diff options
Diffstat (limited to 'ac/n1.lyx')
| -rw-r--r-- | ac/n1.lyx | 514 |
1 files changed, 381 insertions, 133 deletions
@@ -998,10 +998,6 @@ Dados anillos \end_inset . -\begin_inset Quotes crd -\end_inset - - \end_layout \begin_layout Standard @@ -2383,14 +2379,7 @@ Dados anillos \end_inset . -\begin_inset Quotes crd -\end_inset - - -\begin_inset Quotes cld -\end_inset - -Si + Si \begin_inset Formula $e\in A$ \end_inset @@ -3823,6 +3812,55 @@ Sean \end_layout \begin_layout Standard +\begin_inset ERT +status open + +\begin_layout Plain Layout + + +\backslash +begin{exinfo} +\end_layout + +\end_inset + +Dados +\begin_inset Formula $I,J,J'\trianglelefteq A$ +\end_inset + + con +\begin_inset Formula $I\subseteq J,J'$ +\end_inset + +, +\begin_inset Formula $\frac{J}{I}+\frac{J'}{I}=\frac{J+J'}{I}$ +\end_inset + +, +\begin_inset Formula $\frac{J}{I}\cap\frac{J'}{I}=\frac{J\cap J'}{I}$ +\end_inset + + y +\begin_inset Formula $\frac{J}{I}\frac{J'}{I}=\frac{JJ'}{I}$ +\end_inset + +. +\begin_inset ERT +status open + +\begin_layout Plain Layout + + +\backslash +end{exinfo} +\end_layout + +\end_inset + + +\end_layout + +\begin_layout Standard Hay tantos ideales de \begin_inset Formula $\mathbb{Z}_{n}$ \end_inset @@ -4199,8 +4237,170 @@ comaximales \end_inset . + Propiedades: +\end_layout + +\begin_layout Enumerate +Si +\begin_inset Formula $I\trianglelefteq A$ +\end_inset + + es comaximal con +\begin_inset Formula $J_{1},\dots,J_{n}\trianglelefteq A$ +\end_inset + +, lo es con +\begin_inset Formula $J_{1}\cdots J_{n}$ +\end_inset + + y con +\begin_inset Formula $J_{1}\cap\dots\cap J_{n}$ +\end_inset + +. +\end_layout + +\begin_deeper +\begin_layout Standard +Basta verlo para el producto, pues la intersección es más grande. + Para +\begin_inset Formula $n\in\{0,1\}$ +\end_inset + + es claro. + Para +\begin_inset Formula $n=2$ +\end_inset + +, existen +\begin_inset Formula $a,a'\in I$ +\end_inset + +, +\begin_inset Formula $b\in J_{1}$ +\end_inset + + y +\begin_inset Formula $b'\in J_{2}$ +\end_inset + + con +\begin_inset Formula $1=a+b=a'+b'$ +\end_inset + +, luego +\begin_inset Formula $1=aa'+ab'+ba'+bb'$ +\end_inset + + con +\begin_inset Formula $bb'\in J_{1}J_{2}$ +\end_inset + + y el resto de sumandos en +\begin_inset Formula $I$ +\end_inset + +. + Para +\begin_inset Formula $n>2$ +\end_inset + + se hace inducción. +\end_layout + +\end_deeper +\begin_layout Enumerate +Si +\begin_inset Formula $I_{1},\dots,I_{n}\trianglelefteq A$ +\end_inset + + son comaximales dos a dos, +\begin_inset Formula $I_{1}\cdots I_{n}=I_{1}\cap\dots\cap I_{n}$ +\end_inset + +. \end_layout +\begin_deeper +\begin_layout Standard +Para +\begin_inset Formula $n\in\{0,1\}$ +\end_inset + + es claro. + Para +\begin_inset Formula $n=2$ +\end_inset + +, sea +\begin_inset Formula $x\in I_{1}\cap I_{2}$ +\end_inset + +, existen +\begin_inset Formula $a\in I_{1}$ +\end_inset + + y +\begin_inset Formula $b\in I_{2}$ +\end_inset + + con +\begin_inset Formula $a+b=1$ +\end_inset + +, luego +\begin_inset Formula $x=ax+bx$ +\end_inset + +, pero +\begin_inset Formula $a\in I_{1}$ +\end_inset + + y +\begin_inset Formula $x\in I_{2}$ +\end_inset + + y por tanto +\begin_inset Formula $ax\in I_{1}I_{2}$ +\end_inset + +, y del mismo modo +\begin_inset Formula $bx\in I_{1}I_{2}$ +\end_inset + +, luego +\begin_inset Formula $I_{1}\cap I_{2}\subseteq I_{1}I_{2}$ +\end_inset + + y ya sabíamos que +\begin_inset Formula $I_{1}I_{2}\subseteq I_{1}\cap I_{2}$ +\end_inset + +. + Para +\begin_inset Formula $n>2$ +\end_inset + +, supuesto esto probado para +\begin_inset Formula $n$ +\end_inset + + menor, por lo anterior +\begin_inset Formula $I_{1}\cdots I_{n-1}=I_{1}\cap\dots\cap I_{n-1}$ +\end_inset + + es comaximal con +\begin_inset Formula $I_{n}$ +\end_inset + + y basta usar el caso +\begin_inset Formula $n=2$ +\end_inset + +. +\end_layout + +\end_deeper \begin_layout Standard \begin_inset ERT status open @@ -4215,6 +4415,19 @@ begin{exinfo} \end_inset +\end_layout + +\begin_layout Enumerate +\begin_inset Argument item:1 +status open + +\begin_layout Plain Layout +3. +\end_layout + +\end_inset + + \begin_inset Formula $I,J\trianglelefteq A$ \end_inset @@ -4235,6 +4448,9 @@ begin{exinfo} \end_inset son comaximales. +\end_layout + +\begin_layout Standard \begin_inset ERT status open @@ -4320,75 +4536,20 @@ Para \end_inset . - Primero vemos que -\begin_inset Formula $K_{1}$ -\end_inset - - es comaximal con -\begin_inset Formula $K_{2}\cdots K_{n}$ -\end_inset - -. - Si -\begin_inset Formula $n=2$ -\end_inset - - esto es claro. - Si -\begin_inset Formula $n=3$ -\end_inset - -, existen -\begin_inset Formula $a,a'\in K_{1}$ -\end_inset - -, -\begin_inset Formula $b\in K_{2}$ -\end_inset - - y -\begin_inset Formula $b'\in K_{3}$ -\end_inset - - con -\begin_inset Formula $1=a+b=a'+b'$ -\end_inset - -, luego -\begin_inset Formula $1=aa'+ab'+ba'+bb'$ -\end_inset - - con -\begin_inset Formula $bb'\in K_{2}K_{3}$ + Al ser los +\begin_inset Formula $K_{i}$ \end_inset - y el resto de sumandos en + comaximales, \begin_inset Formula $K_{1}$ \end_inset -. - Si -\begin_inset Formula $n>3$ -\end_inset - - basta hacer inducción. - Al ser + es comaximal con \begin_inset Formula $K_{2}\cap\dots\cap K_{n}$ \end_inset - más grande que -\begin_inset Formula $K_{2}\cdots K_{n}$ -\end_inset - -, también es comaximal con -\begin_inset Formula $K_{1}$ -\end_inset - . -\end_layout - -\begin_layout Standard -Sean ahora + Sean ahora \begin_inset Formula $a\in K_{1}$ \end_inset @@ -4479,69 +4640,11 @@ Sean ahora \end_inset es suprayectiva. -\end_layout - -\begin_layout Standard -Veamos ahora que + Entonces \begin_inset Formula $\ker\phi=K_{1}\cap\dots\cap K_{n}=K_{1}\cdots K_{n}$ \end_inset -. - Para -\begin_inset Formula $n=2$ -\end_inset - -, sea -\begin_inset Formula $x\in K_{1}\cap K_{2}$ -\end_inset - -, existen -\begin_inset Formula $a\in K_{1}$ -\end_inset - - y -\begin_inset Formula $b\in K_{2}$ -\end_inset - - con -\begin_inset Formula $a+b=1$ -\end_inset - -, luego -\begin_inset Formula $x=1x=ax+bx$ -\end_inset - -, pero como -\begin_inset Formula $a\in K_{1}$ -\end_inset - - y -\begin_inset Formula $x\in K_{2}$ -\end_inset - -, -\begin_inset Formula $ax\in K_{1}K_{2}$ -\end_inset - -, y análogamente -\begin_inset Formula $xb\in K_{1}K_{2}$ -\end_inset - -, luego -\begin_inset Formula $x\in K_{1}K_{2}$ -\end_inset - - y -\begin_inset Formula $K_{1}\cap K_{2}\subseteq K_{1}K_{2}$ -\end_inset - -, y la otra inclusión la sabemos. - Para -\begin_inset Formula $n>2$ -\end_inset - - basta hacer inducción. - La última afirmación se debe al primer teorema de isomorfía. +, y para la última afirmación basta aplicar el primer teorema de isomorfía. \end_layout \end_deeper @@ -4929,6 +5032,7 @@ anillo local \end_inset . + \end_layout \begin_layout Standard @@ -4966,6 +5070,43 @@ Sean \end_inset es el único irreducible salvo asociados. + +\end_layout + +\begin_layout Standard +Si +\begin_inset Formula $(A,(p))$ +\end_inset + + es un anillo local con +\begin_inset Formula $p\neq0$ +\end_inset + + y +\begin_inset Formula $\bigcap_{n\in\mathbb{N}}(p)^{n}=0$ +\end_inset + +, cada +\begin_inset Formula $a\in A\setminus0$ +\end_inset + + es de la forma +\begin_inset Formula $up^{n}$ +\end_inset + + para ciertos +\begin_inset Formula $u\in A^{*}$ +\end_inset + + y +\begin_inset Formula $n\in\mathbb{N}$ +\end_inset + +, y en particular +\begin_inset Formula $A$ +\end_inset + + es un DIP con un único irreducible salvo asociados. \end_layout \begin_layout Standard @@ -5038,6 +5179,66 @@ end{exinfo} \end_layout +\begin_layout Standard +\begin_inset Formula $I\trianglelefteq A$ +\end_inset + + es +\series bold +nilpotente +\series default + si existe +\begin_inset Formula $n\in\mathbb{N}$ +\end_inset + + tal que +\begin_inset Formula $I^{n}=0$ +\end_inset + +, donde +\begin_inset Formula $I^{0}\coloneqq A$ +\end_inset + + y, para +\begin_inset Formula $n>0$ +\end_inset + +, +\begin_inset Formula $I^{n}\coloneqq II^{n-1}$ +\end_inset + +. +\end_layout + +\begin_layout Standard +\begin_inset ERT +status open + +\begin_layout Plain Layout + + +\backslash +begin{exinfo} +\end_layout + +\end_inset + +Todo ideal nil finitamente generado es nilpotente. +\begin_inset ERT +status open + +\begin_layout Plain Layout + + +\backslash +end{exinfo} +\end_layout + +\end_inset + + +\end_layout + \begin_layout Section Ideales primos \end_layout @@ -5510,6 +5711,18 @@ status open \end_layout \begin_layout Standard +\begin_inset ERT +status open + +\begin_layout Plain Layout + + +\backslash +vspace{6pt} +\end_layout + +\end_inset + Dados un homomorfismo \begin_inset Formula $f:A\to B$ \end_inset @@ -5893,6 +6106,22 @@ radical \end_layout \begin_layout Standard +\begin_inset ERT +status open + +\begin_layout Plain Layout + + +\backslash +begin{samepage} +\end_layout + +\end_inset + + +\end_layout + +\begin_layout Standard Propiedades: \end_layout @@ -5968,6 +6197,22 @@ Sea \end_deeper \begin_layout Standard +\begin_inset ERT +status open + +\begin_layout Plain Layout + + +\backslash +end{samepage} +\end_layout + +\end_inset + + +\end_layout + +\begin_layout Standard Un \series bold subconjunto multiplicativo @@ -5981,9 +6226,12 @@ subconjunto multiplicativo \end_inset cerrado para el producto y que contiene al 1. +\end_layout + +\begin_layout Standard \series bold - Lema de Krull: +Lema de Krull: \series default Sean \begin_inset Formula $A$ |
