{|a|+\Vert x\Vert+1})\times B(x,\frac{\varepsilon}{|a|+\Vert x\Vert+1})$ +\end_inset + +, +\begin_inset Formula +\begin{align*} +\Vert p(a',x')-b\Vert & =\Vert((a'-a)+a)((x'-x)+x)-ax\Vert=\\ + & =|a'-a|\Vert x'-x\Vert+|a|\Vert x'-x\Vert+|a'-a|\Vert x\Vert<\\ + & <\frac{\varepsilon}{|a|+\Vert x\Vert+1}\left(\frac{\varepsilon}{|a|+\Vert x\Vert+1}+|a|+\Vert x\Vert\right)\leq\varepsilon\frac{1+|a|+\Vert x\Vert}{|a|+\Vert x\Vert+1}=\varepsilon, +\end{align*} + +\end_inset + +con lo que +\begin_inset Formula $p(a',x')\in B(b,\varepsilon)\subseteq A$ +\end_inset + +. +\begin_inset ERT +status open + +\begin_layout Plain Layout + + +\backslash +end{nproof} +\end_layout + +\end_inset + + +\end_layout + +\end_deeper +\begin_layout Enumerate +\begin_inset Formula $s_{y}:X\to X$ +\end_inset + + con +\begin_inset Formula $y\in X$ +\end_inset + + y +\begin_inset Formula $p_{a}:X\to X$ +\end_inset + + con +\begin_inset Formula $a\in\mathbb{K}^{*}$ +\end_inset + + dados por +\begin_inset Formula $s_{y}(x)\coloneqq x+y$ +\end_inset + + y +\begin_inset Formula $p_{a}(x)\coloneqq ax$ +\end_inset + + son homeomorfismos. +\begin_inset ERT +status open + +\begin_layout Plain Layout + + +\backslash +begin{nproof} +\end_layout + +\end_inset + + +\end_layout + +\begin_deeper +\begin_layout Standard +\begin_inset Formula $s_{y}$ +\end_inset + + es la composición de +\begin_inset Formula $x\mapsto(x,y)$ +\end_inset + + con la suma, por lo que es continua, y análogamente lo es +\begin_inset Formula $p_{a}$ +\end_inset + +, pero la inversa de +\begin_inset Formula $s_{y}$ +\end_inset + + es +\begin_inset Formula $s_{-y}$ +\end_inset + + y la de +\begin_inset Formula $p_{a}$ +\end_inset + + es +\begin_inset Formula $p_{a^{-1}}$ +\end_inset + +, que también son continuas. +\begin_inset ERT +status open + +\begin_layout Plain Layout + + +\backslash +end{nproof} +\end_layout + +\end_inset + + +\end_layout + +\end_deeper +\begin_layout Enumerate +La suma de un abierto y un subconjunto cualquiera de +\begin_inset Formula $X$ +\end_inset + + es abierta en +\begin_inset Formula $X$ +\end_inset + +. +\begin_inset ERT +status open + +\begin_layout Plain Layout + + +\backslash +begin{nproof} +\end_layout + +\end_inset + + +\end_layout + +\begin_deeper +\begin_layout Standard +Sean +\begin_inset Formula $G\subseteq X$ +\end_inset + + abierto y +\begin_inset Formula $A\subseteq X$ +\end_inset + +. + Todo +\begin_inset Formula $p\in G+A$ +\end_inset + + es de la forma +\begin_inset Formula $p=g+a$ +\end_inset + + con +\begin_inset Formula $g\in G$ +\end_inset + + y +\begin_inset Formula $a\in A$ +\end_inset + +, pero entonces +\begin_inset Formula $G+a\subseteq G+A$ +\end_inset + + es un entorno de +\begin_inset Formula $g+a$ +\end_inset + + por el homeomorfismo +\begin_inset Formula $s_{a}$ +\end_inset + +. +\begin_inset ERT +status open + +\begin_layout Plain Layout + + +\backslash +end{nproof} +\end_layout + +\end_inset + + +\end_layout + +\end_deeper +\begin_layout Enumerate +La suma de un cerrado y un compacto de +\begin_inset Formula $X$ +\end_inset + + es cerrada en +\begin_inset Formula $X$ +\end_inset + +. +\begin_inset ERT +status open + +\begin_layout Plain Layout + + +\backslash +begin{nproof} +\end_layout + +\end_inset + + +\end_layout + +\begin_deeper +\begin_layout Standard +Sean +\begin_inset Formula $F$ +\end_inset + + el cerrado y +\begin_inset Formula $K$ +\end_inset + + el compacto, tomamos una sucesión convergente arbitraria en +\begin_inset Formula $F+K$ +\end_inset + +, +\begin_inset Formula $(x_{n}+y_{n})_{n}$ +\end_inset + + con cada +\begin_inset Formula $x_{n}\in F$ +\end_inset + + y cada +\begin_inset Formula $y_{n}\in K$ +\end_inset + +, y +\begin_inset Formula $z\coloneqq\lim_{n}(x_{n}+y_{n})$ +\end_inset + +. + Como +\begin_inset Formula $K$ +\end_inset + + es compacto, existe una subsucesión +\begin_inset Formula $(x_{n_{k}})_{k}$ +\end_inset + + convergente a un +\begin_inset Formula $x\in K$ +\end_inset + +, luego +\begin_inset Formula $(y_{n_{k}})_{k}$ +\end_inset + + converge a +\begin_inset Formula $z-x\in F$ +\end_inset + + y por tanto +\begin_inset Formula $z=(z-x)+x\in F+K$ +\end_inset + +. +\begin_inset ERT +status open + +\begin_layout Plain Layout + + +\backslash +end{nproof} +\end_layout + +\end_inset + + +\end_layout + +\end_deeper +\begin_layout Enumerate +Si +\begin_inset Formula $Y\subseteq X$ +\end_inset + + es un subespacio vectorial también lo es +\begin_inset Formula $\overline{Y}$ +\end_inset + +. +\begin_inset ERT +status open + +\begin_layout Plain Layout + + +\backslash +begin{nproof} +\end_layout + +\end_inset + + +\end_layout + +\begin_deeper +\begin_layout Standard +Dados +\begin_inset Formula $a\in\mathbb{K}$ +\end_inset + + y +\begin_inset Formula $x,y\in\overline{Y}$ +\end_inset + +, +\begin_inset Formula $x$ +\end_inset + + e +\begin_inset Formula $y$ +\end_inset + + son límites de sucesiones respectivas +\begin_inset Formula $\{x_{n}\}_{n},\{y_{n}\}_{n}\subseteq Y$ +\end_inset + +, con lo que +\begin_inset Formula $x+y=\lim_{n}(x_{n}+y_{n})\in\overline{Y}$ +\end_inset + + y +\begin_inset Formula $ax=\lim_{n}ax_{n}\in\overline{Y}$ +\end_inset + +. +\begin_inset ERT +status open + +\begin_layout Plain Layout + + +\backslash +end{nproof} +\end_layout + +\end_inset + + +\end_layout + +\end_deeper +\begin_layout Enumerate +Un subespacio vectorial de +\begin_inset Formula $X$ +\end_inset + + es propio si y sólo si su interior es vacío. +\begin_inset ERT +status open + +\begin_layout Plain Layout + + +\backslash +begin{nproof} +\end_layout + +\end_inset + + +\end_layout + +\begin_deeper +\begin_layout Enumerate +\begin_inset Argument item:1 +status open + +\begin_layout Plain Layout +\begin_inset Formula $\implies]$ +\end_inset + + +\end_layout + +\end_inset + +Sea +\begin_inset Formula $Y<X$ +\end_inset + + un subespacio vectorial propio y +\begin_inset Formula $p\in X\setminus Y$ +\end_inset + +, para +\begin_inset Formula $y\in Y$ +\end_inset + +, +\begin_inset Formula $(y+\frac{p}{n})_{n\in\mathbb{N}^{*}}$ +\end_inset + + es una sucesión de elementos de +\begin_inset Formula $X\setminus Y$ +\end_inset + + que converge a +\begin_inset Formula $y$ +\end_inset + +, con lo que +\begin_inset Formula $y\notin\text{int}Y$ +\end_inset + + e +\begin_inset Formula $\text{int}Y=\emptyset$ +\end_inset + +. +\end_layout + +\begin_layout Enumerate +\begin_inset Argument item:1 +status open + +\begin_layout Plain Layout +\begin_inset Formula $\impliedby]$ +\end_inset + + +\end_layout + +\end_inset + +El contrarrecíproco es trivial. +\end_layout + +\begin_layout Standard +\begin_inset ERT +status open + +\begin_layout Plain Layout + + +\backslash +end{nproof} +\end_layout + +\end_inset + + +\end_layout + +\end_deeper +\begin_layout Enumerate +\begin_inset Formula $X$ +\end_inset + + es completo si y sólo si toda sucesión +\begin_inset Formula $(y_{n})_{n}$ +\end_inset + + en +\begin_inset Formula $X$ +\end_inset + + con +\begin_inset Formula $\sum_{n}\Vert y_{n}\Vert$ +\end_inset + + convergente cumple que +\begin_inset Formula $\sum_{n}y_{n}$ +\end_inset + + converge a un punto de +\begin_inset Formula $X$ +\end_inset + +. +\begin_inset ERT +status open + +\begin_layout Plain Layout + + +\backslash +begin{nproof} +\end_layout + +\end_inset + + +\end_layout + +\begin_deeper +\begin_layout Enumerate +\begin_inset Argument item:1 +status open + +\begin_layout Plain Layout +\begin_inset Formula $\implies]$ +\end_inset + + +\end_layout + +\end_inset + + +\begin_inset Formula $\sum_{n}\Vert y_{n}\Vert$ +\end_inset + + es de Cauchy, pero +\begin_inset Formula $\Vert y_{m}+\dots+y_{n}\Vert\leq\Vert y_{m}\Vert+\dots+\Vert y_{n}\Vert=\sum_{k=m}^{n}\Vert y_{k}\Vert$ +\end_inset + +, por lo que +\begin_inset Formula $\sum_{n}y_{n}$ +\end_inset + + también es de Cauchy en +\begin_inset Formula $X$ +\end_inset + + y por tanto convergente en +\begin_inset Formula $X$ +\end_inset + + por ser +\begin_inset Formula $X$ +\end_inset + + completo. +\end_layout + +\begin_layout Enumerate +\begin_inset Argument item:1 +status open + +\begin_layout Plain Layout +\begin_inset Formula $\impliedby]$ +\end_inset + + +\end_layout + +\end_inset + +Sea +\begin_inset Formula $\{x_{n}\}_{n}\subseteq X$ +\end_inset + + una sucesión de Cauchy, existe +\begin_inset Formula $(x_{n_{k}})_{k}$ +\end_inset + + con +\begin_inset Formula $\Vert x_{n_{k}}-x_{n_{k+1}}\Vert\leq2^{-k}$ +\end_inset + +, con lo que +\begin_inset Formula $\sum_{k}\Vert x_{n_{k}}-x_{n_{k+1}}\Vert$ +\end_inset + + es convergente y por tanto también lo es +\begin_inset Formula $\sum_{k}(x_{n_{k}}-x_{n_{k+1}})$ +\end_inset + +, que es +\begin_inset Formula $(x_{n_{0}}-x_{n_{k}})_{k}$ +\end_inset + +, pero entonces +\begin_inset Formula $(x_{n_{k}})_{k}$ +\end_inset + + es una subsucesión convergente de +\begin_inset Formula $(x_{n})_{n}$ +\end_inset + +, que es de Cauchy, por lo que +\begin_inset Formula $(x_{n})_{n}$ +\end_inset + + es convergente. +\end_layout + +\begin_layout Standard +\begin_inset ERT +status open + +\begin_layout Plain Layout + + +\backslash +end{nproof} +\end_layout + +\end_inset + + +\end_layout + +\end_deeper +\begin_layout Enumerate +Todo subespacio vectorial de Banach de +\begin_inset Formula $X$ +\end_inset + + es cerrado en +\begin_inset Formula $X$ +\end_inset + +. +\begin_inset ERT +status open + +\begin_layout Plain Layout + + +\backslash +begin{nproof} +\end_layout + +\end_inset + + +\end_layout + +\begin_deeper +\begin_layout Standard +Toda sucesión de Cauchy en +\begin_inset Formula $Y\leq X$ +\end_inset + + converge a un punto de +\begin_inset Formula $Y$ +\end_inset + +, por lo que +\begin_inset Formula $Y=\overline{Y}$ +\end_inset + +. +\begin_inset ERT +status open + +\begin_layout Plain Layout + + +\backslash +end{nproof} +\end_layout + +\end_inset + + +\end_layout + +\end_deeper +\begin_layout Enumerate +Si +\begin_inset Formula $X$ +\end_inset + + es de Banach, todo subespacio vectorial cerrado es de Banach. +\begin_inset ERT +status open + +\begin_layout Plain Layout + + +\backslash +begin{nproof} +\end_layout + +\end_inset + + +\end_layout + +\begin_deeper +\begin_layout Standard +Toda sucesión de Cauchy en +\begin_inset Formula $Y\leq X$ +\end_inset + + es de Cauchy en +\begin_inset Formula $X$ +\end_inset + + y converge en +\begin_inset Formula $X$ +\end_inset + +, pero como +\begin_inset Formula $Y$ +\end_inset + + es cerrado, el límite está en +\begin_inset Formula $Y$ +\end_inset + +. +\end_layout + +\begin_layout Standard +\begin_inset ERT +status open + +\begin_layout Plain Layout + + +\backslash +end{nproof} +\end_layout + +\end_inset + + +\end_layout + +\end_deeper +\begin_layout Subsection +Operadores continuos +\end_layout + +\begin_layout Standard +Dado un espacio normado +\begin_inset Formula $X$ +\end_inset + +, +\begin_inset Formula $A\subseteq X$ +\end_inset + + es +\series bold +acotado +\series default + si +\begin_inset Formula $\{\Vert x\Vert\}_{x\in A}$ +\end_inset + + está acotado superiormente. +\end_layout + +\begin_layout Standard +Dados dos +\begin_inset Formula $\mathbb{K}$ +\end_inset + +-espacios normados +\begin_inset Formula $X$ +\end_inset + + e +\begin_inset Formula $Y$ +\end_inset + +, un +\series bold +operador +\series default + de +\begin_inset Formula $X$ +\end_inset + + a +\begin_inset Formula $Y$ +\end_inset + + es una función lineal de +\begin_inset Formula $X$ +\end_inset + + a +\begin_inset Formula $Y$ +\end_inset + +, y se llama +\series bold +acotado +\series default + si es continuo. + Llamamos +\begin_inset Formula ${\cal L}(X,Y)$ +\end_inset + + al conjunto de operadores acotados de +\begin_inset Formula $X$ +\end_inset + + a +\begin_inset Formula $Y$ +\end_inset + +. +\end_layout + +\begin_layout Standard +Sean +\begin_inset Formula $X$ +\end_inset + + e +\begin_inset Formula $Y$ +\end_inset + + +\begin_inset Formula $\mathbb{K}$ +\end_inset + +-espacios normados: +\end_layout + +\begin_layout Enumerate +Si +\begin_inset Formula $T:X\to Y$ +\end_inset + + es lineal, +\begin_inset Formula $T$ +\end_inset + + es continuo si y sólo si lo es en 0, si y sólo si para +\begin_inset Formula $S\subseteq X$ +\end_inset + + acotado, +\begin_inset Formula $T(S)\subseteq Y$ +\end_inset + + es acotado, si y sólo si +\begin_inset Formula $\Vert T(S_{X})\Vert\subseteq Y$ +\end_inset + + es acotado, si y sólo si +\begin_inset Formula $\exists M\geq0:\forall x\in X,\Vert T(x)\Vert\leq M\Vert x\Vert$ +\end_inset + +, si y sólo si +\begin_inset Formula $T$ +\end_inset + + es uniformemente continuo. +\begin_inset ERT +status open + +\begin_layout Plain Layout + + +\backslash +begin{nproof} +\end_layout + +\end_inset + + +\end_layout + +\begin_deeper +\begin_layout Description +\begin_inset Formula $1\implies2]$ +\end_inset + + Obvio. +\end_layout + +\begin_layout Description +\begin_inset Formula $2\implies3]$ +\end_inset + + Probamos el contrarrecíproco. + Si +\begin_inset Formula $S\subseteq X$ +\end_inset + + está acotado por +\begin_inset Formula $M>0$ +\end_inset + + pero +\begin_inset Formula $T(S)\subseteq Y$ +\end_inset + + no está acotado, existe +\begin_inset Formula $\{s_{n}\}_{n}\subseteq S$ +\end_inset + + con cada +\begin_inset Formula $\Vert T(s_{n})\Vert\geq n$ +\end_inset + +, de modo que +\begin_inset Formula $\Vert T(\frac{s_{n}}{n})\Vert=\frac{1}{n}\Vert T(s_{n})\Vert\geq1$ +\end_inset + +, pero +\begin_inset Formula $\Vert s_{n}\Vert<M$ +\end_inset + + y +\begin_inset Formula $\Vert\frac{s_{n}}{n}\Vert<\frac{M}{n}$ +\end_inset + +, por lo que +\begin_inset Formula $(\frac{s_{n}}{n})_{n}$ +\end_inset + + converge a 0 pero +\begin_inset Formula $T(\frac{s_{n}}{n})$ +\end_inset + + no converge a +\begin_inset Formula $T(0)=0$ +\end_inset + +. +\end_layout + +\begin_layout Description +\begin_inset Formula $3\implies4]$ +\end_inset + + Obvio. +\end_layout + +\begin_layout Description +\begin_inset Formula $4\implies5]$ +\end_inset + + Sea +\begin_inset Formula $M$ +\end_inset + + una cota superior de +\begin_inset Formula $T(S_{X})$ +\end_inset + +. + Para +\begin_inset Formula $x=0$ +\end_inset + +, +\begin_inset Formula $\Vert T(0)\Vert=\Vert0\Vert=0$ +\end_inset + +. + Para +\begin_inset Formula $x\neq0$ +\end_inset + +, +\begin_inset Formula $\left\Vert T\left(\frac{x}{\Vert x\Vert}\Vert x\Vert\right)\right\Vert =\Vert x\Vert\left\Vert T\left(\frac{x}{\Vert x\Vert}\right)\right\Vert \leq M\Vert x\Vert$ +\end_inset + +, pues +\begin_inset Formula $\frac{x}{\Vert x\Vert}\in S_{X}$ +\end_inset + +. +\end_layout + +\begin_layout Description +\begin_inset Formula $5\implies6]$ +\end_inset + + Para +\begin_inset Formula $\varepsilon>0$ +\end_inset + +, sean +\begin_inset Formula $x,y\in X$ +\end_inset + + con +\begin_inset Formula $\Vert x-y\Vert<\frac{\varepsilon}{M}$ +\end_inset + +, entonces +\begin_inset Formula $\Vert T(x)-T(y)\Vert=\Vert T(x-y)\Vert\leq M\Vert x-y\Vert<\varepsilon$ +\end_inset + +. +\end_layout + +\begin_layout Description +\begin_inset Formula $6\implies1]$ +\end_inset + + Obvio. +\end_layout + +\begin_layout Standard +\begin_inset ERT +status open + +\begin_layout Plain Layout + + +\backslash +end{nproof} +\end_layout + +\end_inset + + +\end_layout + +\end_deeper +\begin_layout Enumerate +\begin_inset Formula ${\cal L}(X,Y)$ +\end_inset + + es un +\begin_inset Formula $\mathbb{K}$ +\end_inset + +-espacio vectorial con norma +\begin_inset Formula +\[ +\Vert T\Vert\coloneqq\sup_{x\in B_{X}}\Vert T(x)\Vert=\sup_{x\in S_{X}}\Vert T(x)\Vert=\sup_{x\in B(0,1)}\Vert T(x)\Vert, +\] + +\end_inset + +tomando +\begin_inset Formula $\sup\emptyset\coloneqq0$ +\end_inset + +, y si +\begin_inset Formula $Y$ +\end_inset + + es un espacio de Banach, +\begin_inset Formula $({\cal L}(X,Y),\Vert\cdot\Vert)$ +\end_inset + + también lo es. +\begin_inset ERT +status open + +\begin_layout Plain Layout + + +\backslash +begin{nproof} +\end_layout + +\end_inset + + +\end_layout + +\begin_deeper +\begin_layout Standard +Si +\begin_inset Formula $a\in\mathbb{K}$ +\end_inset + + y +\begin_inset Formula $S,T:X\to Y$ +\end_inset + + son lineales y continuas, +\begin_inset Formula $S+T$ +\end_inset + + y +\begin_inset Formula $aS$ +\end_inset + + también son lineales y continuas. + La igualdad entre los supremos se debe a que, para +\begin_inset Formula $x\in S_{X}$ +\end_inset + +, +\begin_inset Formula $\Vert T(x)\Vert=\sup_{n\in\mathbb{N}^{*}}(1-\frac{1}{n})\Vert T(x)\Vert=\sup_{n\in\mathbb{N}^{*}}\Vert T((1-\frac{1}{n})x)\Vert\leq\sup_{x\in B(0,1)}\Vert T(x)\Vert$ +\end_inset + + y, para +\begin_inset Formula $x\in B(0,1)$ +\end_inset + +, si +\begin_inset Formula $x=0$ +\end_inset + + entonces +\begin_inset Formula $\Vert T(x)\Vert=0\leq\sup_{x\in S_{X}}\Vert T(x)\Vert$ +\end_inset + + y en otro caso +\begin_inset Formula $\Vert T(x)\Vert=\Vert x\Vert\Vert T(\frac{x}{\Vert x\Vert})\Vert\overset{\Vert x\Vert\leq1}{\leq}\sup_{x\in S_{X}}\Vert T(x)\Vert$ +\end_inset + +, y +\begin_inset Formula $B_{X}=S_{X}\cup B(0,1)$ +\end_inset + +. + Este supremo está bien definido, y queremos ver que es una norma: +\end_layout + +\begin_layout Enumerate +Subaditiva: +\begin_inset Formula +\begin{multline*} +\Vert S+T\Vert=\sup_{x\in S_{X}}\Vert S(x)+T(x)\Vert\leq\sup_{x\in S_{X}}(\Vert S(x)\Vert+\Vert T(x)\Vert)\leq\\ +\leq\sup_{x\in S_{X}}\Vert S(x)\Vert+\sup_{x\in S_{X}}\Vert T(x)\Vert=\Vert S\Vert+\Vert T\Vert. +\end{multline*} + +\end_inset + + +\end_layout + +\begin_layout Enumerate +Positivamente homogénea: +\begin_inset Formula +\[ +\Vert aS\Vert=\sup_{x\in S_{X}}\Vert aS(x)\Vert=\sup_{x\in S_{X}}|a|\Vert S(x)\Vert=|a|\sup_{x\in S_{X}}\Vert S(x)\Vert=|a|\Vert S\Vert. +\] + +\end_inset + + +\end_layout + +\begin_layout Enumerate +Núcleo 0: Si +\begin_inset Formula $\Vert S\Vert=0$ +\end_inset + + entonces para +\begin_inset Formula $p\in S_{X}$ +\end_inset + +, +\begin_inset Formula $0\leq\Vert S(p)\Vert\leq0$ +\end_inset + +, con lo que +\begin_inset Formula $S(p)=0$ +\end_inset + +, por lo que para +\begin_inset Formula $x\in X\setminus0$ +\end_inset + + es +\begin_inset Formula $S(x)=S(\frac{x}{\Vert x\Vert}\Vert x\Vert)=\Vert x\Vert S(\frac{x}{\Vert x\Vert})=0$ +\end_inset + + y ya sabemos que +\begin_inset Formula $S(0)=0$ +\end_inset + +. +\end_layout + +\begin_layout Standard +Finalmente, si +\begin_inset Formula $\{T_{n}\}_{n}\subseteq{\cal L}(X,Y)$ +\end_inset + + es una sucesión de Cauchy, para +\begin_inset Formula $x\in X$ +\end_inset + +, +\begin_inset Formula $\{T_{n}(x)\}_{n}$ +\end_inset + + también es de Cauchy, pues si +\begin_inset Formula $x=0$ +\end_inset + + entonces +\begin_inset Formula $T_{n}(x)\equiv0$ +\end_inset + + y en otro caso para +\begin_inset Formula $\varepsilon>0$ +\end_inset + + existe +\begin_inset Formula $n_{0}\in\mathbb{N}$ +\end_inset + + tal que para +\begin_inset Formula $n,m\geq n_{0}$ +\end_inset + + es +\begin_inset Formula $\Vert T_{n}-T_{m}\Vert<\frac{\varepsilon}{\Vert x\Vert}$ +\end_inset + + y por tanto +\begin_inset Formula $\Vert T_{n}(x)-T_{m}(x)\Vert=\Vert(T_{n}-T_{m})(x)\Vert<\frac{\varepsilon}{\Vert x\Vert}\Vert x\Vert=\varepsilon$ +\end_inset + +, y como +\begin_inset Formula $Y$ +\end_inset + + es completo, +\begin_inset Formula $\{T_{n}(x)\}_{n}$ +\end_inset + + converge. + Sea entonces +\begin_inset Formula $T:X\to Y$ +\end_inset + + dada por +\begin_inset Formula $T(x)\coloneqq\lim_{n}T_{n}(x)$ +\end_inset + +, tenemos que ver que +\begin_inset Formula $T$ +\end_inset + + es lineal y continua y que +\begin_inset Formula $(T_{n})_{n}$ +\end_inset + + converge a +\begin_inset Formula $T$ +\end_inset + + en +\begin_inset Formula $({\cal L}(X,Y),\Vert\cdot\Vert)$ +\end_inset + +. + Para ver que es lineal, sean +\begin_inset Formula $x,y\in X$ +\end_inset + + y +\begin_inset Formula $a\in\mathbb{K}$ +\end_inset + +, +\begin_inset Formula +\begin{align*} +T(x+y) & =\lim_{n}T_{n}(x+y)=\lim_{n}(T_{n}(x)+T_{n}(y))=\lim_{n}T_{n}(x)+\lim_{n}T_{n}(y)=T(x)+T(y),\\ +T(ax) & =\lim_{n}T_{n}(ax)=\lim_{n}aT_{n}(x)=a\lim_{n}T_{n}(x)=aT(x). +\end{align*} + +\end_inset + +Para ver que es continua, como +\begin_inset Formula $(T_{n})_{n}$ +\end_inset + + es de Cauchy, +\begin_inset Formula $\{\Vert T_{n}\Vert\}_{n}$ +\end_inset + + es acotado por un cierto +\begin_inset Formula $M>0$ +\end_inset + +, de modo que para +\begin_inset Formula $\varepsilon>0$ +\end_inset + + y +\begin_inset Formula $x\in B(0,\frac{\varepsilon}{2M})$ +\end_inset + +, +\begin_inset Formula $\Vert T_{n}(x)\Vert\leq M\Vert x\Vert<\frac{\varepsilon}{2}$ +\end_inset + + para todo +\begin_inset Formula $n$ +\end_inset + +, pero como +\begin_inset Formula $T_{n}(x)\to T(x)$ +\end_inset + + existe +\begin_inset Formula $n_{0}\in\mathbb{N}$ +\end_inset + + tal que para +\begin_inset Formula $n\geq n_{0}$ +\end_inset + + es +\begin_inset Formula $\Vert T(x)-T_{n}(x)\Vert<\frac{\varepsilon}{2}$ +\end_inset + +, de modo que +\begin_inset Formula $\Vert T(x)\Vert\leq\Vert T_{n}(x)\Vert+\Vert T(x)-T_{n}(x)\Vert<\varepsilon$ +\end_inset + +, por lo que en resumen para +\begin_inset Formula $x\in X$ +\end_inset + + con +\begin_inset Formula $\Vert x\Vert<\frac{\varepsilon}{2M}$ +\end_inset + + es +\begin_inset Formula $\Vert T(x)\Vert<\varepsilon$ +\end_inset + + y por tanto +\begin_inset Formula $T$ +\end_inset + + es continua en 0, por lo que es continua. +\end_layout + +\begin_layout Standard +Finalmente, para +\begin_inset Formula $\varepsilon>0$ +\end_inset + + existe +\begin_inset Formula $n_{0}\in\mathbb{N}$ +\end_inset + + tal que, para +\begin_inset Formula $n,m\geq n_{0}$ +\end_inset + +, +\begin_inset Formula $\Vert T_{n}-T_{m}\Vert<\frac{\varepsilon}{2}$ +\end_inset + +, por lo que para todo +\begin_inset Formula $x\in S_{X}$ +\end_inset + + es +\begin_inset Formula $\Vert T_{n}(x)-T_{m}(x)\Vert\leq\Vert T_{n}-T_{m}\Vert<\frac{\varepsilon}{2}$ +\end_inset + + y +\begin_inset Formula +\[ +\Vert T_{n}(x)-T(x)\Vert=\Vert T_{n}(x)-\lim_{m}T_{m}(x)\Vert=\lim_{m}\Vert T_{n}(x)-T_{m}(x)\Vert\leq\frac{\varepsilon}{2}<\varepsilon, +\] + +\end_inset + + por lo que finalmente +\begin_inset Formula $\Vert T_{n}-T\Vert=\sup_{x\in S_{X}}\Vert T_{n}(x)-T(x)\Vert<\varepsilon$ +\end_inset + +. +\begin_inset ERT +status open + +\begin_layout Plain Layout + + +\backslash +end{nproof} +\end_layout + +\end_inset + + +\end_layout + +\end_deeper +\begin_layout Enumerate +La composición de operadores acotados es un operador acotado. +\end_layout + +\begin_layout Enumerate +En espacios de dimensión infinita hay operadores no acotados. +\begin_inset ERT +status open + +\begin_layout Plain Layout + + +\backslash +begin{nproof} +\end_layout + +\end_inset + + +\end_layout + +\begin_deeper +\begin_layout Standard +Sean +\begin_inset Formula $X$ +\end_inset + + un espacio normado de dimensión infinita, +\begin_inset Formula $Y$ +\end_inset + + un espacio normado no nulo, +\begin_inset Formula $\{x_{n}\}_{n}\subseteq X$ +\end_inset + + una sucesión de vectores linealmente independientes con norma 1, +\begin_inset Formula $y\in Y\setminus0$ +\end_inset + +, +\begin_inset Formula $(z_{i})_{i\in I}$ +\end_inset + + tales que +\begin_inset Formula $(x_{n})_{n}(z_{i})_{i}$ +\end_inset + + es una base de +\begin_inset Formula $X$ +\end_inset + + y +\begin_inset Formula $T:X\to Y$ +\end_inset + + un operador dado por +\begin_inset Formula $Tx_{n}\coloneqq ny$ +\end_inset + + y +\begin_inset Formula $Tz_{i}\coloneqq0$ +\end_inset + +, +\begin_inset Formula $\Vert Tx_{n}\Vert=n\Vert y\Vert$ +\end_inset + + y por tanto +\begin_inset Formula $\{\Vert T(x)\Vert\}_{x\in S_{X}}$ +\end_inset + + no tiene cota superior. +\begin_inset ERT +status open + +\begin_layout Plain Layout + + +\backslash +end{nproof} +\end_layout + +\end_inset + + +\end_layout + +\end_deeper +\begin_layout Standard +Una +\series bold +forma lineal +\series default + en +\begin_inset Formula $X$ +\end_inset + + es una función lineal +\begin_inset Formula $X\to\mathbb{K}$ +\end_inset + +. + Llamamos +\series bold +dual algebraico +\series default + de +\begin_inset Formula $X$ +\end_inset + + al conjunto de formas lineales de +\begin_inset Formula $X$ +\end_inset + + y +\series bold +dual topológico +\series default + de +\begin_inset Formula $X$ +\end_inset + + a +\begin_inset Formula $X^{*}\coloneqq{\cal L}(X,\mathbb{K})$ +\end_inset + +. +\end_layout + +\begin_layout Subsection +Isomorfismos topológicos +\end_layout + +\begin_layout Standard +Dados dos espacios normados +\begin_inset Formula $X$ +\end_inset + + e +\begin_inset Formula $Y$ +\end_inset + +, una función +\begin_inset Formula $T:X\to Y$ +\end_inset + + es un +\series bold +isomorfismo topológico +\series default + si es un isomorfismo y un homeomorfismo, si y sólo si es lineal, suprayectiva + y +\begin_inset Formula $\exists m,M>0:\forall x\in X,m\Vert x\Vert\leq\Vert T(x)\Vert\leq M\Vert x\Vert$ +\end_inset + +. +\begin_inset ERT +status open + +\begin_layout Plain Layout + + +\backslash +begin{nproof} +\end_layout + +\end_inset + + +\end_layout + +\begin_layout Itemize +\begin_inset Argument item:1 +status open + +\begin_layout Plain Layout +\begin_inset Formula $\implies]$ +\end_inset + + +\end_layout + +\end_inset + +Claramente es lineal y suprayectiva, y las acotaciones se obtienen de que + +\begin_inset Formula $T$ +\end_inset + + y +\begin_inset Formula $T^{-1}$ +\end_inset + + son funciones lineales continuas. +\end_layout + +\begin_layout Itemize +\begin_inset Argument item:1 +status open + +\begin_layout Plain Layout +\begin_inset Formula $\impliedby]$ +\end_inset + + +\end_layout + +\end_inset + +Para +\begin_inset Formula $x\in X$ +\end_inset + +, +\begin_inset Formula $T(x)=0\implies m\Vert x\Vert\leq\Vert T(x)\Vert=0\implies\Vert x\Vert=0\implies x=0$ +\end_inset + +, por lo que +\begin_inset Formula $T$ +\end_inset + + es inyectiva y por tanto biyectiva, luego es un isomorfismo porque la inversa + de una aplicación lineal es lineal, y las acotaciones implican que +\begin_inset Formula $T$ +\end_inset + + y +\begin_inset Formula $T^{-1}$ +\end_inset + + son continuas. +\end_layout + +\begin_layout Standard +\begin_inset ERT +status open + +\begin_layout Plain Layout + + +\backslash +end{nproof} +\end_layout + +\end_inset + + +\end_layout + +\begin_layout Standard +Dos espacios normados +\begin_inset Formula $X$ +\end_inset + + e +\begin_inset Formula $Y$ +\end_inset + + son +\series bold +topológicamente isomorfos +\series default + si existe un isomorfismo topológico entre ellos, y son +\series bold +isométricamente isomorfos +\series default + si este se puede tomar +\series bold +isométrico +\series default +, que conserve distancias o, equivalentemente, normas. + Dos normas +\begin_inset Formula $\Vert\cdot\Vert,|\cdot|:X\to\mathbb{R}$ +\end_inset + + son +\series bold +equivalentes +\series default + si +\begin_inset Formula $1_{X}:(X,\Vert\cdot\Vert)\to(X,|\cdot|)$ +\end_inset + + es un isomorfismo topológico, si y sólo si +\begin_inset Formula $\exists m,M>0:\forall x\in X,m|x|\leq\Vert x\Vert\leq M|x|$ +\end_inset + +, en cuyo caso ambas definen la misma topología. +\end_layout + +\begin_layout Standard +Si +\begin_inset Formula $X$ +\end_inset + + e +\begin_inset Formula $Y$ +\end_inset + + son espacios normados topológicamente isomorfos, la completitud de uno + equivale a la del otro. + +\begin_inset ERT +status open + +\begin_layout Plain Layout + + +\backslash +begin{nproof} +\end_layout + +\end_inset + +En efecto, si +\begin_inset Formula $X$ +\end_inset + + es completo, +\begin_inset Formula $T:X\to Y$ +\end_inset + + es un isomorfismo topológico e +\begin_inset Formula $\{y_{n}\}_{n}$ +\end_inset + + es una sucesión de Cauchy, entonces +\begin_inset Formula $\{x_{n}\coloneqq T^{-1}(y_{n})\}_{n}$ +\end_inset + + es de Cauchy, pues para +\begin_inset Formula $\varepsilon>0$ +\end_inset + + existe +\begin_inset Formula $n_{0}\in\mathbb{N}$ +\end_inset + + tal que para +\begin_inset Formula $n,m\geq0$ +\end_inset + + es +\begin_inset Formula $\Vert y_{n}-y_{m}\Vert<\frac{\varepsilon}{\Vert T^{-1}\Vert}$ +\end_inset + + y por tanto +\begin_inset Formula $\Vert x_{n}-x_{m}\Vert=\Vert T^{-1}(y_{n}-y_{m})\Vert<\varepsilon$ +\end_inset + +, de modo que +\begin_inset Formula $(x_{n})_{n}$ +\end_inset + + es convergente y existe +\begin_inset Formula $x\in X$ +\end_inset + + tal que, para +\begin_inset Formula $\varepsilon>0$ +\end_inset + +, existe +\begin_inset Formula $n_{0}\in\mathbb{N}$ +\end_inset + + tal que para +\begin_inset Formula $n\geq n_{0}$ +\end_inset + + es +\begin_inset Formula $\Vert x_{n}-x\Vert\leq\frac{\varepsilon}{\Vert T\Vert}$ +\end_inset + +, pero entonces +\begin_inset Formula $\Vert y_{n}-T(x)\Vert<\varepsilon$ +\end_inset + + e +\begin_inset Formula $(y_{n})_{n}$ +\end_inset + + converge a +\begin_inset Formula $T(x)\in Y$ +\end_inset + +. +\begin_inset ERT +status open + +\begin_layout Plain Layout + + +\backslash +end{nproof} +\end_layout + +\end_inset + + +\end_layout + +\begin_layout Subsection +Compleción +\end_layout + +\begin_layout Standard +Para todo espacio normado +\begin_inset Formula $X$ +\end_inset + + existen un espacio de Banach +\begin_inset Formula $\hat{X}$ +\end_inset + + y un operador isométrico +\begin_inset Formula $J:X\to\hat{X}$ +\end_inset + + tales que +\begin_inset Formula $J(X)$ +\end_inset + + es denso en +\begin_inset Formula $\hat{X}$ +\end_inset + +, y llamamos a +\begin_inset Formula $\hat{X}$ +\end_inset + + la +\series bold +compleción +\series default + de +\begin_inset Formula $X$ +\end_inset + +. + +\begin_inset ERT +status open + +\begin_layout Plain Layout + + +\backslash +begin{nproof} +\end_layout + +\end_inset + + +\series bold +Demostración: +\series default + Si +\begin_inset Formula $A\subseteq X^{\mathbb{N}}$ +\end_inset + + es el conjunto de sucesiones de Cauchy en +\begin_inset Formula $X$ +\end_inset + +, definimos la relación de equivalencia en +\begin_inset Formula $A$ +\end_inset + + dada por +\begin_inset Formula $x\equiv y\iff\lim_{n}(x_{n}-y_{n})=0$ +\end_inset + +, y llamamos +\begin_inset Formula $\hat{X}\coloneqq X/\equiv$ +\end_inset + + con la suma y producto componente a componente y la norma dada por el límite + de las normas. + Estas operaciones están bien definidas. + En efecto, si +\begin_inset Formula $x\equiv x'$ +\end_inset + + e +\begin_inset Formula $y\equiv y'$ +\end_inset + +, +\begin_inset Formula $\lim_{n}((x_{n}+y_{n})-(x'_{n}+y'_{n}))=\lim_{n}((x_{n}-x'_{n})+(y_{n}-y'_{n}))=0$ +\end_inset + + y +\begin_inset Formula $x+x'\equiv y+y'$ +\end_inset + +, y si además +\begin_inset Formula $a\in\mathbb{K}$ +\end_inset + +, +\begin_inset Formula $\lim_{n}(ax_{n}-ax'_{n})=a\lim_{n}(x_{n}-x'_{n})=0$ +\end_inset + + y +\begin_inset Formula $ax\equiv ax'$ +\end_inset + +. + Finalmente, la norma existe porque la sucesión de normas es convergente + y por tanto de Cauchy si +\begin_inset Formula $\lim_{n}(x_{n}-x'_{n})=0$ +\end_inset + +, para +\begin_inset Formula $\varepsilon>0$ +\end_inset + + existe +\begin_inset Formula $n_{0}\in\mathbb{N}$ +\end_inset + + tal que si +\begin_inset Formula $n\geq n_{0}$ +\end_inset + + entonces +\begin_inset Formula $\left|\Vert x_{n}\Vert-\Vert x'_{n}\Vert\right|\leq\Vert x_{n}-x'_{n}\Vert<\varepsilon$ +\end_inset + +, por lo que +\begin_inset Formula $\Vert x_{n}\Vert-\Vert x'_{n}\Vert\to0$ +\end_inset + + y +\begin_inset Formula $\Vert x_{n}\Vert=\Vert x'_{n}\Vert$ +\end_inset + +. + Es fácil comprobar tomando representantes que se cumplen los axiomas de + espacio vectorial con el 0 como la clase de las sucesión constante en 0 + y que la norma definida es subaditiva y absolutamente homogénea. + Además, +\begin_inset Formula +\[ +\Vert\overline{x}\Vert=0\implies\Vert\overline{x}\Vert=\lim_{n}\Vert x_{n}\Vert=\left\Vert \lim_{n}x_{n}\right\Vert =0\implies(x_{n})_{n}\equiv0\implies\overline{x}=0. +\] + +\end_inset + + El operador isométrico +\begin_inset Formula $J$ +\end_inset + + es el que lleva cada +\begin_inset Formula $x\in X$ +\end_inset + + a la clase de la sucesión constante en +\begin_inset Formula $x$ +\end_inset + +, que claramente es un operador isométrico. + Para ver que +\begin_inset Formula $J(X)$ +\end_inset + + es denso en +\begin_inset Formula $\hat{X}$ +\end_inset + +, sea +\begin_inset Formula $\overline{x}\in X$ +\end_inset + +, +\begin_inset Formula $\lim_{n}J(x_{n})=\overline{x}$ +\end_inset + +, pues +\begin_inset Formula $\Vert J(x_{n})-\overline{x}\Vert=\lim_{m}\Vert x_{n}-x_{m}\Vert$ +\end_inset + + pero como +\begin_inset Formula $x$ +\end_inset + + es de Cauchy, para +\begin_inset Formula $\varepsilon>0$ +\end_inset + + existe +\begin_inset Formula $n_{0}\in\mathbb{N}$ +\end_inset + + tal que si +\begin_inset Formula $n,m\geq n_{0}$ +\end_inset + + entonces +\begin_inset Formula $\Vert x_{n}-x_{m}\Vert<\frac{\varepsilon}{2}$ +\end_inset + + y tomando límites en +\begin_inset Formula $m$ +\end_inset + + es +\begin_inset Formula $\lim_{m}\Vert x_{n}-x_{m}\Vert\leq\frac{\varepsilon}{2}<\varepsilon$ +\end_inset + +. + Para ver que +\begin_inset Formula $\hat{X}$ +\end_inset + + es completo, sea +\begin_inset Formula $\{\overline{x}_{n}\}_{n}\subseteq\hat{X}$ +\end_inset + + de Cauchy, para +\begin_inset Formula $k\in\mathbb{N}$ +\end_inset + + existe +\begin_inset Formula $N_{k}\in\mathbb{N}$ +\end_inset + +, que podemos tomar mayor que +\begin_inset Formula $N_{k-1}$ +\end_inset + +, tal que para +\begin_inset Formula $n,m\geq N_{k}$ +\end_inset + + es +\begin_inset Formula $\Vert x_{kn}-x_{km}\Vert<\frac{1}{k}$ +\end_inset + +, y llamamos +\begin_inset Formula $y_{k}\coloneqq x_{kN_{k}}\in X$ +\end_inset + +. + Queremos ver que +\begin_inset Formula $(y_{k})_{k}$ +\end_inset + + es de Cauchy y que +\begin_inset Formula $\overline{x}_{n}\to\overline{y}$ +\end_inset + +. + Para lo primero, para +\begin_inset Formula $\varepsilon>0$ +\end_inset + +, existe +\begin_inset Formula $M_{1}$ +\end_inset + + tal que para +\begin_inset Formula $n,m\geq M_{1}$ +\end_inset + + es +\begin_inset Formula $\Vert x_{n}-x_{m}\Vert=\lim_{k}\Vert x_{nk}-x_{mk}\Vert<\frac{\varepsilon}{2}$ +\end_inset + +, luego existe +\begin_inset Formula $M_{2}$ +\end_inset + + tal que para +\begin_inset Formula $i\geq M_{2}$ +\end_inset + + es +\begin_inset Formula $\Vert x_{ni}-x_{mi}\Vert<\frac{\varepsilon}{2}$ +\end_inset + +. + Sea entonces +\begin_inset Formula $M\coloneqq\max\{M_{1},M_{2}\}$ +\end_inset + +, para +\begin_inset Formula $n,m\geq M$ +\end_inset + +, como +\begin_inset Formula $n,m\geq M_{1}$ +\end_inset + + y +\begin_inset Formula $N_{n}\geq n\geq M_{2}$ +\end_inset + +, +\begin_inset Formula $\Vert x_{nN_{n}}-x_{mN_{n}}\Vert<\frac{\varepsilon}{2}$ +\end_inset + +, con lo que +\begin_inset Formula +\[ +\Vert y_{n}-y_{m}\Vert=\Vert x_{nN_{n}}-x_{mN_{m}}\Vert\leq\Vert x_{nN_{n}}-x_{mN_{n}}\Vert+\Vert x_{mN_{n}}-x_{mN_{m}}\Vert<\frac{\varepsilon}{2}+\frac{\varepsilon}{2}=\varepsilon. +\] + +\end_inset + +Para lo segundo, para +\begin_inset Formula $\varepsilon>0$ +\end_inset + +, sean +\begin_inset Formula $n_{0}$ +\end_inset + + tal que para +\begin_inset Formula $n,m\geq0$ +\end_inset + + es +\begin_inset Formula $\Vert y_{n}-y_{m}\Vert<\frac{\varepsilon}{3}$ +\end_inset + + y +\begin_inset Formula $k\in\mathbb{N}$ +\end_inset + + con +\begin_inset Formula $k\geq n_{0}$ +\end_inset + + y +\begin_inset Formula $\frac{1}{k}<\frac{\varepsilon}{3}$ +\end_inset + +, para +\begin_inset Formula $i\geq N_{k}$ +\end_inset + + es +\begin_inset Formula $\Vert x_{ki}-y_{k}\Vert=\Vert x_{ki}-x_{kN_{k}}\Vert<\frac{1}{k}$ +\end_inset + +, luego +\begin_inset Formula +\[ +\Vert\overline{x}_{k}-\overline{y}\Vert=\lim_{i}\Vert x_{ki}-y_{i}\Vert\leq\lim_{i}(\Vert x_{ki}-y_{k}\Vert+\Vert y_{k}-y_{i}\Vert)\leq\frac{\varepsilon}{3}+\frac{\varepsilon}{3}<\varepsilon +\] + +\end_inset + +y la completitud queda probada. +\begin_inset ERT +status open + +\begin_layout Plain Layout + + +\backslash +end{nproof} +\end_layout + +\end_inset + + +\end_layout + +\begin_layout Subsection +Espacios cociente +\end_layout + +\begin_layout Standard +\begin_inset ERT +status open + +\begin_layout Plain Layout + + +\backslash +begin{reminder}{TS} +\end_layout + +\end_inset + + +\end_layout + +\begin_layout Standard +Dado un espacio topológico +\begin_inset Formula $(X,{\cal T})$ +\end_inset + + y una relación de equivalencia +\begin_inset Formula $\sim$ +\end_inset + + en +\begin_inset Formula $X$ +\end_inset + +, llamamos +\series bold +topología cociente +\series default + en +\begin_inset Formula $X/\sim$ +\end_inset + + a +\begin_inset Formula $\{V\subseteq(X/\sim):p^{-1}(V)\in{\cal T}\}$ +\end_inset + +, donde +\begin_inset Formula $p:X\to X/\sim$ +\end_inset + + es la +\series bold +proyección canónica +\series default + [...]. +\end_layout + +\begin_layout Standard +\begin_inset ERT +status open + +\begin_layout Plain Layout + + +\backslash +end{reminder} +\end_layout + +\end_inset + + +\end_layout + +\begin_layout Standard +Dado un espacio vectorial +\begin_inset Formula $X$ +\end_inset + + con un subespacio +\begin_inset Formula $Y$ +\end_inset + +, llamamos +\series bold +espacio vectorial cociente +\series default + +\begin_inset Formula $X/Y$ +\end_inset + + al conjunto cociente de +\begin_inset Formula $X$ +\end_inset + + bajo la relación de equivalencia +\begin_inset Formula $x\equiv y\iff x-y\in Y$ +\end_inset + + entendido como espacio vectorial con las operaciones heredadas de +\begin_inset Formula $X$ +\end_inset + +. + Si +\begin_inset Formula $X$ +\end_inset + + es normado e +\begin_inset Formula $Y$ +\end_inset + + es cerrado en +\begin_inset Formula $X$ +\end_inset + +: +\end_layout + +\begin_layout Enumerate +\begin_inset Formula $X/Y$ +\end_inset + + es un espacio normado con la +\series bold +norma cociente +\series default + +\begin_inset Formula $\Vert x+Y\Vert\coloneqq\inf_{y\in Y}\Vert x+y\Vert$ +\end_inset + +. +\begin_inset ERT +status open + +\begin_layout Plain Layout + + +\backslash +begin{nproof} +\end_layout + +\end_inset + + +\end_layout + +\begin_deeper +\begin_layout Standard +Si +\begin_inset Formula $x,x'\in X$ +\end_inset + +, para +\begin_inset Formula $y,y'\in Y$ +\end_inset + +, +\begin_inset Formula +\[ +\Vert x+y\Vert+\Vert x'+y'\Vert\geq\Vert(x+x')+(y+y')\Vert\geq\inf_{y\in Y}\Vert(x+x')+y\Vert=\Vert\overline{x+x'}\Vert, +\] + +\end_inset + +por lo que +\begin_inset Formula $\Vert\overline{x}\Vert+\Vert\overline{x'}\Vert=\inf_{y\in Y}\Vert x+y\Vert+\inf_{y'\in Y}\Vert x'+y'\Vert\geq\Vert\overline{x+x'}\Vert$ +\end_inset + +. + Para +\begin_inset Formula $a\in\mathbb{K}$ +\end_inset + +, si +\begin_inset Formula $a=0$ +\end_inset + +, +\begin_inset Formula $0\leq\Vert0\overline{x}\Vert=\Vert0\Vert=\inf_{y\in Y}\Vert y\Vert\leq0$ +\end_inset + +, y en otro caso +\begin_inset Formula +\[ +\Vert a\overline{x}\Vert=\Vert\overline{ax}\Vert=\inf_{y\in Y}\Vert ax+y\Vert=\inf_{y\in Y}\Vert ax+ay\Vert=|a|\inf_{y\in Y}\Vert x+y\Vert=|a|\Vert x\Vert. +\] + +\end_inset + +Finalmente, si +\begin_inset Formula $\Vert\overline{x}\Vert=0$ +\end_inset + +, para +\begin_inset Formula $n\in\mathbb{N}^{*}$ +\end_inset + + existe +\begin_inset Formula $y_{n}\in Y$ +\end_inset + + con +\begin_inset Formula $\Vert x-y_{n}\Vert<\frac{1}{n}$ +\end_inset + +, pero entonces +\begin_inset Formula $(y_{n})_{n}$ +\end_inset + + converge a +\begin_inset Formula $x$ +\end_inset + + en +\begin_inset Formula $X$ +\end_inset + +, luego +\begin_inset Formula $x\in Y$ +\end_inset + + por ser +\begin_inset Formula $Y$ +\end_inset + + cerrado y +\begin_inset Formula $\overline{x}=0$ +\end_inset + +. +\begin_inset ERT +status open + +\begin_layout Plain Layout + + +\backslash +end{nproof} +\end_layout + +\end_inset + + +\end_layout + +\end_deeper +\begin_layout Enumerate +La aplicación cociente +\begin_inset Formula $X\to X/Y$ +\end_inset + + es lineal, continua y abierta. +\begin_inset ERT +status open + +\begin_layout Plain Layout + + +\backslash +begin{nproof} +\end_layout + +\end_inset + + +\end_layout + +\begin_deeper +\begin_layout Standard +Sea +\begin_inset Formula $Q$ +\end_inset + + la aplicación, que claramente es lineal. + Para +\begin_inset Formula $x\in X$ +\end_inset + + y +\begin_inset Formula $\varepsilon>0$ +\end_inset + +, si +\begin_inset Formula $x'\in B(\overline{x},\varepsilon)$ +\end_inset + + +\begin_inset Formula $\Vert\overline{x}-\overline{x}'\Vert=\inf_{y\in Y}\Vert x-x'+y\Vert\leq\Vert x-x'\Vert<\varepsilon$ +\end_inset + +. + Para ver que es abierta, para +\begin_inset Formula $x_{0}\in X$ +\end_inset + + y +\begin_inset Formula $\delta>0$ +\end_inset + +, +\begin_inset Formula $\overline{x}\in Q(B(x_{0},\delta))$ +\end_inset + + si y sólo si existe +\begin_inset Formula $x'\equiv x$ +\end_inset + + con +\begin_inset Formula $\Vert x'-x_{0}\Vert<\delta$ +\end_inset + +, si y sólo si +\begin_inset Formula $\Vert\overline{x}-\overline{x}_{0}\Vert<\delta$ +\end_inset + +, si y sólo si +\begin_inset Formula $\overline{x}\in B(\overline{x_{0}},\delta)$ +\end_inset + +. +\begin_inset ERT +status open + +\begin_layout Plain Layout + + +\backslash +end{nproof} +\end_layout + +\end_inset + + +\end_layout + +\end_deeper +\begin_layout Enumerate +La norma cociente genera la topología cociente. +\begin_inset ERT +status open + +\begin_layout Plain Layout + + +\backslash +begin{nproof} +\end_layout + +\end_inset + + +\end_layout + +\begin_deeper +\begin_layout Standard +Dado +\begin_inset Formula $V\subseteq X/Y$ +\end_inset + +, si +\begin_inset Formula $V$ +\end_inset + + es abierto +\begin_inset Formula $Q^{-1}(V)$ +\end_inset + + también por continuidad, y si +\begin_inset Formula $Q^{-1}(V)$ +\end_inset + + es abierto, +\begin_inset Formula $V$ +\end_inset + + también por ser +\begin_inset Formula $Q$ +\end_inset + + abierta. +\begin_inset ERT +status open + +\begin_layout Plain Layout + + +\backslash +end{nproof} +\end_layout + +\end_inset + + +\end_layout + +\end_deeper +\begin_layout Enumerate +Si +\begin_inset Formula $X$ +\end_inset + + es de Banach también lo es +\begin_inset Formula $X/Y$ +\end_inset + +. +\begin_inset ERT +status open + +\begin_layout Plain Layout + + +\backslash +begin{nproof} +\end_layout + +\end_inset + + +\end_layout + +\begin_deeper +\begin_layout Standard +Sea +\begin_inset Formula $\{\overline{x_{n}}\}_{n}\subseteq X/Y$ +\end_inset + + una sucesión con +\begin_inset Formula $\sum_{n}\Vert\overline{x_{n}}\Vert$ +\end_inset + + convergente, tomando +\begin_inset Formula $y_{n}\in\overline{x_{n}}$ +\end_inset + + con +\begin_inset Formula $\Vert y_{n}\Vert\leq\Vert\overline{x_{n}}\Vert+2^{-n}$ +\end_inset + +, +\begin_inset Formula $\sum_{n}\Vert y_{n}\Vert$ +\end_inset + + converge, y como +\begin_inset Formula $X$ +\end_inset + + es completa también lo hace +\begin_inset Formula $\sum_{n}y_{n}$ +\end_inset + + converge, y por continuidad de +\begin_inset Formula $Q$ +\end_inset + +, +\begin_inset Formula $\sum_{n}\overline{x_{n}}=\sum_{n}Q(y_{n})=Q(\sum_{n}y_{n})$ +\end_inset + + converge. +\begin_inset ERT +status open + +\begin_layout Plain Layout + + +\backslash +end{nproof} +\end_layout + +\end_inset + + +\end_layout + +\end_deeper +\begin_layout Subsection +Suma directa topológica +\end_layout + +\begin_layout Standard +Sean +\begin_inset Formula $X$ +\end_inset + + un espacio normado e +\begin_inset Formula $Y,Z\leq X$ +\end_inset + +, +\begin_inset Formula $X$ +\end_inset + + es la +\series bold +suma directa topológica +\series default + de +\begin_inset Formula $Y$ +\end_inset + + y +\begin_inset Formula $Z$ +\end_inset + + si +\begin_inset Formula $X=Y\oplus Z$ +\end_inset + + y las proyecciones canónicas +\begin_inset Formula $y+z\mapsto y$ +\end_inset + + e +\begin_inset Formula $y+z\mapsto z$ +\end_inset + + para +\begin_inset Formula $y\in Y$ +\end_inset + + y +\begin_inset Formula $z\in Z$ +\end_inset + + son continuas, si y sólo si +\begin_inset Formula $s:Y\times Z\to X$ +\end_inset + + dada por +\begin_inset Formula $s(y,z)\coloneqq y+z$ +\end_inset + + es un isomorfismo topológico, en cuyo caso +\begin_inset Formula $Z$ +\end_inset + + es un +\series bold +complementario topológico +\series default + de +\begin_inset Formula $Y$ +\end_inset + + respecto de +\begin_inset Formula $X$ +\end_inset + +. +\begin_inset ERT +status open + +\begin_layout Plain Layout + + +\backslash +begin{nproof} +\end_layout + +\end_inset + + +\end_layout + +\begin_layout Itemize +\begin_inset Argument item:1 +status open + +\begin_layout Plain Layout +\begin_inset Formula $\implies]$ +\end_inset + + +\end_layout + +\end_inset + +Es claramente un isomorfismo, es continua por serlo la suma y +\begin_inset Formula $s^{-1}$ +\end_inset + + también por serlo las proyecciones. +\end_layout + +\begin_layout Itemize +\begin_inset Argument item:1 +status open + +\begin_layout Plain Layout +\begin_inset Formula $\impliedby]$ +\end_inset + + +\end_layout + +\end_inset + +Que +\begin_inset Formula $s$ +\end_inset + + sea biyectiva implica que +\begin_inset Formula $X=Y\oplus Z$ +\end_inset + +. + Además +\begin_inset Formula $y+z\overset{s^{-1}}{\mapsto}(y,z)\overset{p}{\mapsto}y$ +\end_inset + + es continua, y análogamente lo es la otra proyección. +\end_layout + +\begin_layout Standard +\begin_inset ERT +status open + +\begin_layout Plain Layout + + +\backslash +end{nproof} +\end_layout + +\end_inset + + +\end_layout + +\begin_layout Section +Espacios normados de dimensión finita +\end_layout + +\begin_layout Standard + +\series bold +Desigualdad de Hölder: +\series default + Dados +\begin_inset Formula $a_{1},\dots,a_{n},b_{1},\dots,b_{n}>0$ +\end_inset + +, +\begin_inset Formula $p>1$ +\end_inset + + y +\begin_inset Formula $q>1$ +\end_inset + + con +\begin_inset Formula $\frac{1}{p}+\frac{1}{q}=1$ +\end_inset + +, +\begin_inset Formula +\[ +\sum_{k=1}^{n}a_{k}b_{k}\leq\left(\sum_{k=1}^{n}a_{k}^{p}\right)^{\frac{1}{p}}\left(\sum_{k=1}^{n}b_{k}^{q}\right)^{\frac{1}{q}}. +\] + +\end_inset + + +\series bold +Demostración: +\series default + Para +\begin_inset Formula $n=0$ +\end_inset + + es obvio. + La exponencial es convexa, por lo que si +\begin_inset Formula $a,b>0$ +\end_inset + +, +\begin_inset Formula +\[ +ab=\text{e}^{\log ab}=\text{e}^{\frac{1}{p}\log a^{p}+\frac{1}{q}\log b^{q}}\leq\frac{1}{p}\text{e}^{\log a^{p}}+\frac{1}{q}\text{e}^{\log b^{q}}=\frac{a^{p}}{p}+\frac{b^{q}}{q}, +\] + +\end_inset + +y si +\begin_inset Formula $A\coloneqq\left(\sum_{k}a_{k}^{p}\right)^{\frac{1}{p}}$ +\end_inset + + y +\begin_inset Formula $B\coloneqq\left(\sum_{k}b_{k}^{q}\right)^{\frac{1}{q}}$ +\end_inset + +, haciendo +\begin_inset Formula $a\coloneqq\frac{a_{k}}{A}$ +\end_inset + + y +\begin_inset Formula $b\coloneqq\frac{b_{k}}{B}$ +\end_inset + + y sumando, +\begin_inset Formula +\[ +\frac{\sum_{k=1}^{n}a_{k}b_{k}}{AB}=\sum_{k=1}^{n}\frac{a_{k}}{A}\frac{b_{k}}{B}\leq\frac{1}{p}\left(\sum_{k=1}^{n}\frac{a_{k}^{p}}{A^{p}}\right)+\frac{1}{q}\left(\sum_{k=1}^{n}\frac{b_{k}^{q}}{B^{q}}\right)=1. +\] + +\end_inset + + +\end_layout + +\begin_layout Standard +La +\series bold +desigualdad de Schwarz +\series default + es la desigualdad de Hölder con +\begin_inset Formula $p=2$ +\end_inset + +. +\end_layout + +\begin_layout Standard + +\series bold +Desigualdad de Minkowski: +\series default + Para +\begin_inset Formula $a_{1},\dots,a_{n},b_{1},\dots,b_{n}\geq0$ +\end_inset + + y +\begin_inset Formula $p\geq1$ +\end_inset + +, +\begin_inset Formula +\[ +\left(\sum_{k=1}^{n}(a_{k}+b_{k})^{p}\right)^{\frac{1}{p}}\leq\left(\sum_{k=1}^{n}a_{k}^{p}\right)^{\frac{1}{p}}+\left(\sum_{k=1}^{n}b_{k}^{p}\right)^{\frac{1}{p}}. +\] + +\end_inset + + +\series bold +Demostración: +\series default + Si +\begin_inset Formula $p=1$ +\end_inset + + es obvio. + Si +\begin_inset Formula $p>1$ +\end_inset + +, sea +\begin_inset Formula $q\coloneqq\frac{1}{1-\frac{1}{p}}$ +\end_inset + +, se tiene +\begin_inset Formula $\frac{1}{p}+\frac{1}{q}=1$ +\end_inset + + y +\begin_inset Formula $(p-1)\frac{q}{p}=1$ +\end_inset + +, y por la desigualdad de Hölder, +\begin_inset Formula +\begin{align*} +\alpha & \coloneqq\sum_{k=1}^{n}(a_{k}+b_{k})^{p}=\sum_{k=1}^{n}a_{k}(a_{k}+b_{k})^{p-1}+\sum_{k=1}^{n}b_{k}(a_{k}+b_{k})^{p-1}\leq\\ + & \leq\left(\sum_{k=1}^{n}a_{k}^{p}\right)^{\frac{1}{p}}\left(\sum_{k=1}^{n}(a_{k}+b_{k})^{q(p-1)}\right)^{\frac{1}{q}}+\left(\sum_{k=1}^{n}b_{k}^{p}\right)^{\frac{1}{p}}\left(\sum_{k=1}^{n}(a_{k}+b_{k})^{q(p-1)}\right)^{\frac{1}{q}}=\\ + & =\left(\left(\sum_{k=1}^{n}a_{k}^{p}\right)^{\frac{1}{p}}+\left(\sum_{k=1}^{n}b_{k}^{p}\right)^{\frac{1}{p}}\right)\left(\sum_{k=1}^{n}(a_{k}+b_{k})^{p}\right)^{\frac{1}{q}}=\alpha^{\frac{1}{q}}\left(\left(\sum_{k=1}^{n}a_{k}^{p}\right)^{\frac{1}{p}}+\left(\sum_{k=1}^{n}b_{k}^{p}\right)^{\frac{1}{p}}\right), +\end{align*} + +\end_inset + +y dividiendo entre +\begin_inset Formula $\alpha^{\frac{1}{q}}$ +\end_inset + + se obtiene el resultado. +\end_layout + +\begin_layout Standard +Para +\begin_inset Formula $n\in\mathbb{N}$ +\end_inset + + definimos los espacios normados: +\end_layout + +\begin_layout Enumerate +\begin_inset Formula $\ell_{n}^{p}\coloneqq(\mathbb{K}^{n},\Vert\cdot\Vert_{p})$ +\end_inset + + para +\begin_inset Formula $p\in[1,\infty)$ +\end_inset + +, donde +\begin_inset Formula +\[ +\Vert x\Vert_{p}\coloneqq\left(\sum_{k=1}^{n}|x_{k}|^{p}\right)^{\frac{1}{p}}. +\] + +\end_inset + + +\end_layout + +\begin_deeper +\begin_layout Standard +\begin_inset Formula $\Vert\cdot\Vert_{p}$ +\end_inset + + es absolutamente homogénea y sólo vale 0 en el 0, y la desigualdad triangular + se sigue de la de Minkowski usando que +\begin_inset Formula $|a_{k}+b_{k}|\leq|a_{k}|+|b_{k}|$ +\end_inset + +. +\end_layout + +\end_deeper +\begin_layout Enumerate +\begin_inset Formula $\ell_{n}^{\infty}\coloneqq(\mathbb{K}^{n},\Vert\cdot\Vert_{p})$ +\end_inset + + con +\begin_inset Formula $\Vert x\Vert_{\infty}\coloneqq\sup_{k=1}^{n}|x_{k}|$ +\end_inset + +. +\end_layout + +\begin_deeper +\begin_layout Standard +\begin_inset Formula $\Vert\cdot\Vert_{\infty}$ +\end_inset + + hereda las propiedades de norma de +\begin_inset Formula $|\cdot|$ +\end_inset + +. +\end_layout + +\end_deeper +\begin_layout Standard +Si +\begin_inset Formula $X$ +\end_inset + + es un espacio normado de dimensión finita +\begin_inset Formula $n$ +\end_inset + + con base +\begin_inset Formula $(e_{1},\dots,e_{n})$ +\end_inset + +, +\begin_inset Formula $T:\ell_{n}^{1}\to X$ +\end_inset + + dado por +\begin_inset Formula $T(a_{1},\dots,a_{n})\coloneqq a_{1}e_{1}+\dots+a_{n}e_{n}$ +\end_inset + + es un isomorfismo topológico. + +\series bold +Demostración: +\series default + Claramente +\begin_inset Formula $T$ +\end_inset + + es un isomorfismo algebraico. + Para +\begin_inset Formula $a\in\ell_{n}^{1}$ +\end_inset + +, +\begin_inset Formula +\[ +\Vert T(a)\Vert=\left\Vert \sum_{k=1}^{n}a_{k}e_{k}\right\Vert \leq\sum_{k=1}^{n}|a_{k}|\sup_{k=1}^{n}\{\Vert e_{k}\Vert\}=\sup_{k=1}^{n}\{\Vert e_{k}\Vert\}\Vert(a_{1},\dots,a_{n})\Vert_{1}. +\] + +\end_inset + +Para la otra cota, +\begin_inset Formula $S_{\ell_{n}^{1}}$ +\end_inset + + es compacto y +\begin_inset Formula $f:S_{\ell_{n}^{1}}\to\mathbb{R}$ +\end_inset + + dado por +\begin_inset Formula $f(x)\coloneqq\Vert T(x)\Vert$ +\end_inset + + es continua y sin ceros ( +\begin_inset Formula $f(0)=0\implies T(x)=0\implies x=0$ +\end_inset + +), por lo que +\begin_inset Formula $\beta\coloneqq\min\text{Im}f>0$ +\end_inset + + y para +\begin_inset Formula $a\in\ell_{n}^{1}\setminus0$ +\end_inset + + es +\begin_inset Formula +\[ +\beta\leq f\left(\frac{a}{\Vert a\Vert}\right)=\left\Vert T\left(\frac{a}{\Vert a\Vert}\right)\right\Vert =\frac{\Vert T(a)\Vert}{\Vert a\Vert}\implies\beta\Vert a\Vert\leq\Vert T(a)\Vert. +\] + +\end_inset + + +\end_layout + +\begin_layout Standard +Así: +\end_layout + +\begin_layout Enumerate +Todos los espacios normados de igual dimensión finta son topológicamente + isomorfos. +\end_layout + +\begin_layout Enumerate +Todas las normas en un espacio de dimensión finita son equivalentes. +\end_layout + +\begin_layout Enumerate +Toda norma en +\begin_inset Formula $\mathbb{K}^{n}$ +\end_inset + + genera la topología producto. +\end_layout + +\begin_deeper +\begin_layout Standard +Las bolas de +\begin_inset Formula $\ell_{n}^{\infty}$ +\end_inset + + son rectángulos y toda norma de +\begin_inset Formula $\mathbb{K}^{n}$ +\end_inset + + genera la misma topología. +\end_layout + +\end_deeper +\begin_layout Enumerate +Todo espacio de dimensión finita es de Banach. +\end_layout + +\begin_deeper +\begin_layout Standard +Lo es +\begin_inset Formula $\ell_{n}^{\infty}$ +\end_inset + + por tener topología producto. +\end_layout + +\end_deeper +\begin_layout Enumerate +Todo subespacio de dimensión finita de un espacio normado es cerrado. +\end_layout + +\begin_layout Enumerate +Todo operador entre espacios normados con dominio de dimensión finita es + continuo. +\end_layout + +\begin_deeper +\begin_layout Standard +Por isomorfismo podemos suponer que el dominio es +\begin_inset Formula $\ell_{n}^{1}$ +\end_inset + +. + Sea entonces +\begin_inset Formula $T:\ell_{n}^{1}\to Y$ +\end_inset + + el operador y +\begin_inset Formula $a_{i}\coloneqq T(e_{i})$ +\end_inset + +, +\begin_inset Formula $\sup_{x\in S_{\ell_{n}^{1}}}\Vert T(x)\Vert=\sup_{\{x\in\mathbb{K}^{n}:\sum_{i}x_{i}=1\}}\left\Vert \sum_{i}x_{i}a_{i}\right\Vert =\sup_{i=1}^{n}a_{i}<\infty$ +\end_inset + +. +\end_layout + +\end_deeper +\begin_layout Standard + +\series bold +Teorema de Bolzano-Weierstrass: +\series default + En espacio normados de dimensión finita, los conjuntos cerrados y acotados + son compactos, pues esto ocurre en +\begin_inset Formula $\mathbb{R}^{n}$ +\end_inset + +. +\begin_inset Foot +status open + +\begin_layout Plain Layout +El teorema se suele enunciar como que toda sucesión en un cerrado acotado + posee una subsucesión convergente, pero esto es la compacidad por sucesiones. +\end_layout + +\end_inset + + +\end_layout + +\begin_layout Standard + +\series bold +Lema de Riesz: +\series default + Dados un subespacio normado +\begin_inset Formula $X$ +\end_inset + +, un subespacio cerrado +\begin_inset Formula $Y\subsetneq X$ +\end_inset + + y +\begin_inset Formula $\varepsilon\in(0,1)$ +\end_inset + +, existe +\begin_inset Formula $x\in X$ +\end_inset + + unitario con +\begin_inset Formula $d(x,Y)\geq1-\varepsilon$ +\end_inset + +. + +\series bold +Demostración: +\series default + Sea +\begin_inset Formula $x_{0}\in X\setminus Y$ +\end_inset + +, como +\begin_inset Formula $Y$ +\end_inset + + es cerrado, +\begin_inset Formula $d\coloneqq d(x_{0},Y)>0$ +\end_inset + +, y como +\begin_inset Formula $d<\frac{d}{1+\varepsilon}$ +\end_inset + +, existe +\begin_inset Formula $y_{0}\in Y$ +\end_inset + + tal que +\begin_inset Formula $d\leq\Vert x_{0}-y_{0}\Vert<\frac{d}{1-\varepsilon}$ +\end_inset + +. + Sea entonces +\begin_inset Formula $x\coloneqq\frac{x_{0}-y_{0}}{\Vert x_{0}-y_{0}\Vert}$ +\end_inset + +, para +\begin_inset Formula $y\in Y$ +\end_inset + + es +\begin_inset Note Note +status open + +\begin_layout Plain Layout +TODO +\end_layout + +\end_inset + + +\begin_inset Formula +\[ +\Vert x-y\Vert=\left\Vert \frac{x_{0}-y_{0}}{\Vert x_{0}-y_{0}\Vert}-y\right\Vert =\frac{1}{\Vert x_{0}-y_{0}\Vert}\left\Vert x_{0}-y_{0}-\Vert x_{0}-y_{0}\Vert y\right\Vert \geq +\] + +\end_inset + + +\end_layout + +\begin_layout Standard +Si +\begin_inset Formula $X$ +\end_inset + + es un espacio normado de dimensión infinita, existen una sucesión +\begin_inset Formula $(M_{n})_{n}$ +\end_inset + + de subespacios de +\begin_inset Formula $X$ +\end_inset + + de dimensión finita con cada +\begin_inset Formula $M_{n}\subseteq M_{n+1}$ +\end_inset + + y una sucesión de vectores unitarios +\begin_inset Formula $\{y_{n}\}_{n}\subseteq X$ +\end_inset + + con cada +\begin_inset Formula $y_{n}\in M_{n}$ +\end_inset + + y +\begin_inset Formula $d(M_{n},y_{n+1})\geq\frac{1}{2}$ +\end_inset + +. + +\series bold +Demostración: +\series default + +\begin_inset Note Note +status open + +\begin_layout Plain Layout +TODO +\end_layout + +\end_inset + + +\end_layout + +\end_body +\end_document |
