aboutsummaryrefslogtreecommitdiff
diff options
context:
space:
mode:
-rw-r--r--ggs/n.lyx11
-rw-r--r--ggs/n2.lyx2142
2 files changed, 2143 insertions, 10 deletions
diff --git a/ggs/n.lyx b/ggs/n.lyx
index 31e8f95..fe36459 100644
--- a/ggs/n.lyx
+++ b/ggs/n.lyx
@@ -161,15 +161,11 @@ filename "n1.lyx"
\end_layout
-\begin_layout Standard
-\begin_inset Note Note
-status open
-
\begin_layout Chapter
Geodésicas
\end_layout
-\begin_layout Plain Layout
+\begin_layout Standard
\begin_inset CommandInset include
LatexCommand input
filename "n2.lyx"
@@ -179,10 +175,5 @@ filename "n2.lyx"
\end_layout
-\end_inset
-
-
-\end_layout
-
\end_body
\end_document
diff --git a/ggs/n2.lyx b/ggs/n2.lyx
new file mode 100644
index 0000000..a0f5b5e
--- /dev/null
+++ b/ggs/n2.lyx
@@ -0,0 +1,2142 @@
+#LyX 2.3 created this file. For more info see http://www.lyx.org/
+\lyxformat 544
+\begin_document
+\begin_header
+\save_transient_properties true
+\origin unavailable
+\textclass book
+\begin_preamble
+\input{../defs}
+\end_preamble
+\use_default_options true
+\maintain_unincluded_children false
+\language spanish
+\language_package default
+\inputencoding auto
+\fontencoding global
+\font_roman "default" "default"
+\font_sans "default" "default"
+\font_typewriter "default" "default"
+\font_math "auto" "auto"
+\font_default_family default
+\use_non_tex_fonts false
+\font_sc false
+\font_osf false
+\font_sf_scale 100 100
+\font_tt_scale 100 100
+\use_microtype false
+\use_dash_ligatures true
+\graphics default
+\default_output_format default
+\output_sync 0
+\bibtex_command default
+\index_command default
+\paperfontsize default
+\spacing single
+\use_hyperref false
+\papersize default
+\use_geometry false
+\use_package amsmath 1
+\use_package amssymb 1
+\use_package cancel 1
+\use_package esint 1
+\use_package mathdots 1
+\use_package mathtools 1
+\use_package mhchem 1
+\use_package stackrel 1
+\use_package stmaryrd 1
+\use_package undertilde 1
+\cite_engine basic
+\cite_engine_type default
+\biblio_style plain
+\use_bibtopic false
+\use_indices false
+\paperorientation portrait
+\suppress_date false
+\justification true
+\use_refstyle 1
+\use_minted 0
+\index Index
+\shortcut idx
+\color #008000
+\end_index
+\secnumdepth 3
+\tocdepth 3
+\paragraph_separation indent
+\paragraph_indentation default
+\is_math_indent 0
+\math_numbering_side default
+\quotes_style french
+\dynamic_quotes 0
+\papercolumns 1
+\papersides 1
+\paperpagestyle default
+\tracking_changes false
+\output_changes false
+\html_math_output 0
+\html_css_as_file 0
+\html_be_strict false
+\end_header
+
+\begin_body
+
+\begin_layout Standard
+Una curva
+\begin_inset Formula $\gamma:I\to S$
+\end_inset
+
+ es una
+\series bold
+geodésica
+\series default
+ de la superficie regular
+\begin_inset Formula $S$
+\end_inset
+
+ si
+\begin_inset Formula $\gamma'$
+\end_inset
+
+ es paralelo.
+ Propiedades: Sea
+\begin_inset Formula $\gamma:I\to S$
+\end_inset
+
+ una geodésica:
+\end_layout
+
+\begin_layout Enumerate
+\begin_inset Formula $\Vert\gamma'(t)\Vert$
+\end_inset
+
+ es constante.
+\end_layout
+
+\begin_layout Enumerate
+\begin_inset Formula $\gamma$
+\end_inset
+
+ es constante si y sólo si existe
+\begin_inset Formula $t_{0}\in I$
+\end_inset
+
+ con
+\begin_inset Formula $\gamma'(t_{0})=0$
+\end_inset
+
+, por lo que toda geodésica no constante es una curva regular.
+\end_layout
+
+\begin_deeper
+\begin_layout Enumerate
+\begin_inset Argument item:1
+status open
+
+\begin_layout Plain Layout
+\begin_inset Formula $\implies]$
+\end_inset
+
+
+\end_layout
+
+\end_inset
+
+Obvio.
+\end_layout
+
+\begin_layout Enumerate
+\begin_inset Argument item:1
+status open
+
+\begin_layout Plain Layout
+\begin_inset Formula $\impliedby]$
+\end_inset
+
+
+\end_layout
+
+\end_inset
+
+Para
+\begin_inset Formula $t\in I$
+\end_inset
+
+,
+\begin_inset Formula $\Vert\gamma'(t)\Vert=\Vert\gamma'(t_{0})\Vert=0$
+\end_inset
+
+.
+\end_layout
+
+\end_deeper
+\begin_layout Enumerate
+La condición de geodésica se conserva por isometrías locales.
+\end_layout
+
+\begin_deeper
+\begin_layout Standard
+La derivada covariante se conserva por ser un concepto intrínseco.
+\end_layout
+
+\end_deeper
+\begin_layout Enumerate
+Si
+\begin_inset Formula $\gamma$
+\end_inset
+
+ no es constante, una reparametrización suya es una geodésica si y sólo
+ si el cambio de parámetro es afín.
+\end_layout
+
+\begin_deeper
+\begin_layout Standard
+Sea
+\begin_inset Formula $h:J\to I$
+\end_inset
+
+ un cambio de parámetro y
+\begin_inset Formula $\alpha:=\gamma\circ h$
+\end_inset
+
+, entonces
+\begin_inset Formula $\alpha'(s)=h'(s)\gamma'(h(s))$
+\end_inset
+
+ y
+\begin_inset Formula
+\begin{align*}
+\frac{D\alpha'}{ds}(s) & =(h''(s)\gamma'(h(s))+h'(s)^{2}\gamma''(h(s)))^{\top}=h''(s)\gamma'(h(s))+h'(s)^{2}\frac{D\gamma'}{dt}(h(s))=\\
+ & =h''(s)\gamma'(h(s)),
+\end{align*}
+
+\end_inset
+
+pues
+\begin_inset Formula $\frac{D\gamma'}{dt}(h(s))=0$
+\end_inset
+
+ por ser
+\begin_inset Formula $\gamma$
+\end_inset
+
+ una geodésica.
+ Como
+\begin_inset Formula $\gamma$
+\end_inset
+
+ no es constante,
+\begin_inset Formula $\gamma'(h(s))\neq0$
+\end_inset
+
+ en todo
+\begin_inset Formula $s$
+\end_inset
+
+, luego
+\begin_inset Formula $\frac{D\alpha'}{ds}(s)=h''(s)\gamma'(h(s))=0\iff h''(s)=0\iff\exists a,b\in\mathbb{R}:h(s)=as+b$
+\end_inset
+
+.
+\end_layout
+
+\end_deeper
+\begin_layout Standard
+Sean
+\begin_inset Formula $S$
+\end_inset
+
+ una superficie regular,
+\begin_inset Formula $\alpha:I\to S$
+\end_inset
+
+ una curva regular y
+\begin_inset Formula $N:I\to\mathbb{R}^{3}$
+\end_inset
+
+ un campo normal unitario a lo largo de
+\begin_inset Formula $\alpha$
+\end_inset
+
+, entonces
+\begin_inset Formula $\alpha$
+\end_inset
+
+ es una geodésica si y sólo si
+\begin_inset Formula
+\[
+\alpha''(t)+\langle\alpha'(t),N'(t)\rangle N(t)=0,
+\]
+
+\end_inset
+
+sustituyendo en la e.d.o.
+ extrínseca de los campos paralelos.
+\end_layout
+
+\begin_layout Standard
+Si
+\begin_inset Formula $(U,X)$
+\end_inset
+
+ es una parametrización de
+\begin_inset Formula $S$
+\end_inset
+
+,
+\begin_inset Formula $\alpha:I\to X(U)$
+\end_inset
+
+ es una curva y
+\begin_inset Formula $(u,v):=X^{-1}\circ\alpha:I\to U$
+\end_inset
+
+,
+\begin_inset Formula $\alpha$
+\end_inset
+
+ es una geodésica de
+\begin_inset Formula $S$
+\end_inset
+
+ si y sólo si
+\begin_inset Formula
+\[
+\left\{ \begin{aligned}u''+(u')^{2}\Gamma_{11}^{1}(u,v)+2u'v'\Gamma_{12}^{1}(u,v)+(v')^{2}\Gamma_{22}^{1}(u,v) & =0,\\
+v''+(u')^{2}\Gamma_{11}^{2}(u,v)+2u'v'\Gamma_{12}^{2}(u,v)+(v')^{2}\Gamma_{22}^{2}(u,v) & =0.
+\end{aligned}
+\right.
+\]
+
+\end_inset
+
+En efecto, como
+\begin_inset Formula $\alpha=X(u,v)$
+\end_inset
+
+,
+\begin_inset Formula $\alpha'=dX_{(u,v)}(u',v')=u'X_{u}(u,v)+v'X_{v}(u,v)$
+\end_inset
+
+, y solo hay que sustituir en la e.d.o.
+ intrínseca de los campos paralelos.
+\end_layout
+
+\begin_layout Section
+Geodésicas maximales
+\end_layout
+
+\begin_layout Standard
+\begin_inset ERT
+status open
+
+\begin_layout Plain Layout
+
+
+\backslash
+sremember{EDO}
+\end_layout
+
+\end_inset
+
+
+\end_layout
+
+\begin_layout Standard
+
+\series bold
+Teorema de Picard en un abierto:
+\series default
+ Sean
+\begin_inset Formula $\Omega\subseteq\mathbb{R}\times\mathbb{R}^{n}$
+\end_inset
+
+ abierto y
+\begin_inset Formula $f:\Omega\to\mathbb{R}^{n}$
+\end_inset
+
+ continua y localmente lipschitziana respecto a la segunda variable, para
+
+\begin_inset Formula $(t_{0},x_{0})\in\Omega$
+\end_inset
+
+ existe
+\begin_inset Formula $K:=[t_{0}-\alpha,t_{0}+\alpha]\times\overline{B}(x_{0},b)\subseteq\Omega$
+\end_inset
+
+ tal que
+\begin_inset Formula
+\[
+\left\{ \begin{aligned}\dot{x} & =f(t,x)\\
+x(t_{0}) & =x_{0}
+\end{aligned}
+\right.
+\]
+
+\end_inset
+
+tiene solución única definida en
+\begin_inset Formula $[t_{0}-\alpha,t_{0}+\alpha]$
+\end_inset
+
+ con gráfica contenida en
+\begin_inset Formula $K$
+\end_inset
+
+.
+\end_layout
+
+\begin_layout Standard
+[...] Sea
+\begin_inset Formula $\Omega\subseteq\mathbb{R}\times\mathbb{R}^{n}$
+\end_inset
+
+ abierto, si para cada
+\begin_inset Formula $(t_{0},x_{0})\in\Omega$
+\end_inset
+
+ existe un intervalo en que el problema de Cauchy
+\begin_inset Formula
+\[
+\left\{ \begin{aligned}\dot{x} & =f(t,x)\\
+x(t_{0}) & =x_{0}
+\end{aligned}
+\right.
+\]
+
+\end_inset
+
+tiene solución única, entonces para cualesquiera soluciones
+\begin_inset Formula $x$
+\end_inset
+
+ e
+\begin_inset Formula $y$
+\end_inset
+
+ de
+\begin_inset Formula $\dot{x}=f(t,x)$
+\end_inset
+
+ definidas respectivamente en
+\begin_inset Formula $I_{x}$
+\end_inset
+
+ e
+\begin_inset Formula $I_{y}$
+\end_inset
+
+, si ambas coinciden en un
+\begin_inset Formula $\xi\in I_{x}\cap I_{y}$
+\end_inset
+
+, coinciden en toda la intersección.
+\end_layout
+
+\begin_layout Standard
+\begin_inset ERT
+status open
+
+\begin_layout Plain Layout
+
+
+\backslash
+eremember
+\end_layout
+
+\end_inset
+
+
+\end_layout
+
+\begin_layout Standard
+Dados un abierto
+\begin_inset Formula $\Omega\subseteq\mathbb{R}^{m}$
+\end_inset
+
+ y
+\begin_inset Formula $f:\Omega\to\mathbb{R}^{n}$
+\end_inset
+
+ diferenciable,
+\begin_inset Formula $f$
+\end_inset
+
+ es localmente lipschitziana.
+ En efecto, para
+\begin_inset Formula $x\in\Omega$
+\end_inset
+
+ existe
+\begin_inset Formula $\varepsilon$
+\end_inset
+
+ tal que
+\begin_inset Formula $\overline{B}(x,\varepsilon)\subseteq\Omega$
+\end_inset
+
+, y al ser
+\begin_inset Formula $f'$
+\end_inset
+
+ continua,
+\begin_inset Formula $(f')(\overline{B}(x,\varepsilon))$
+\end_inset
+
+ está acotada por un cierto
+\begin_inset Formula $M$
+\end_inset
+
+ y, para
+\begin_inset Formula $a,b\in B(x,\varepsilon)$
+\end_inset
+
+,
+\begin_inset Formula $\Vert f(a)-f(b)\Vert\leq M\Vert a-b\Vert$
+\end_inset
+
+.
+\end_layout
+
+\begin_layout Standard
+Como
+\series bold
+teorema
+\series default
+, sean
+\begin_inset Formula $S$
+\end_inset
+
+ es una superficie regular,
+\begin_inset Formula $p\in S$
+\end_inset
+
+ y
+\begin_inset Formula $v\in T_{p}S$
+\end_inset
+
+, existe una única geodésica
+\begin_inset Formula $\gamma_{v}:I_{v}\to S$
+\end_inset
+
+ tal que
+\begin_inset Formula $0\in I_{v}$
+\end_inset
+
+,
+\begin_inset Formula $\gamma_{v}(0)=p$
+\end_inset
+
+,
+\begin_inset Formula $\gamma'_{v}(0)=v$
+\end_inset
+
+ y cualquier otra geodésica que cumpla estas condiciones es una restricción
+ de esta a un subintervalo, y llamamos
+\series bold
+geodésica maximal
+\series default
+ con
+\series bold
+condiciones iniciales
+\series default
+
+\begin_inset Formula $p$
+\end_inset
+
+ y
+\begin_inset Formula $v$
+\end_inset
+
+ a
+\begin_inset Formula $\gamma_{v}$
+\end_inset
+
+ e
+\series bold
+intervalo maximal de existencia
+\series default
+ a
+\begin_inset Formula $I_{v}$
+\end_inset
+
+.
+
+\end_layout
+
+\begin_layout Standard
+
+\series bold
+Demostración:
+\series default
+ Sea
+\begin_inset Formula ${\cal J}_{p,v}:=\{(I,\alpha):\alpha:I\to S\text{ geodésica},0\in I,\alpha(0)=p,\alpha'(0)=v\}$
+\end_inset
+
+.
+ Sean
+\begin_inset Formula $(X,U)$
+\end_inset
+
+ una carta local de
+\begin_inset Formula $S$
+\end_inset
+
+ en
+\begin_inset Formula $p$
+\end_inset
+
+,
+\begin_inset Formula $(u_{0},v_{0}):=X^{-1}(p)$
+\end_inset
+
+ y
+\begin_inset Formula $a,b\in\mathbb{R}$
+\end_inset
+
+ con
+\begin_inset Formula $v=aX_{u}(u_{0},v_{0})+bX_{u}(u_{0},v_{0})$
+\end_inset
+
+, por el teorema de Picard, existe una solución
+\begin_inset Formula $(u,v):(-\varepsilon,\varepsilon)\to U$
+\end_inset
+
+ de la e.d.o.
+ intrínseca de los campos paralelos con
+\begin_inset Formula $u(0)=u_{0}$
+\end_inset
+
+,
+\begin_inset Formula $v(0)=v_{0}$
+\end_inset
+
+,
+\begin_inset Formula $u'(0)=a$
+\end_inset
+
+ y
+\begin_inset Formula $v'(0)=b$
+\end_inset
+
+, y entonces
+\begin_inset Formula $\alpha(t):=X(u(t),v(t))$
+\end_inset
+
+ es una geodésica con
+\begin_inset Formula $\alpha(0)=X(u_{0},v_{0})=p$
+\end_inset
+
+ y
+\begin_inset Formula $\alpha'(0)=dX_{(u_{0},v_{0})}(a,b)=aX_{u}(u_{0},v_{0})+bX_{v}(u_{0},v_{0})=v$
+\end_inset
+
+, de modo que
+\begin_inset Formula $\alpha\in{\cal J}_{p,v}\neq\emptyset$
+\end_inset
+
+.
+\end_layout
+
+\begin_layout Standard
+Sean ahora
+\begin_inset Formula $(I_{1},\alpha_{1}),(I_{2},\alpha_{2})\in{\cal J}_{p,v}$
+\end_inset
+
+, y queremos ver que
+\begin_inset Formula $\alpha_{1}(t)=\alpha_{2}(t)$
+\end_inset
+
+ para todo
+\begin_inset Formula $t\in I_{1}\cap I_{2}$
+\end_inset
+
+.
+ Como
+\begin_inset Formula $0\in I_{1}\cap I_{2}$
+\end_inset
+
+ e
+\begin_inset Formula $I_{1}$
+\end_inset
+
+ e
+\begin_inset Formula $I_{2}$
+\end_inset
+
+ son abiertos conexos,
+\begin_inset Formula $I_{1}\cap I_{2}$
+\end_inset
+
+ es abierto y, por el teorema del peine, también conexo, luego es un intervalo.
+ Sea
+\begin_inset Formula $A:=\{t\in I_{1}\cap I_{2}:\alpha_{1}(t)=\alpha_{2}(t),\alpha'_{1}(t)=\alpha'_{2}(t)\}$
+\end_inset
+
+, y queremos ver que
+\begin_inset Formula $A$
+\end_inset
+
+ es abierto y cerrado en
+\begin_inset Formula $I_{1}\cap I_{2}$
+\end_inset
+
+ y no vacío y por tanto
+\begin_inset Formula $A=I_{1}\cap I_{2}$
+\end_inset
+
+.
+ Claramente es no vacío, pues
+\begin_inset Formula $\alpha_{1}(0)=\alpha_{2}(0)=p$
+\end_inset
+
+ y
+\begin_inset Formula $\alpha'_{1}(0)=\alpha'_{2}(0)=v$
+\end_inset
+
+, y es cerrado por ser la anti-imagen del 0 por la función continua
+\begin_inset Formula $F(t):=\Vert\alpha_{1}(t)-\alpha_{2}(t)\Vert+\Vert\alpha'_{1}(t)+\alpha'_{2}(t)\Vert$
+\end_inset
+
+.
+\end_layout
+
+\begin_layout Standard
+Sean ahora
+\begin_inset Formula $t_{0}\in A$
+\end_inset
+
+ y
+\begin_inset Formula $(X,U)$
+\end_inset
+
+ una parametrización de
+\begin_inset Formula $S$
+\end_inset
+
+ en
+\begin_inset Formula $\alpha_{1}(t_{0})=\alpha_{2}(t_{0})$
+\end_inset
+
+, existen
+\begin_inset Formula $\varepsilon_{1}>0$
+\end_inset
+
+ tal que para
+\begin_inset Formula $t\in(t_{0}-\varepsilon_{1},t_{0}+\varepsilon_{1})$
+\end_inset
+
+ es
+\begin_inset Formula $\alpha_{1}(t)\in X(U)$
+\end_inset
+
+ y
+\begin_inset Formula $\varepsilon_{2}>0$
+\end_inset
+
+ tal que para
+\begin_inset Formula $t\in(t_{0}-\varepsilon_{2},t_{0}+\varepsilon_{2})$
+\end_inset
+
+ es
+\begin_inset Formula $\alpha_{2}(t)\in X(U)$
+\end_inset
+
+, y si
+\begin_inset Formula $\varepsilon:=\min\{\varepsilon_{1},\varepsilon_{2}\}$
+\end_inset
+
+,
+\begin_inset Formula $(u_{1},v_{1}):=X^{-1}\circ\alpha_{1}$
+\end_inset
+
+ y
+\begin_inset Formula $(u_{2},v_{2}):=X^{-1}\circ\alpha_{2}$
+\end_inset
+
+, entonces
+\begin_inset Formula $(u_{1},v_{1})$
+\end_inset
+
+ y
+\begin_inset Formula $(u_{2},v_{2})$
+\end_inset
+
+ son soluciones de la e.d.o.
+ intrínseca de las geodésicas con las mismas condiciones iniciales en
+\begin_inset Formula $t_{0}$
+\end_inset
+
+.
+ Por el teorema de Picard, la e.d.o.
+ tiene solución única local para cualesquiera
+\begin_inset Formula $(u,v)(t_{0})\in U$
+\end_inset
+
+ y
+\begin_inset Formula $(u',v')(t_{0})\in\mathbb{R}^{2}$
+\end_inset
+
+, por lo que
+\begin_inset Formula $(u_{1},v_{1})$
+\end_inset
+
+ y
+\begin_inset Formula $(u_{2},v_{2})$
+\end_inset
+
+ coinciden en todo
+\begin_inset Formula $(t_{0}-\varepsilon,t_{0}+\varepsilon)$
+\end_inset
+
+ y
+\begin_inset Formula $A$
+\end_inset
+
+ es abierto.
+\end_layout
+
+\begin_layout Standard
+Así,
+\begin_inset Formula $A=I_{1}\cap I_{2}$
+\end_inset
+
+.
+ Sea entonces
+\begin_inset Formula $I_{v}:=\bigcup_{(I,\alpha)\in{\cal J}_{p,v}}I$
+\end_inset
+
+,
+\begin_inset Formula $I_{v}$
+\end_inset
+
+ es un intervalo abierto por ser unión de intervalos abiertos que contienen
+ al 0, y definiendo
+\begin_inset Formula $\gamma_{v}:I_{v}\to S$
+\end_inset
+
+ como
+\begin_inset Formula $\gamma_{v}(t)=\alpha(t)$
+\end_inset
+
+ para
+\begin_inset Formula $(I,\alpha)\in{\cal J}_{p,v}$
+\end_inset
+
+ con
+\begin_inset Formula $t\in I$
+\end_inset
+
+, entonces
+\begin_inset Formula $\gamma_{v}$
+\end_inset
+
+ está bien definido por lo anterior y cumple las propiedades.
+\end_layout
+
+\begin_layout Section
+Ecuaciones diferenciales lineales
+\end_layout
+
+\begin_layout Standard
+\begin_inset ERT
+status open
+
+\begin_layout Plain Layout
+
+
+\backslash
+sremember{EDO}
+\end_layout
+
+\end_inset
+
+
+\end_layout
+
+\begin_layout Standard
+\begin_inset Formula $T\in{\cal L}(\mathbb{R}^{n})$
+\end_inset
+
+ [...], el problema de Cauchy
+\begin_inset Formula
+\[
+\left\{ \begin{aligned}\dot{x} & =Tx\\
+x(t_{0}) & =x_{0}
+\end{aligned}
+\right.
+\]
+
+\end_inset
+
+tiene solución única definida en todo
+\begin_inset Formula $\mathbb{R}$
+\end_inset
+
+ y dada por
+\begin_inset Formula $x(t)=e^{(t-t_{0})T}x_{0}$
+\end_inset
+
+.
+ [...]
+\end_layout
+
+\begin_layout Standard
+
+\series bold
+Cálculo de
+\begin_inset Formula $e^{At}$
+\end_inset
+
+
+\series default
+ [...] Si el polinomio característico de
+\begin_inset Formula $T\in{\cal L}(E)$
+\end_inset
+
+, con
+\begin_inset Formula $E$
+\end_inset
+
+ real o complejo, es [...]
+\begin_inset Formula $\prod_{k=1}^{p}(t-\lambda_{k})^{n_{k}}$
+\end_inset
+
+, [...]
+\begin_inset Formula $E(T,\lambda_{k}):=\ker(T-\lambda_{k}I)^{n_{k}}$
+\end_inset
+
+, y [...]
+\begin_inset Formula $E=E(T,\lambda_{1})\oplus\dots\oplus E(T,\lambda_{p})$
+\end_inset
+
+ [...].
+ [...]
+\end_layout
+
+\begin_layout Enumerate
+Hallar los valores propios
+\begin_inset Formula $\lambda_{1},\dots,\lambda_{r},a_{1}+ib_{1},a_{1}-ib_{1},\dots,a_{s}+ib_{s},a_{s}-ib_{s}$
+\end_inset
+
+ [
+\begin_inset Formula $\lambda_{i},a_{i},b_{i}\in\mathbb{R}$
+\end_inset
+
+] de
+\begin_inset Formula $A_{\mathbb{C}}$
+\end_inset
+
+.
+\end_layout
+
+\begin_layout Enumerate
+Hallar bases
+\begin_inset Formula $(w_{k1},\dots,w_{kp_{k}})$
+\end_inset
+
+ de
+\begin_inset Formula $\mathbb{R}^{n}(A,\lambda_{k})$
+\end_inset
+
+ y
+\begin_inset Formula $(u_{k1}+iv_{k1},\dots,u_{kq_{k}}+v_{kq_{k}})$
+\end_inset
+
+ de
+\begin_inset Formula $\mathbb{C}^{n}(A_{\mathbb{C}},a_{k}+ib_{k})$
+\end_inset
+
+.
+\end_layout
+
+\begin_layout Enumerate
+Respecto de la base
+\begin_inset ERT
+status open
+
+\begin_layout Plain Layout
+
+{
+\end_layout
+
+\end_inset
+
+
+\begin_inset Formula
+\begin{align*}
+{\cal B}:= & (w_{11},\dots,w_{1p_{1}},\dots,w_{r1},\dots,w_{rp_{r}},\\
+ & \,v_{11},u_{11},\dots,v_{1q_{1}},u_{1q_{1}},\dots,v_{s1},u_{s1},\dots,v_{sq_{s}},u_{sq_{s}}),
+\end{align*}
+
+\end_inset
+
+
+\begin_inset ERT
+status open
+
+\begin_layout Plain Layout
+
+}
+\end_layout
+
+\end_inset
+
+
+\end_layout
+
+\begin_layout Standard
+\begin_inset ERT
+status open
+
+\begin_layout Plain Layout
+
+
+\backslash
+eremember
+\end_layout
+
+\end_inset
+
+
+\end_layout
+
+\begin_layout Standard
+\begin_inset ERT
+status open
+
+\begin_layout Plain Layout
+
+
+\backslash
+sremember{EDO}
+\end_layout
+
+\end_inset
+
+
+\end_layout
+
+\begin_layout Enumerate
+\begin_inset Argument item:1
+status open
+
+\begin_layout Plain Layout
+
+\end_layout
+
+\end_inset
+
+la matriz semisimple es
+\begin_inset Formula
+\[
+S_{0}:=\begin{pmatrix}\boxed{D_{1}}\\
+ & \ddots\\
+ & & \boxed{D_{r}}\\
+ & & & \boxed{M_{1}}\\
+ & & & & \ddots\\
+ & & & & & \boxed{M_{s}}
+\end{pmatrix},
+\]
+
+\end_inset
+
+donde
+\begin_inset ERT
+status open
+
+\begin_layout Plain Layout
+
+{
+\end_layout
+
+\end_inset
+
+
+\begin_inset Formula
+\begin{align*}
+D_{k} & =\begin{pmatrix}\lambda_{k}\\
+ & \ddots\\
+ & & \lambda_{k}
+\end{pmatrix}, & M_{k} & :=\begin{pmatrix}a_{k} & -b_{k}\\
+b_{k} & a_{k}\\
+ & & \ddots\\
+ & & & a_{k} & -b_{k}\\
+ & & & b_{k} & a_{k}
+\end{pmatrix}.
+\end{align*}
+
+\end_inset
+
+
+\begin_inset ERT
+status open
+
+\begin_layout Plain Layout
+
+}
+\end_layout
+
+\end_inset
+
+
+\end_layout
+
+\begin_layout Enumerate
+\begin_inset Argument item:1
+status open
+
+\begin_layout Plain Layout
+4.
+\end_layout
+
+\end_inset
+
+Sea
+\begin_inset Formula $P:=M_{{\cal CB}}$
+\end_inset
+
+, entonces la parte semisimple es
+\begin_inset Formula $S:=PS_{0}P^{-1}$
+\end_inset
+
+ y la nilpotente es
+\begin_inset Formula $N:=A-S$
+\end_inset
+
+.
+\end_layout
+
+\begin_layout Enumerate
+\begin_inset Argument item:1
+status open
+
+\begin_layout Plain Layout
+5.
+\end_layout
+
+\end_inset
+
+Finalmente,
+\begin_inset Formula
+\[
+e^{At}=Pe^{S_{0}t}P^{-1}\sum_{k=1}^{n}\frac{N^{k}t^{k}}{k!}.
+\]
+
+\end_inset
+
+
+\end_layout
+
+\begin_layout Standard
+[...] Sea
+\begin_inset Formula $E$
+\end_inset
+
+ un
+\begin_inset Formula $\mathbb{R}$
+\end_inset
+
+-espacio vectorial y
+\begin_inset Formula $T\in{\cal L}(E)$
+\end_inset
+
+, existe una base de
+\begin_inset Formula $E$
+\end_inset
+
+ respecto a la que
+\begin_inset Formula $T$
+\end_inset
+
+ tiene una matriz compuesta de bloques diagonales de la forma
+\begin_inset ERT
+status open
+
+\begin_layout Plain Layout
+
+{
+\end_layout
+
+\end_inset
+
+
+\begin_inset Formula
+\begin{align*}
+\begin{pmatrix}\lambda\\
+1 & \ddots\\
+ & \ddots & \ddots\\
+ & & 1 & \lambda
+\end{pmatrix} & & \text{ó} & & \begin{pmatrix}\boxed{D} & \ddots\\
+\boxed{I_{2}} & \ddots & \ddots\\
+ & & \boxed{I_{2}} & \boxed{D}
+\end{pmatrix}, & & D & =\begin{pmatrix}a & -b\\
+b & a
+\end{pmatrix}
+\end{align*}
+
+\end_inset
+
+
+\begin_inset ERT
+status open
+
+\begin_layout Plain Layout
+
+}
+\end_layout
+
+\end_inset
+
+Si
+\begin_inset Formula $A$
+\end_inset
+
+ es [de la primera forma][...], [...]
+\begin_inset Formula
+\[
+e^{tA}[...]=e^{t\lambda}\begin{pmatrix}1\\
+t & 1\\
+\frac{t^{2}}{2} & t & 1\\
+\vdots & \ddots & \ddots & \ddots\\
+\frac{t^{n-1}}{(n-1)!} & \cdots & \frac{t^{2}}{2} & t & 1
+\end{pmatrix}
+\]
+
+\end_inset
+
+
+\begin_inset ERT
+status open
+
+\begin_layout Plain Layout
+
+
+\backslash
+eremember
+\end_layout
+
+\end_inset
+
+
+\end_layout
+
+\begin_layout Standard
+\begin_inset ERT
+status open
+
+\begin_layout Plain Layout
+
+
+\backslash
+sremember{EDO}
+\end_layout
+
+\end_inset
+
+
+\end_layout
+
+\begin_layout Standard
+Si [es de la segunda][...],
+\begin_inset Formula
+\[
+[e^{tA}]=e^{at}\begin{pmatrix}\tilde{D}\\
+t\tilde{D} & \tilde{D}\\
+\frac{t^{2}}{2}\tilde{D} & t\tilde{D} & \tilde{D}\\
+\vdots & \ddots & \ddots & \ddots\\
+\frac{t^{m-1}}{(m-1)!}\tilde{D} & \cdots & \frac{t^{2}}{2}\tilde{D} & t\tilde{D} & \tilde{D}
+\end{pmatrix}
+\]
+
+\end_inset
+
+[...]
+\begin_inset Formula
+\[
+\tilde{D}=\begin{pmatrix}\cos(bt) & -\sin(bt)\\
+\sin(bt) & \cos(bt)
+\end{pmatrix}
+\]
+
+\end_inset
+
+[...] Llamamos
+\series bold
+base de soluciones
+\series default
+ de
+\begin_inset Formula $x^{(n)}+a_{1}(t)x^{(n-1)}+\dots+a_{1}(t)x=0$
+\end_inset
+
+ a una familia
+\begin_inset Formula $x_{1},\dots,x_{n}$
+\end_inset
+
+ de soluciones linealmente independiente.
+
+\end_layout
+
+\begin_layout Standard
+[...] Dada la ecuación homogénea
+\begin_inset Formula $x^{(n)}+a_{1}x^{(n-1)}+\dots+a_{n}x=0$
+\end_inset
+
+, una combinación lineal de soluciones de esta ecuación es también solución,
+ así como la derivada de una solución.
+\end_layout
+
+\begin_layout Standard
+La matriz de la ecuación vectorial asociada [con coeficientes
+\begin_inset Formula $(x,\dot{x},\dots,x^{(n-1)})$
+\end_inset
+
+] es
+\begin_inset Formula
+\[
+\begin{pmatrix} & 1\\
+ & & \ddots\\
+ & & & 1\\
+-a_{n} & \cdots & \cdots & -a_{1}
+\end{pmatrix},
+\]
+
+\end_inset
+
+que llamamos
+\series bold
+asociada
+\series default
+ al polinomio
+\begin_inset Formula $p(\lambda)=(-1)^{n}(\lambda^{n}+a_{1}\lambda^{n-1}+\dots+a_{n-1}\lambda+a_{n})$
+\end_inset
+
+, [...] el polinomio característico de la matriz.
+\end_layout
+
+\begin_layout Standard
+\begin_inset ERT
+status open
+
+\begin_layout Plain Layout
+
+
+\backslash
+eremember
+\end_layout
+
+\end_inset
+
+
+\end_layout
+
+\begin_layout Section
+Superficies geodésicamente completas
+\end_layout
+
+\begin_layout Standard
+Una superficie regular
+\begin_inset Formula $S$
+\end_inset
+
+ es
+\series bold
+geodésicamente completa
+\series default
+ en un
+\begin_inset Formula $p\in S$
+\end_inset
+
+ si para
+\begin_inset Formula $v\in T_{p}S$
+\end_inset
+
+ es
+\begin_inset Formula $I_{v}=\mathbb{R}$
+\end_inset
+
+ en
+\begin_inset Formula $p$
+\end_inset
+
+, y es geodésicamente completa si lo es en todo
+\begin_inset Formula $p\in S$
+\end_inset
+
+.
+\end_layout
+
+\begin_layout Enumerate
+Dado el plano
+\begin_inset Formula $S=\{p\in\mathbb{R}^{3}:\langle p,a\rangle=c\}$
+\end_inset
+
+, la geodésica maximal de
+\begin_inset Formula $S$
+\end_inset
+
+ con condiciones iniciales
+\begin_inset Formula $p\in S$
+\end_inset
+
+ y
+\begin_inset Formula $v\in T_{p}S$
+\end_inset
+
+ es la recta
+\begin_inset Formula $\gamma:\mathbb{R}\to S$
+\end_inset
+
+ dada por
+\begin_inset Formula $\gamma(t):=p+tv$
+\end_inset
+
+.
+\end_layout
+
+\begin_deeper
+\begin_layout Standard
+Tomando la normal
+\begin_inset Formula $N(p):=a$
+\end_inset
+
+, como
+\begin_inset Formula $N$
+\end_inset
+
+ es constante, debe ser
+\begin_inset Formula
+\[
+0=\gamma''(t)+\langle\gamma'(t),(N\circ\gamma)'(t))\rangle N(\gamma(t))=\gamma''(t),
+\]
+
+\end_inset
+
+de modo que
+\begin_inset Formula $\gamma$
+\end_inset
+
+ es de la forma
+\begin_inset Formula $\gamma(t)=a+bt$
+\end_inset
+
+, pero
+\begin_inset Formula $p=\gamma(0)=a$
+\end_inset
+
+ y
+\begin_inset Formula $v=\gamma'(0)=b$
+\end_inset
+
+.
+\end_layout
+
+\end_deeper
+\begin_layout Enumerate
+Dado
+\begin_inset Formula $r>0$
+\end_inset
+
+, la geodésica maximal de la esfera
+\begin_inset Formula $S:=\mathbb{S}^{2}(r)$
+\end_inset
+
+ con condiciones iniciales
+\begin_inset Formula $p\in S$
+\end_inset
+
+ y
+\begin_inset Formula $v\in T_{p}S\setminus0$
+\end_inset
+
+ es el círculo máximo
+\begin_inset Formula $\gamma:\mathbb{R}\to S$
+\end_inset
+
+ dado por
+\begin_inset Formula
+\[
+\gamma(t)=\cos\left(\frac{\Vert v\Vert}{r}t\right)p+\frac{r}{\Vert v\Vert}\sin\left(\frac{\Vert v\Vert}{r}t\right)v.
+\]
+
+\end_inset
+
+
+\end_layout
+
+\begin_deeper
+\begin_layout Standard
+Tomando la normal
+\begin_inset Formula $N(p):=\frac{p}{r}$
+\end_inset
+
+ y llamando
+\begin_inset Formula $N(t):=N(\gamma(t))$
+\end_inset
+
+,
+\begin_inset Formula $N(t)=\frac{\gamma(t)}{r}$
+\end_inset
+
+ y
+\begin_inset Formula $N'(t)=\frac{1}{r}\gamma'(t)$
+\end_inset
+
+, y debe ser
+\begin_inset Formula
+\[
+0=\gamma''(t)+\left\langle \gamma'(t),\frac{1}{r}\gamma'(t)\right\rangle \frac{1}{r}\gamma(t)=\gamma''(t)+\frac{1}{r^{2}}\Vert\gamma'(t)\Vert^{2}\gamma(t)\overset{\Vert\gamma'(t)\Vert=\Vert\gamma'(0)\Vert}{=}\gamma''(t)+\frac{\Vert v\Vert^{2}}{r^{2}}\gamma(t),
+\]
+
+\end_inset
+
+Si
+\begin_inset Formula $c:=\frac{\Vert v\Vert^{2}}{r^{2}}=0$
+\end_inset
+
+,
+\begin_inset Formula $v=0$
+\end_inset
+
+, y en otro caso, en cada coordenada, el polinomio asociado a la ecuación
+ lineal homogénea
+\begin_inset Formula $p(\lambda)=\lambda^{2}+c$
+\end_inset
+
+, los valores propios son
+\begin_inset Formula $\pm\sqrt{c}i$
+\end_inset
+
+ y una base de soluciones es pues
+\begin_inset Formula $\{\cos(\sqrt{c}t),\sin(\sqrt{c}t)\}$
+\end_inset
+
+.
+ Por tanto existen
+\begin_inset Formula $a_{i},b_{i}\in\mathbb{R}$
+\end_inset
+
+ con
+\begin_inset Formula $\gamma_{i}(t)=a_{i}\cos(\sqrt{c}t)+b_{i}\sin(\sqrt{c}t)$
+\end_inset
+
+, pero
+\begin_inset Formula
+\begin{align*}
+p_{i} & =\gamma_{i}(0)=a_{i}, & v_{i} & =\gamma'_{i}(0)=b_{i}\sqrt{c},
+\end{align*}
+
+\end_inset
+
+luego en resumen
+\begin_inset Formula $\gamma(t)=p\cos(\sqrt{c}t)+\frac{v}{\sqrt{C}}\sin(\sqrt{c}t)$
+\end_inset
+
+, y
+\begin_inset Formula $\sqrt{c}=\frac{\Vert v\Vert}{r}$
+\end_inset
+
+.
+\end_layout
+
+\end_deeper
+\begin_layout Enumerate
+Sean
+\begin_inset Formula $r>0$
+\end_inset
+
+,
+\begin_inset Formula $S:=\{(x,y,z)\in\mathbb{R}^{3}:x^{2}+y^{2}=r^{2}\}$
+\end_inset
+
+ un cilindro,
+\begin_inset Formula $p\in S$
+\end_inset
+
+ y
+\begin_inset Formula $v\in T_{p}S$
+\end_inset
+
+, la geodésica maximal de
+\begin_inset Formula $S$
+\end_inset
+
+ con condiciones iniciales
+\begin_inset Formula $p$
+\end_inset
+
+ y
+\begin_inset Formula $v$
+\end_inset
+
+ es la recta
+\begin_inset Formula $\gamma:\mathbb{R}\to S$
+\end_inset
+
+ dada por
+\begin_inset Formula
+\[
+\gamma(t):=p+tv
+\]
+
+\end_inset
+
+si
+\begin_inset Formula $v_{1}=v_{2}=0$
+\end_inset
+
+ o la hélice
+\begin_inset Formula $\gamma:\mathbb{R}\to S$
+\end_inset
+
+ dada por
+\begin_inset Formula
+\[
+\gamma(t):=\begin{pmatrix}{\displaystyle p_{1}\cos(ct)+\frac{v_{1}}{c}\sin(ct)}\\
+{\displaystyle p_{2}\cos(ct)+\frac{v_{2}}{c}\sin(ct)}\\
+p_{3}+tv_{3}
+\end{pmatrix}
+\]
+
+\end_inset
+
+en otro caso, donde
+\begin_inset Formula $c:=\frac{\sqrt{\Vert v\Vert^{2}-v_{3}^{2}}}{r}$
+\end_inset
+
+, que es una circunferencia horizontal si
+\begin_inset Formula $v_{3}=0$
+\end_inset
+
+.
+\end_layout
+
+\begin_deeper
+\begin_layout Standard
+Sea
+\begin_inset Formula $f(x,y,z)=x^{2}+y^{2}$
+\end_inset
+
+, como
+\begin_inset Formula $f'(x,y,z)=(2x,2y,0)$
+\end_inset
+
+, los puntos críticos de
+\begin_inset Formula $f$
+\end_inset
+
+ son aquellos con
+\begin_inset Formula $z=0$
+\end_inset
+
+, el único valor crítico es 0 y
+\begin_inset Formula $r^{2}$
+\end_inset
+
+ es un valor regular, de modo que
+\begin_inset Formula $S=\{f(x,y,z)=r^{2}\}$
+\end_inset
+
+ es una superficie de nivel con normal
+\begin_inset Formula
+\[
+N(x,y,z)=\frac{\nabla f}{\Vert\nabla f\Vert}=\frac{(2x,2y,0)}{2\sqrt{x^{2}+y^{2}}}=\frac{1}{r}(x,y,0).
+\]
+
+\end_inset
+
+Entonces, sean
+\begin_inset Formula $N(t):=N(\gamma(t))$
+\end_inset
+
+ y
+\begin_inset Formula $\gamma(t)=:(x(t),y(t),z(t))$
+\end_inset
+
+,
+\begin_inset Formula $N'(t)=\frac{1}{r}(x'(t),y'(t),0)$
+\end_inset
+
+ y
+\begin_inset Formula $\gamma$
+\end_inset
+
+ debe cumplir
+\begin_inset Formula
+\[
+\gamma''(t)+\langle\gamma'(t),N'(t)\rangle N(t)=\begin{pmatrix}x''(t)\\
+y''(t)\\
+z''(t)
+\end{pmatrix}+\frac{1}{r^{2}}(x'(t)^{2}+y'(t)^{2})\begin{pmatrix}x'(t)\\
+y'(t)\\
+0
+\end{pmatrix}=0.
+\]
+
+\end_inset
+
+Así,
+\begin_inset Formula $z''(t)=0$
+\end_inset
+
+ y por tanto
+\begin_inset Formula $z(t)=a+bt$
+\end_inset
+
+ para ciertos
+\begin_inset Formula $a,b\in\mathbb{R}$
+\end_inset
+
+, con
+\begin_inset Formula $p_{3}=z(0)=a$
+\end_inset
+
+ y
+\begin_inset Formula $v_{3}=z'(0)=b$
+\end_inset
+
+.
+ Si
+\begin_inset Formula $v_{1}=v_{2}=0$
+\end_inset
+
+ entonces
+\begin_inset Formula $x$
+\end_inset
+
+ es constante en
+\begin_inset Formula $p_{1}$
+\end_inset
+
+ e
+\begin_inset Formula $y$
+\end_inset
+
+ lo es en
+\begin_inset Formula $p_{2}$
+\end_inset
+
+.
+ En otro caso
+\begin_inset Formula $c>0$
+\end_inset
+
+, y como
+\begin_inset Formula $z'$
+\end_inset
+
+ es constante en
+\begin_inset Formula $v_{3}$
+\end_inset
+
+ y
+\begin_inset Formula $\Vert\gamma'\Vert$
+\end_inset
+
+ lo es en
+\begin_inset Formula $\Vert v\Vert$
+\end_inset
+
+, se tiene
+\begin_inset Formula
+\[
+x'(t)^{2}+y'(t)^{2}=\Vert\gamma'(t)\Vert^{2}-z'(t)^{2}=\Vert v\Vert^{2}-v_{3}^{2}
+\]
+
+\end_inset
+
+ y
+\begin_inset Formula $\frac{x'(t)^{2}+y'(t)^{2}}{r^{2}}=c^{2}$
+\end_inset
+
+, y queda
+\begin_inset Formula
+\[
+(x''(t),y''(t))+c^{2}(x'(t),y'(t))=0.
+\]
+
+\end_inset
+
+Para la coordenada
+\begin_inset Formula $x$
+\end_inset
+
+, el polinomio asociado es
+\begin_inset Formula $p(\lambda)=\lambda^{2}+c^{2}$
+\end_inset
+
+ y los valores propios son
+\begin_inset Formula $\pm ci$
+\end_inset
+
+, de modo que una base de soluciones es
+\begin_inset Formula $\{\cos(ct),\sin(ct)\}$
+\end_inset
+
+ y existen
+\begin_inset Formula $a,b\in\mathbb{R}$
+\end_inset
+
+ tales que
+\begin_inset Formula $x(t)=a\cos(ct)+b\sin(ct)$
+\end_inset
+
+, pero
+\begin_inset Formula
+\begin{align*}
+p_{1} & =x(0)=a, & v_{1} & =x'(0)=bc,
+\end{align*}
+
+\end_inset
+
+de modo que
+\begin_inset Formula $x(t)=p_{1}\cos(ct)+\frac{v_{1}}{c}\sin(ct)$
+\end_inset
+
+, y análogamente
+\begin_inset Formula $y(t)=p_{2}\cos(ct)+\frac{v_{2}}{c}\sin(ct)$
+\end_inset
+
+.
+\end_layout
+
+\end_deeper
+\begin_layout Standard
+Así, el plano, la esfera y el cilindro son geodésicamente completos; de
+ hecho toda superficie de nivel de una función
+\begin_inset Formula $f:\mathbb{R}^{3}\to\mathbb{R}$
+\end_inset
+
+ lo es.
+\end_layout
+
+\begin_layout Section
+Pregeodésicas
+\end_layout
+
+\begin_layout Standard
+\begin_inset ERT
+status open
+
+\begin_layout Plain Layout
+
+
+\backslash
+sremember{GCS}
+\end_layout
+
+\end_inset
+
+
+\end_layout
+
+\begin_layout Standard
+Sean
+\begin_inset Formula $S$
+\end_inset
+
+ una superficie regular orientada por
+\begin_inset Formula $N$
+\end_inset
+
+ y
+\begin_inset Formula $\alpha:I\to S$
+\end_inset
+
+ una curva, [...]
+\begin_inset Formula
+\[
+\alpha''(t)=\frac{D\alpha'}{dt}(t)+\langle\alpha''(t),N(\alpha(t))\rangle N(\alpha(t)).
+\]
+
+\end_inset
+
+
+\end_layout
+
+\begin_layout Standard
+Sea
+\begin_inset Formula $\alpha:I\to S$
+\end_inset
+
+ una curva parametrizada por [...] arco, el
+\series bold
+triedro de Darboux
+\series default
+ es la base [...]
+\begin_inset Formula $(\alpha'(s),J\alpha'(s):=\alpha'(s)\wedge N(\alpha(s)),N(\alpha(s))\rangle$
+\end_inset
+
+.
+ Entonces
+\begin_inset Formula
+\[
+\frac{D\alpha'}{ds}(s)=\kappa_{g}(s)J\alpha'(s),
+\]
+
+\end_inset
+
+donde
+\begin_inset Formula $\kappa_{g}:=\langle\alpha'',J\alpha'\rangle:I\to\mathbb{R}$
+\end_inset
+
+, es la
+\series bold
+curvatura geodésica
+\series default
+ de
+\begin_inset Formula $\alpha$
+\end_inset
+
+, cuyo signo depende de
+\begin_inset Formula $N$
+\end_inset
+
+[, y
+\begin_inset Formula $\kappa_{n}:=\langle\alpha'',N(\alpha)\rangle$
+\end_inset
+
+ es la
+\series bold
+curvatura normal
+\series default
+ de
+\begin_inset Formula $\alpha$
+\end_inset
+
+].
+\end_layout
+
+\begin_layout Standard
+\begin_inset ERT
+status open
+
+\begin_layout Plain Layout
+
+
+\backslash
+eremember
+\end_layout
+
+\end_inset
+
+
+\end_layout
+
+\begin_layout Standard
+Una curva
+\begin_inset Formula $\alpha:I\to S$
+\end_inset
+
+ p.p.a.
+ es una geodésica si y sólo si
+\begin_inset Formula $\kappa_{g}\equiv0$
+\end_inset
+
+, pues
+\begin_inset Formula $\frac{D\alpha'}{ds}(s)=0$
+\end_inset
+
+ si y sólo si
+\begin_inset Formula $\kappa_{g}(s)J\alpha'(s)=0$
+\end_inset
+
+, pero
+\begin_inset Formula $J\alpha'(s)\neq0$
+\end_inset
+
+.
+\end_layout
+
+\begin_layout Standard
+Si
+\begin_inset Formula $S$
+\end_inset
+
+ es una superficie regular,
+\begin_inset Formula $\alpha:I\to S$
+\end_inset
+
+ es una curva y
+\begin_inset Formula $h:J\to I$
+\end_inset
+
+ es un cambio de parámetro que conserva la orientación con
+\begin_inset Formula $\beta:=\alpha\circ h$
+\end_inset
+
+ p.p.a., la curvatura geodésica de
+\begin_inset Formula $\alpha$
+\end_inset
+
+ es
+\begin_inset Formula
+\[
+\kappa_{g}^{\alpha}(t):=\kappa_{g}^{\beta}(h^{-1}(t))=\frac{\langle\alpha''(t),J\alpha'(t)\rangle}{\Vert\alpha'(t)\Vert^{3}}.
+\]
+
+\end_inset
+
+
+\series bold
+Demostración:
+\series default
+
+\begin_inset Formula $1=\Vert\beta'(s)\Vert=h'(s)\Vert\alpha'(h(s))\Vert$
+\end_inset
+
+, luego
+\begin_inset Formula $h'(s)=\frac{1}{\Vert\alpha'(h(s))\Vert}$
+\end_inset
+
+ y para
+\begin_inset Formula $t\in I$
+\end_inset
+
+, sea
+\begin_inset Formula $s:=h^{-1}(t)$
+\end_inset
+
+,
+\begin_inset Formula
+\begin{align*}
+\kappa_{g}^{\alpha}(t) & =\kappa_{g}^{\beta}(s)=\langle\beta''(s),J\beta'(s)\rangle=\langle h''(s)\alpha'(h(s))+h'(s)^{2}\alpha''(h(s)),h'(s)J\alpha'(h(s))\rangle\\
+ & =h'(s)^{3}\langle\alpha''(h(s)),J\alpha'(h(s))\rangle=\frac{\langle\alpha''(t),J\alpha'(t)\rangle}{\Vert\alpha'(t)\Vert^{3}},
+\end{align*}
+
+\end_inset
+
+donde en la penúltima igualdad se usa que
+\begin_inset Formula $\langle\alpha'(h(s)),J\alpha'(h(s))\rangle=0$
+\end_inset
+
+.
+\end_layout
+
+\begin_layout Standard
+Una curva
+\begin_inset Formula $\alpha:I\to S$
+\end_inset
+
+ es una
+\series bold
+pregeodésica
+\series default
+ de
+\begin_inset Formula $S$
+\end_inset
+
+ si existe un cambio de parámetro
+\begin_inset Formula $h:J\to I$
+\end_inset
+
+ tal que
+\begin_inset Formula $\beta:=\alpha\circ h$
+\end_inset
+
+ es una geodésica de
+\begin_inset Formula $S$
+\end_inset
+
+, si y sólo si
+\begin_inset Formula $\kappa_{g}^{\alpha}\equiv0$
+\end_inset
+
+.
+\end_layout
+
+\begin_layout Itemize
+\begin_inset Argument item:1
+status open
+
+\begin_layout Plain Layout
+\begin_inset Formula $\implies]$
+\end_inset
+
+
+\end_layout
+
+\end_inset
+
+Sea
+\begin_inset Formula $h$
+\end_inset
+
+ un cambio de parámetro tal que
+\begin_inset Formula $\beta:=\alpha\circ h$
+\end_inset
+
+ es una geodésica, entonces
+\begin_inset Formula $\Vert\beta'\Vert$
+\end_inset
+
+ es constante en algún
+\begin_inset Formula $c>0$
+\end_inset
+
+, luego
+\begin_inset Formula $\gamma(s):=\beta(\frac{s}{c})$
+\end_inset
+
+ es una geodésica y es p.p.a.
+ al ser
+\begin_inset Formula $\Vert\gamma'(s)\Vert=\Vert\frac{1}{c}\beta'(s)\Vert=1$
+\end_inset
+
+.
+ Sea entonces
+\begin_inset Formula $\tilde{h}(s):=h(\frac{s}{c})$
+\end_inset
+
+, entonces
+\begin_inset Formula $\gamma=\alpha\circ\tilde{h}$
+\end_inset
+
+ y
+\begin_inset Formula $\kappa_{g}^{\alpha}(t)=\kappa_{g}^{\gamma}(\tilde{h}^{-1}(t))=0$
+\end_inset
+
+.
+\end_layout
+
+\begin_layout Itemize
+\begin_inset Argument item:1
+status open
+
+\begin_layout Plain Layout
+\begin_inset Formula $\impliedby]$
+\end_inset
+
+
+\end_layout
+
+\end_inset
+
+Sea
+\begin_inset Formula $\beta=\alpha\circ h$
+\end_inset
+
+ la reparametrización por arco de
+\begin_inset Formula $\alpha$
+\end_inset
+
+, como
+\begin_inset Formula $\kappa_{g}^{\alpha}(t)=\kappa_{g}^{\beta}(h^{-1}(t))$
+\end_inset
+
+,
+\begin_inset Formula $\kappa_{g}^{\beta}(s)=\kappa_{g}^{\alpha}(h(s))=0$
+\end_inset
+
+, luego
+\begin_inset Formula $\beta$
+\end_inset
+
+ es una geodésica y por tanto
+\begin_inset Formula $\alpha$
+\end_inset
+
+ es una pregeodésica.
+\end_layout
+
+\end_body
+\end_document