aboutsummaryrefslogtreecommitdiff
path: root/ac/n1.lyx
diff options
context:
space:
mode:
Diffstat (limited to 'ac/n1.lyx')
-rw-r--r--ac/n1.lyx200
1 files changed, 57 insertions, 143 deletions
diff --git a/ac/n1.lyx b/ac/n1.lyx
index 41bc9ce..2cd5d09 100644
--- a/ac/n1.lyx
+++ b/ac/n1.lyx
@@ -2091,10 +2091,6 @@ status open
.
\end_layout
-\begin_layout Subsection
-Elementos primos e irreducibles
-\end_layout
-
\begin_layout Standard
\begin_inset ERT
status open
@@ -2435,39 +2431,7 @@ Si
\end_layout
\begin_layout Standard
-\begin_inset ERT
-status open
-
-\begin_layout Plain Layout
-
-
-\backslash
-end{reminder}
-\end_layout
-
-\end_inset
-
-
-\end_layout
-
-\begin_layout Subsection
-Dominios de factorización única
-\end_layout
-
-\begin_layout Standard
-\begin_inset ERT
-status open
-
-\begin_layout Plain Layout
-
-
-\backslash
-begin{reminder}{GyA}
-\end_layout
-
-\end_inset
-
-
+[...]
\end_layout
\begin_layout Standard
@@ -3856,7 +3820,7 @@ end{exinfo}
\end_layout
-\begin_layout Subsection
+\begin_layout Section
Ideales finitamente generados
\end_layout
@@ -4039,80 +4003,6 @@ ideal principal
\end_layout
\begin_layout Standard
-\begin_inset ERT
-status open
-
-\begin_layout Plain Layout
-
-
-\backslash
-begin{exinfo}
-\end_layout
-
-\end_inset
-
-Dado un anillo
-\begin_inset Formula $A$
-\end_inset
-
- y
-\begin_inset Formula $b\in A$
-\end_inset
-
- cancelable no invertible,
-\begin_inset Formula $(b,X)$
-\end_inset
-
- no es un ideal principal de
-\begin_inset Formula $A[X]$
-\end_inset
-
-, y en particular
-\begin_inset Formula $(X,Y)$
-\end_inset
-
- no es un ideal principal de
-\begin_inset Formula $A[X,Y]\coloneqq A[X][Y]$
-\end_inset
-
-.
- Si
-\begin_inset Formula $e\in A$
-\end_inset
-
- es idempotente, para
-\begin_inset Formula $a\in A$
-\end_inset
-
-,
-\begin_inset Formula $a\in(e)\iff a=ea$
-\end_inset
-
-, con lo que
-\begin_inset Formula $(e)$
-\end_inset
-
- es un anillo con identidad
-\begin_inset Formula $e$
-\end_inset
-
-.
-\begin_inset ERT
-status open
-
-\begin_layout Plain Layout
-
-
-\backslash
-end{exinfo}
-\end_layout
-
-\end_inset
-
-
-\end_layout
-
-\begin_layout Standard
Un
\series bold
dominio de ideales principales
@@ -4195,12 +4085,49 @@ begin{exinfo}
\end_inset
-En un DIP,
-\begin_inset Formula $(a)+(b)=(\gcd\{a,b\})$
+Dado un anillo
+\begin_inset Formula $A$
\end_inset
y
-\begin_inset Formula $(a)\cap(b)=(\text{lcm}\{a,b\})$
+\begin_inset Formula $b\in A$
+\end_inset
+
+ cancelable no invertible,
+\begin_inset Formula $(b,X)$
+\end_inset
+
+ no es un ideal principal de
+\begin_inset Formula $A[X]$
+\end_inset
+
+, y en particular
+\begin_inset Formula $(X,Y)$
+\end_inset
+
+ no es un ideal principal de
+\begin_inset Formula $A[X,Y]\coloneqq A[X][Y]$
+\end_inset
+
+.
+ Si
+\begin_inset Formula $e\in A$
+\end_inset
+
+ es idempotente, para
+\begin_inset Formula $a\in A$
+\end_inset
+
+,
+\begin_inset Formula $a\in(e)\iff a=ea$
+\end_inset
+
+, con lo que
+\begin_inset Formula $(e)$
+\end_inset
+
+ es un anillo con identidad
+\begin_inset Formula $e$
\end_inset
.
@@ -5332,7 +5259,16 @@ begin{exinfo}
\end_inset
-Dados un dominio
+En un DIP,
+\begin_inset Formula $(a)+(b)=(\gcd\{a,b\})$
+\end_inset
+
+ y
+\begin_inset Formula $(a)\cap(b)=(\text{lcm}\{a,b\})$
+\end_inset
+
+.
+ Dados un dominio
\begin_inset Formula $A$
\end_inset
@@ -6250,6 +6186,9 @@ característica
.
[...] La característica de un dominio no trivial es 0 o un número primo.
+\end_layout
+
+\begin_layout Standard
\begin_inset ERT
status open
@@ -6266,16 +6205,7 @@ end{reminder}
\end_layout
\begin_layout Standard
-\begin_inset ERT
-status open
-
-\begin_layout Plain Layout
-
-
-\backslash
-begin{samepage}
-\end_layout
-
+\begin_inset Newpage pagebreak
\end_inset
@@ -6470,22 +6400,6 @@ status open
\backslash
-end{samepage}
-\end_layout
-
-\end_inset
-
-
-\end_layout
-
-\begin_layout Standard
-\begin_inset ERT
-status open
-
-\begin_layout Plain Layout
-
-
-\backslash
begin{exinfo}
\end_layout
@@ -9406,7 +9320,7 @@ coeficiente principal
\series bold
mónico
\series default
- si su coeficiente princial es 1.
+ si su coeficiente principal es 1.
El polinomio 0 tiene grado
\begin_inset Formula $-\infty$
\end_inset