diff options
Diffstat (limited to 'ac/n5.lyx')
| -rw-r--r-- | ac/n5.lyx | 4379 |
1 files changed, 4379 insertions, 0 deletions
diff --git a/ac/n5.lyx b/ac/n5.lyx new file mode 100644 index 0000000..d9d19d9 --- /dev/null +++ b/ac/n5.lyx @@ -0,0 +1,4379 @@ +#LyX 2.3 created this file. For more info see http://www.lyx.org/ +\lyxformat 544 +\begin_document +\begin_header +\save_transient_properties true +\origin unavailable +\textclass book +\begin_preamble +\input{../defs} +\end_preamble +\use_default_options true +\maintain_unincluded_children false +\language spanish +\language_package default +\inputencoding auto +\fontencoding global +\font_roman "default" "default" +\font_sans "default" "default" +\font_typewriter "default" "default" +\font_math "auto" "auto" +\font_default_family default +\use_non_tex_fonts false +\font_sc false +\font_osf false +\font_sf_scale 100 100 +\font_tt_scale 100 100 +\use_microtype false +\use_dash_ligatures true +\graphics default +\default_output_format default +\output_sync 0 +\bibtex_command default +\index_command default +\paperfontsize default +\spacing single +\use_hyperref false +\papersize default +\use_geometry false +\use_package amsmath 1 +\use_package amssymb 1 +\use_package cancel 1 +\use_package esint 1 +\use_package mathdots 1 +\use_package mathtools 1 +\use_package mhchem 1 +\use_package stackrel 1 +\use_package stmaryrd 1 +\use_package undertilde 1 +\cite_engine basic +\cite_engine_type default +\biblio_style plain +\use_bibtopic false +\use_indices false +\paperorientation portrait +\suppress_date false +\justification true +\use_refstyle 1 +\use_minted 0 +\index Index +\shortcut idx +\color #008000 +\end_index +\secnumdepth 3 +\tocdepth 3 +\paragraph_separation indent +\paragraph_indentation default +\is_math_indent 0 +\math_numbering_side default +\quotes_style french +\dynamic_quotes 0 +\papercolumns 1 +\papersides 1 +\paperpagestyle default +\tracking_changes false +\output_changes false +\html_math_output 0 +\html_css_as_file 0 +\html_be_strict false +\end_header + +\begin_body + +\begin_layout Standard +Sean +\begin_inset Formula $K$ +\end_inset + + un cuerpo y +\begin_inset Formula $M$ +\end_inset + + el +\begin_inset Formula $K[X]$ +\end_inset + +-módulo asociado a un par +\begin_inset Formula $(V,f)$ +\end_inset + + de un espacio vectorial y un +\begin_inset Formula $K$ +\end_inset + +-endomorfismo +\begin_inset Formula $V\to V$ +\end_inset + +, +\begin_inset Formula $M$ +\end_inset + + es de torsión finitamente generado si y sólo si +\begin_inset Formula $_{K}V$ +\end_inset + + es de dimensión finita, y si +\begin_inset Formula $p\in K[X]$ +\end_inset + + es irreducible, +\begin_inset Formula $M$ +\end_inset + + es finitamente generado de +\begin_inset Formula $p$ +\end_inset + +-torsión si y sólo si +\begin_inset Formula $_{K}V$ +\end_inset + + es de dimensión finita y +\begin_inset Formula $p(f)^{m}=0\in\text{End}_{K}(V)$ +\end_inset + + para cierto +\begin_inset Formula $m>0$ +\end_inset + +. +\end_layout + +\begin_layout Standard +En el resto de la sección, salvo que se indique lo contrario, +\begin_inset Formula $K$ +\end_inset + + es un cuerpo, +\begin_inset Formula $V$ +\end_inset + + un +\begin_inset Formula $K$ +\end_inset + +-espacio vectorial de dimensión finita, +\begin_inset Formula $f:V\to V$ +\end_inset + + un +\begin_inset Formula $K$ +\end_inset + +-endomorfismo y +\begin_inset Formula $M$ +\end_inset + + el +\begin_inset Formula $K[X]$ +\end_inset + +-módulo asociado a +\begin_inset Formula $(V,f)$ +\end_inset + +. +\end_layout + +\begin_layout Standard + +\series bold +Teoremas de clasificación de endomorfismos de espacios vectoriales: +\end_layout + +\begin_layout Enumerate +Existen +\begin_inset Formula $p_{1},\dots,p_{k}\in K[X]$ +\end_inset + + mónicos irreducibles distintos y +\begin_inset Formula $n_{ij}\in\mathbb{N}^{*}$ +\end_inset + + para +\begin_inset Formula $i\in\{1,\dots,k\}$ +\end_inset + + y +\begin_inset Formula $j\in\{1,\dots,r_{i}\}$ +\end_inset + +, unívocamente determinados, y vectores +\begin_inset Formula $v_{ij}\in V$ +\end_inset + +, tales que +\begin_inset Formula +\[ +\bigoplus_{i=1}^{k}\bigoplus_{j=1}^{r_{i}}K\{f^{s}(v_{ij})\}_{s\geq0} +\] + +\end_inset + +es una descomposición de +\begin_inset Formula $V$ +\end_inset + + en suma directa interna de subespacios vectoriales +\begin_inset Formula $f$ +\end_inset + +-in +\begin_inset ERT +status open + +\begin_layout Plain Layout + + +\backslash +- +\end_layout + +\end_inset + +va +\begin_inset ERT +status open + +\begin_layout Plain Layout + + +\backslash +- +\end_layout + +\end_inset + +rian +\begin_inset ERT +status open + +\begin_layout Plain Layout + + +\backslash +- +\end_layout + +\end_inset + +tes y cada +\begin_inset Formula $p_{i}(f)^{n_{ij}}(v_{ij})=0\neq p_{i}(f)^{n_{ij}-1}(v_{ij})$ +\end_inset + +. +\end_layout + +\begin_deeper +\begin_layout Standard +Sean +\begin_inset Formula $W\leq V$ +\end_inset + + y +\begin_inset Formula $N$ +\end_inset + + el +\begin_inset Formula $K[X]$ +\end_inset + +-submódulo de +\begin_inset Formula $M$ +\end_inset + + asociado a +\begin_inset Formula $(W,f|_{W})$ +\end_inset + +, basta ver que +\begin_inset Formula $N\cong\frac{K[X]}{(p_{i}^{n_{ij}})}$ +\end_inset + + si y sólo si existe +\begin_inset Formula $v\in V$ +\end_inset + + tal que +\begin_inset Formula $W=K\{f^{s}(v)_{s\geq0}\}$ +\end_inset + + y +\begin_inset Formula $p_{i}(f)^{n_{ij}}(v)=0\neq p_{i}(f)^{n_{ij}-1}(v)$ +\end_inset + +. +\end_layout + +\begin_layout Enumerate +\begin_inset Argument item:1 +status open + +\begin_layout Plain Layout +\begin_inset Formula $\implies]$ +\end_inset + + +\end_layout + +\end_inset + +Sean +\begin_inset Formula $\phi:\frac{K[X]}{(p_{i}^{n_{ij}})}\to N$ +\end_inset + + el isomorfismo y +\begin_inset Formula $v\coloneqq\phi(\overline{1})$ +\end_inset + +, +\begin_inset Formula $p_{i}^{n_{ij}}\overline{1}=0$ +\end_inset + + y por tanto +\begin_inset Formula $0=p_{i}^{n_{ij}}\phi(\overline{1})=p_{i}^{n_{ij}}v=p_{i}(f)^{n_{ij}}(v)$ +\end_inset + + por la definición del +\begin_inset Formula $K[X]$ +\end_inset + +-módulo, pero +\begin_inset Formula $p_{i}^{n_{ij}-1}\overline{1}\neq0$ +\end_inset + + y por tanto +\begin_inset Formula $p_{i}(f)^{n_{ij}-1}(v_{ij})\neq0$ +\end_inset + +. + Finalmente, como +\begin_inset Formula $\frac{K[X]}{(p_{i}^{n_{ij}})}=K\{\overline{1},X\overline{1},\dots,X^{s}\overline{1},\dots\}$ +\end_inset + +, +\begin_inset Formula $M=K\{f^{s}(v)\}_{s\geq0}$ +\end_inset + + ya que +\begin_inset Formula $\phi(X^{s}\overline{1})=X^{s}\phi(\overline{1})=f^{s}(v)$ +\end_inset + +. +\end_layout + +\begin_layout Enumerate +\begin_inset Argument item:1 +status open + +\begin_layout Plain Layout +\begin_inset Formula $\impliedby]$ +\end_inset + + +\end_layout + +\end_inset + +Por la hipótesis y la definición de +\begin_inset Formula $N$ +\end_inset + +, +\begin_inset Formula $N=(v)$ +\end_inset + +, pero +\begin_inset Formula $v$ +\end_inset + + es anulado por +\begin_inset Formula $p_{i}(f)^{n_{ij}}$ +\end_inset + + y por tanto hay un epimorfismo +\begin_inset Formula $\psi:\frac{K[X]}{(p_{i}^{n_{ij}})}\twoheadrightarrow K[X]v=N$ +\end_inset + + con +\begin_inset Formula $\ker\psi\trianglelefteq\frac{K[X]}{(p_{i}^{n_{ij}})}$ +\end_inset + +, pero los únicos ideales de +\begin_inset Formula $\frac{K[X]}{(p_{i}^{n_{ij}})}$ +\end_inset + + son +\begin_inset Formula $(\overline{p_{i}}^{k})$ +\end_inset + + con +\begin_inset Formula $k\in\{0,\dots,n_{ij}\}$ +\end_inset + +, y como +\begin_inset Formula $p_{i}(f)^{n_{ij}-1}(v)\neq0$ +\end_inset + +, +\begin_inset Formula $\overline{p_{i}}^{n_{ij}-1}\notin\ker\psi$ +\end_inset + +, con lo que +\begin_inset Formula $\ker\psi=0$ +\end_inset + + y +\begin_inset Formula $\psi$ +\end_inset + + es un isomorfismo. +\end_layout + +\end_deeper +\begin_layout Enumerate +Existen polinomios mónicos no constantes +\begin_inset Formula $d_{1}\mid\dots\mid d_{t}$ +\end_inset + + unívocamente determinados y vectores +\begin_inset Formula $v_{j}\in V$ +\end_inset + + tales que +\begin_inset Formula $\bigoplus_{i=1}^{t}\text{span}\{f^{s}(v_{j})\}_{s\in\mathbb{N}_{\text{gr}(d_{j})}}$ +\end_inset + + es una descomposición de +\begin_inset Formula $V$ +\end_inset + + en subespacios +\begin_inset Formula $f$ +\end_inset + +-invariantes y cada +\begin_inset Formula $d_{j}(f)(v_{j})=0$ +\end_inset + +. +\end_layout + +\begin_deeper +\begin_layout Standard +Sean +\begin_inset Formula $W\leq V$ +\end_inset + + y +\begin_inset Formula $N$ +\end_inset + + el +\begin_inset Formula $K[X]$ +\end_inset + +-submódulo de +\begin_inset Formula $M$ +\end_inset + + asociado a +\begin_inset Formula $(W,f|_{W})$ +\end_inset + +, basta ver que +\begin_inset Formula $N\cong\frac{K[X]}{(d_{j})}$ +\end_inset + + si y sólo si existe +\begin_inset Formula $v\in V$ +\end_inset + + tal que +\begin_inset Formula $\{f^{s}(v)\}{}_{s\in\mathbb{N}_{\text{gr}(d_{j})}}$ +\end_inset + + es base de +\begin_inset Formula $W$ +\end_inset + + como +\begin_inset Formula $K$ +\end_inset + +-espacio vectorial y +\begin_inset Formula $d_{j}(f)(v)=0$ +\end_inset + +. +\end_layout + +\begin_layout Enumerate +\begin_inset Argument item:1 +status open + +\begin_layout Plain Layout +\begin_inset Formula $\implies]$ +\end_inset + + +\end_layout + +\end_inset + +Sean +\begin_inset Formula $\phi:\frac{K[X]}{(p_{i}^{n_{ij}})}\to N$ +\end_inset + + el isomorfismo y +\begin_inset Formula $v\coloneqq\phi(\overline{1})$ +\end_inset + +, +\begin_inset Formula $d_{j}\overline{1}=0$ +\end_inset + + y por tanto +\begin_inset Formula $0=d_{j}\phi(\overline{1})=d_{j}v=d_{j}(f)(v)$ +\end_inset + +, y como +\begin_inset Formula $\frac{K[X]}{(d_{j})}=K\{\overline{1},X\overline{1},\dots,X^{\text{gr}d_{j}-1}\overline{1}\}$ +\end_inset + + con +\begin_inset Formula $(X^{s}\overline{1})_{s\in\mathbb{N}_{\text{gr}(d_{j})}}$ +\end_inset + + linealmente independiente, +\begin_inset Formula $N=K\{f^{s}(v)\}_{s\in\mathbb{N}_{\text{gr}(d_{j})}}$ +\end_inset + + con +\begin_inset Formula $(f^{s}(v))_{s\in\mathbb{N}_{\text{gr}(d_{j})}}$ +\end_inset + + linealmente independiente. +\end_layout + +\begin_layout Enumerate +\begin_inset Argument item:1 +status open + +\begin_layout Plain Layout +\begin_inset Formula $\impliedby]$ +\end_inset + + +\end_layout + +\end_inset + + +\begin_inset Formula $v$ +\end_inset + + es anulado por +\begin_inset Formula $p_{i}(f)^{n_{ij}}$ +\end_inset + + y por tanto hay un epimorfismo +\begin_inset Formula $\psi:\frac{K[X]}{(d_{j})}\twoheadrightarrow K[X]v=K\{f^{s}(v)\}_{s\in\mathbb{N}}=K\{f^{s}(v)\}_{s\in\mathbb{N}_{\text{gr}(d_{j})}}=N$ +\end_inset + +, pero si +\begin_inset Formula $p\in K[X]$ +\end_inset + + con +\begin_inset Formula $\text{gr}p<\text{gr}d_{j}$ +\end_inset + + cumple +\begin_inset Formula $\psi(\overline{p})=p(f)(v)=\sum_{i}p_{i}f^{i}(v)=0$ +\end_inset + +, como los +\begin_inset Formula $f^{i}(v)$ +\end_inset + + son linealmente independiente, cada +\begin_inset Formula $p_{i}=0$ +\end_inset + + y +\begin_inset Formula $p=0$ +\end_inset + +, y como cada elemento de +\begin_inset Formula $\frac{K[X]}{(d_{j})}$ +\end_inset + + tiene un representante de grado menor que el de +\begin_inset Formula $d_{j}$ +\end_inset + +, +\begin_inset Formula $\ker\psi=0$ +\end_inset + + y +\begin_inset Formula $\psi$ +\end_inset + + es un isomorfismo. +\end_layout + +\end_deeper +\begin_layout Section +Polinomio mínimo +\end_layout + +\begin_layout Standard +Sea +\begin_inset Formula $\varphi\in K[X]$ +\end_inset + + el polinomio característico de +\begin_inset Formula $f$ +\end_inset + +: +\end_layout + +\begin_layout Enumerate + +\series bold +Teorema de Cayley-Hamilton: +\series default + +\begin_inset Formula $\varphi(f)=0$ +\end_inset + +. +\end_layout + +\begin_deeper +\begin_layout Standard +Sean +\begin_inset Formula $C\in{\cal M}_{n}(K)$ +\end_inset + + la matriz asociada a +\begin_inset Formula $f$ +\end_inset + + bajo cualquier base de +\begin_inset Formula $V$ +\end_inset + + e +\begin_inset Formula $I\coloneqq I_{n}$ +\end_inset + +, queremos ver que +\begin_inset Formula $\varphi=\det(XI-C)$ +\end_inset + + cumple +\begin_inset Formula $\sum_{i=0}^{n}\varphi_{i}C^{i}=0$ +\end_inset + +. + Por la prueba de la fórmula de la matriz inversa, para toda matriz +\begin_inset Formula $A$ +\end_inset + + es +\begin_inset Formula $A\cdot\text{adj}(A)^{\intercal}=|A|I$ +\end_inset + +, por lo que viendo +\begin_inset Formula $XI-C\in{\cal M}_{n}(K[X])$ +\end_inset + + es +\begin_inset Formula $(XI-C)\text{adj}(XI-C)^{\intercal}=\varphi I$ +\end_inset + +. + Como las entradas de +\begin_inset Formula $\text{adj}(XI-C)^{\intercal}$ +\end_inset + + son polinomios de grado máximo +\begin_inset Formula $n-1$ +\end_inset + +, podemos escribir +\begin_inset Formula $\text{adj}(XI-C)^{t}\eqqcolon\sum_{i=0}^{n-1}B_{i}X^{i}$ +\end_inset + + con cada +\begin_inset Formula $B_{i}\in{\cal M}_{n}(K)$ +\end_inset + + y entonces +\begin_inset Formula $(XI-C)\sum_{i=0}^{n-1}B_{i}X^{i}=\sum_{i=0}^{n}\varphi_{i}I$ +\end_inset + +. + Viendo esta igualdad en +\begin_inset Formula ${\cal M}_{n}(K)[X]$ +\end_inset + +, igualando coeficientes, +\begin_inset Formula +\begin{align*} +B_{n-1} & =\varphi_{n}I, & B_{n-2}-CB_{n-1} & =\varphi_{n-1}I, & & \cdots, & B_{0}-B_{1}C & =\varphi_{1}I, & -B_{0}C & =\varphi_{0}I, +\end{align*} + +\end_inset + +y multiplicando la primera igualdad por +\begin_inset Formula $C^{n}$ +\end_inset + +, la segunda por +\begin_inset Formula $C^{n-1}$ +\end_inset + +, etc., +\begin_inset Formula +\begin{align*} +C^{n}B_{n-1} & =\varphi_{n}C^{n}, & C^{n-1}B_{n-2}-C^{n}B_{n-1} & =\varphi_{n-1}C^{n-1}, & & \dots,\\ +CB_{0}-C^{2}B_{1} & =\varphi_{1}C, & -CB_{0} & =\varphi_{0}I, +\end{align*} + +\end_inset + +luego sumando es +\begin_inset Formula $0=\varphi_{n}C^{n}+\dots+\varphi_{1}C+\varphi_{0}=\varphi_{C}(C)$ +\end_inset + +. +\end_layout + +\end_deeper +\begin_layout Enumerate +Los divisores irreducibles de +\begin_inset Formula $M$ +\end_inset + + son precisamente los divisores irreducibles de +\begin_inset Formula $\varphi$ +\end_inset + +. +\end_layout + +\begin_deeper +\begin_layout Standard +\begin_inset Formula $p\in K[X]$ +\end_inset + + irreducible es divisor irreducible de +\begin_inset Formula $M$ +\end_inset + + si y sólo si existe +\begin_inset Formula $v\in M\setminus\{0\}$ +\end_inset + + con +\begin_inset Formula $pv=p(f)(v)=0$ +\end_inset + +, si y sólo si +\begin_inset Formula $\ker(p(f))\neq0$ +\end_inset + +, si y sólo si +\begin_inset Formula $p(f):V\to V$ +\end_inset + + como endomorfismo no es un isomorfismo, si y sólo si +\begin_inset Formula $\det(p(f))=0$ +\end_inset + +. + Sea +\begin_inset Formula $\overline{K}$ +\end_inset + + la clausura algebraica de +\begin_inset Formula $K$ +\end_inset + +, +\begin_inset Formula $p=(X-\lambda_{1})\cdots(X-\lambda_{t})\in\overline{K}[X]$ +\end_inset + +. + Si +\begin_inset Formula $p\mid\varphi$ +\end_inset + +, sea +\begin_inset Formula $C$ +\end_inset + + la matriz asociada a +\begin_inset Formula $f$ +\end_inset + + bajo cualquier base, los +\begin_inset Formula $\lambda_{i}$ +\end_inset + + son valores propios de +\begin_inset Formula $C$ +\end_inset + + en +\begin_inset Formula $\overline{K}$ +\end_inset + + y por tanto existen +\begin_inset Formula $v_{i}\in\overline{K}^{n}\setminus\{0\}$ +\end_inset + + con +\begin_inset Formula $Cv_{i}=\lambda v_{i}$ +\end_inset + + y +\begin_inset Formula $(C-\lambda_{i}I)=0$ +\end_inset + +. + Pero +\begin_inset Formula $(C-\lambda_{i}I)(C-\lambda_{j}I)=C^{2}-\lambda_{i}I-\lambda_{j}I+\lambda_{i}\lambda_{j}I=(C-\lambda_{j}I)(C-\lambda_{i}I)$ +\end_inset + +, por lo que +\begin_inset Formula $(C-\lambda_{i}I)(C-\lambda_{j}I)(v_{i})=0$ +\end_inset + + y +\begin_inset Formula $p(C)(v)=\left(\prod_{j}(C-\lambda_{j}I)\right)(v_{i})=0$ +\end_inset + +, de modo que +\begin_inset Formula $\ker_{\overline{K}}(p(C))\neq0$ +\end_inset + + y +\begin_inset Formula $\det(p(C))=0$ +\end_inset + +, lo que no depende de si consideramos +\begin_inset Formula $p(C)$ +\end_inset + + sobre +\begin_inset Formula $K$ +\end_inset + + o sobre +\begin_inset Formula $\overline{K}$ +\end_inset + + y por tanto +\begin_inset Formula $p$ +\end_inset + + es divisor irreducible de +\begin_inset Formula $M$ +\end_inset + +. + Si +\begin_inset Formula $p$ +\end_inset + + es divisor irreducible de +\begin_inset Formula $M$ +\end_inset + +, divide al mayor factor invariante de +\begin_inset Formula $M$ +\end_inset + +, +\begin_inset Formula $d_{t}$ +\end_inset + +, pero para +\begin_inset Formula $v\in M$ +\end_inset + +, +\begin_inset Formula $\varphi v=\varphi(f)(v)=0$ +\end_inset + +, con lo que +\begin_inset Formula $\varphi\in\text{ann}_{A}(M)=(d_{t})$ +\end_inset + + y +\begin_inset Formula $p\mid d_{t}\mid\varphi$ +\end_inset + +. +\end_layout + +\end_deeper +\begin_layout Standard +\begin_inset ERT +status open + +\begin_layout Plain Layout + + +\backslash +begin{reminder}{AlgL} +\end_layout + +\end_inset + + +\end_layout + +\begin_layout Standard +\begin_inset Formula $A,B\in{\cal M}_{n}(K)$ +\end_inset + + son +\series bold +semejantes +\series default + si +\begin_inset Formula $\exists P\in{\cal M}_{n}(K):B=P^{-1}AP$ +\end_inset + +. +\end_layout + +\begin_layout Standard +\begin_inset ERT +status open + +\begin_layout Plain Layout + + +\backslash +end{reminder} +\end_layout + +\end_inset + + +\end_layout + +\begin_layout Standard +Sean +\begin_inset Formula ${\cal B}$ +\end_inset + + una base de +\begin_inset Formula $V$ +\end_inset + +, +\begin_inset Formula $C\coloneqq M_{{\cal B}}(f)$ +\end_inset + + y +\begin_inset Formula $f_{C}:K^{n}\to K^{n}$ +\end_inset + + dado por +\begin_inset Formula $f_{C}(y)\coloneqq Cy$ +\end_inset + +: +\end_layout + +\begin_layout Enumerate +El isomorfismo +\begin_inset Formula $\phi:V\to K^{n}$ +\end_inset + + que lleva +\begin_inset Formula ${\cal B}$ +\end_inset + + a la base canónica induce un isomorfismo entre el +\begin_inset Formula $K[X]$ +\end_inset + +-módulo asociado a +\begin_inset Formula $(V,f)$ +\end_inset + + y el asociado a +\begin_inset Formula $(K^{n},f_{C})$ +\end_inset + +. +\end_layout + +\begin_deeper +\begin_layout Standard +Claramente la biyección +\begin_inset Formula $\hat{\phi}$ +\end_inset + + inducida conserva la suma y el producto por escalares de +\begin_inset Formula $K$ +\end_inset + +, y +\begin_inset Formula $\hat{\phi}(Xv)=\phi(f(v))=\phi((\phi^{-1}\circ f_{C}\circ\phi)(v))=f_{C}(\phi(v))=X\phi(v)$ +\end_inset + +. +\end_layout + +\end_deeper +\begin_layout Enumerate +Sean +\begin_inset Formula $W$ +\end_inset + + otro +\begin_inset Formula $K$ +\end_inset + +-espacio vectorial, +\begin_inset Formula $g:W\to W$ +\end_inset + + un +\begin_inset Formula $K$ +\end_inset + +-endomorfismo, +\begin_inset Formula $\phi:V\to W$ +\end_inset + + un +\begin_inset Formula $K$ +\end_inset + +-isomorfismo con +\begin_inset Formula $\phi\circ f=g\circ\phi$ +\end_inset + +, +\begin_inset Formula ${\cal B}$ +\end_inset + + una base de +\begin_inset Formula $V$ +\end_inset + + y +\begin_inset Formula ${\cal B}'$ +\end_inset + + la base correspondiente de +\begin_inset Formula $W$ +\end_inset + + por +\begin_inset Formula $\phi$ +\end_inset + +, se tiene +\begin_inset Formula $M_{{\cal B}}(f)=M_{{\cal B}'}(g)$ +\end_inset + +. +\end_layout + +\begin_deeper +\begin_layout Standard +Si +\begin_inset Formula ${\cal B}\eqqcolon(b_{i})_{i}$ +\end_inset + +, +\begin_inset Formula ${\cal B}'=(\phi(b_{i}))_{i}$ +\end_inset + +, pero +\begin_inset Formula $M_{{\cal B}}(f)$ +\end_inset + + tiene como columnas los +\begin_inset Formula $f(b_{i})$ +\end_inset + + respecto de +\begin_inset Formula ${\cal B}$ +\end_inset + + y +\begin_inset Formula $M_{{\cal B}'}(g)$ +\end_inset + + tiene como columnas los +\begin_inset Formula $g(\phi(b_{i}))=\phi(f(b_{i}))$ +\end_inset + + respecto de +\begin_inset Formula ${\cal B}'$ +\end_inset + +, por lo que +\begin_inset Formula $M_{{\cal B}}(f)=M_{{\cal B}'}(g)$ +\end_inset + +. +\end_layout + +\end_deeper +\begin_layout Enumerate +Si +\begin_inset Formula $W$ +\end_inset + + es otro +\begin_inset Formula $K$ +\end_inset + +-espacio vectorial de dimensión finita y +\begin_inset Formula $g:W\to W$ +\end_inset + + un +\begin_inset Formula $K$ +\end_inset + +-endomorfismo, los +\begin_inset Formula $K[X]$ +\end_inset + +-módulos asociados a +\begin_inset Formula $(V,f)$ +\end_inset + + y +\begin_inset Formula $(W,g)$ +\end_inset + + son isomorfos si y sólo si +\begin_inset Formula $\dim V=\dim W$ +\end_inset + + y existen bases respectivas +\begin_inset Formula ${\cal B}$ +\end_inset + + y +\begin_inset Formula ${\cal B}'$ +\end_inset + + de +\begin_inset Formula $V$ +\end_inset + + y +\begin_inset Formula $W$ +\end_inset + + tales que +\begin_inset Formula $M_{{\cal B}}(f)$ +\end_inset + + y +\begin_inset Formula $M_{{\cal B}'}(g)$ +\end_inset + + son semejantes. +\end_layout + +\begin_deeper +\begin_layout Enumerate +\begin_inset Argument item:1 +status open + +\begin_layout Plain Layout +\begin_inset Formula $\implies]$ +\end_inset + + +\end_layout + +\end_inset + +Sea +\begin_inset Formula $\phi:M\to N$ +\end_inset + + el isomorfismo, claramente +\begin_inset Formula $\phi:V\to W$ +\end_inset + + es un +\begin_inset Formula $K$ +\end_inset + +-isomorfismo y por tanto +\begin_inset Formula $\dim_{K}V=\dim_{K}W$ +\end_inset + +, y basta tomar una base +\begin_inset Formula ${\cal B}$ +\end_inset + + de +\begin_inset Formula $V$ +\end_inset + + y, como +\begin_inset Formula $\phi(f(v))=\phi(Xv)=X\phi(v)=g(\phi(v))$ +\end_inset + +, estamos en las condiciones del anterior apartado. +\end_layout + +\begin_layout Enumerate +\begin_inset Argument item:1 +status open + +\begin_layout Plain Layout +\begin_inset Formula $\impliedby]$ +\end_inset + + +\end_layout + +\end_inset + +Por cambio de base podemos suponer +\begin_inset Formula $M_{{\cal B}}(f)=M_{{\cal B}'}(g)\eqqcolon(a_{ij})_{1\leq i,j\leq n}$ +\end_inset + +, y si +\begin_inset Formula ${\cal B}=(b_{1},\dots,b_{n})$ +\end_inset + + y +\begin_inset Formula ${\cal B}'=(b'_{1},\dots,b'_{n})$ +\end_inset + +, tomando el isomorfismo vectorial +\begin_inset Formula $\phi:V\to W$ +\end_inset + + que lleva cada +\begin_inset Formula $b_{i}$ +\end_inset + + a +\begin_inset Formula $b'_{i}$ +\end_inset + + y viéndolo como un +\begin_inset Formula $K[X]$ +\end_inset + +-isomorfismo +\begin_inset Formula $\phi:M\to N$ +\end_inset + +, +\begin_inset Formula $\phi(Xb_{i})=\phi(f(b_{i}))=\phi(\sum_{j}a_{ji}b_{j})=\sum_{j}a_{ji}b'_{j}=g(b'_{i})=X\phi(b_{i})$ +\end_inset + +. +\end_layout + +\end_deeper +\begin_layout Standard +Si +\begin_inset Formula $A$ +\end_inset + + es una matriz cuadrada, llamamos +\begin_inset Formula $\text{rk}A$ +\end_inset + + al rango de +\begin_inset Formula $A$ +\end_inset + +, y si +\begin_inset Formula $f:V\to V$ +\end_inset + + es un endomorfismo, +\begin_inset Formula $\text{rk}f\coloneqq\text{rk}M_{{\cal B}}(f)$ +\end_inset + + para cualquier base +\begin_inset Formula ${\cal B}$ +\end_inset + + de +\begin_inset Formula $V$ +\end_inset + +. +\end_layout + +\begin_layout Standard +\begin_inset Newpage pagebreak +\end_inset + +Llamamos +\series bold +polinomio mínimo +\series default + de +\begin_inset Formula $M$ +\end_inset + + a su mayor factor invariante, elegido mónico. +\end_layout + +\begin_layout Enumerate +Para +\begin_inset Formula $G\in K[X]$ +\end_inset + + y +\begin_inset Formula $j\in\mathbb{N}$ +\end_inset + +, +\begin_inset Formula $\text{ann}_{M}(G^{j})=\ker(G^{j}(f))$ +\end_inset + +, y +\begin_inset Formula $G^{j}\in\text{ann}_{K[X]}(M)\iff G^{j}(f)=0$ +\end_inset + +. +\end_layout + +\begin_deeper +\begin_layout Standard +\begin_inset Formula $G^{j}\in\text{ann}_{K[X]}(M)\iff\text{ann}_{M}(G^{j})=\ker(G^{j}(f))=M\iff G^{j}(f)=0$ +\end_inset + +. +\end_layout + +\end_deeper +\begin_layout Enumerate +El polinomio mínimo de +\begin_inset Formula $M$ +\end_inset + + es el menor +\begin_inset Formula $d_{t}\in K[X]$ +\end_inset + + (por divisibilidad) con +\begin_inset Formula $d_{t}(f)=0$ +\end_inset + +. +\end_layout + +\begin_deeper +\begin_layout Standard +Si este es +\begin_inset Formula $d_{t}$ +\end_inset + +, +\begin_inset Formula $(d_{t})=\text{ann}_{K[X]}(M)$ +\end_inset + +, y basta aplicar el apartado anterior. +\end_layout + +\end_deeper +\begin_layout Enumerate +Si +\begin_inset Formula $\varphi$ +\end_inset + + es el polinomio característico de +\begin_inset Formula $f$ +\end_inset + +, +\begin_inset Formula $d_{t}\mid\varphi$ +\end_inset + +. +\end_layout + +\begin_deeper +\begin_layout Standard +\begin_inset Formula $\varphi(f)=0$ +\end_inset + +. +\end_layout + +\end_deeper +\begin_layout Enumerate +Si +\begin_inset Formula $p$ +\end_inset + + es divisor irreducible de +\begin_inset Formula $M$ +\end_inset + + y +\begin_inset Formula $n\coloneqq\min\{s\in\mathbb{N}\mid\ker(p(f)^{s})=\ker(p(f)^{s+1})\}=\min\{s\in\mathbb{N}\mid\text{rk}(p(f)^{s})=\text{rk}(p(f)^{s+1})\}$ +\end_inset + +, entonces +\begin_inset Formula $M(p)=\ker(p(f)^{n})$ +\end_inset + +. +\end_layout + +\begin_deeper +\begin_layout Standard +\begin_inset Formula $\ker(p(f)^{s})=\ker(p(f)^{s+1})$ +\end_inset + + implica +\begin_inset Formula $\text{rk}(p(f)^{s})=\text{rk}(p(f)^{s+1})$ +\end_inset + +, y el recíproco se cumple porque entonces +\begin_inset Formula $\dim\ker(p(f)^{s})=\dim\ker(p(f)^{s+1})$ +\end_inset + + con +\begin_inset Formula $p(f)^{s}\subseteq p(f)^{s+1}$ +\end_inset + +. + Pero sabemos que +\begin_inset Formula $M(p)=\text{ann}_{M}(p^{n_{r}})=\ker(p(f)^{n_{r}})$ +\end_inset + + siendo +\begin_inset Formula $n_{r}=\min\{s\in\mathbb{N}\mid\text{ann}_{M}(p^{s})=\text{ann}_{M}(p^{s+1})\}=n$ +\end_inset + +. +\end_layout + +\end_deeper +\begin_layout Enumerate +La multiplicidad de +\begin_inset Formula $p$ +\end_inset + + como factor irreducible de +\begin_inset Formula $\varphi$ +\end_inset + + es +\begin_inset Formula $m\geq n$ +\end_inset + + y cumple +\begin_inset Formula $M(p)=\ker(p(f)^{m})$ +\end_inset + +. +\end_layout + +\begin_deeper +\begin_layout Standard +Sea +\begin_inset Formula $\varphi\eqqcolon p^{m}G$ +\end_inset + + con +\begin_inset Formula $p\nmid G$ +\end_inset + +, la identidad de Bézout +\begin_inset Formula $1=p^{m}R+GS$ +\end_inset + + implica, evaluando en +\begin_inset Formula $f$ +\end_inset + + sobre un +\begin_inset Formula $v\in V$ +\end_inset + +, que +\begin_inset Formula +\[ +v=p(f)^{m}(R(f)(v))+G(f)(S(f)(v))=R(f)(p(f)^{m}(v))+S(f)(G(f)(v)), +\] + +\end_inset + +y por el teorema de Cayley-Hamilton, +\begin_inset Formula $(p^{m}G)(f)=p^{m}(f)\circ G(f)=G(f)\circ p^{m}(f)=0$ +\end_inset + + y entonces +\begin_inset Formula $p(f)^{m}(R(f)(v))\in\ker(G(f))$ +\end_inset + + y +\begin_inset Formula $G(f)(S(f)(v))\in\ker(p(f)^{m})$ +\end_inset + +, luego +\begin_inset Formula $V=\ker(p(f)^{m})+\ker(G(f))$ +\end_inset + + y si +\begin_inset Formula $v\in\ker(p(f)^{m})\cap\ker(G(f))$ +\end_inset + + la igualdad anterior nos da +\begin_inset Formula $v=0+0=0$ +\end_inset + +, con lo que la suma es directa y +\begin_inset Formula $V=\text{ann}_{M}(p^{m})\oplus\text{ann}_{M}(G)$ +\end_inset + +, de donde +\begin_inset Formula $M(p)=\text{ann}_{M}(p^{m})=\ker(p(f)^{m})$ +\end_inset + + y, por la afirmación anterior, +\begin_inset Formula $m\geq n$ +\end_inset + +. +\end_layout + +\end_deeper +\begin_layout Enumerate +Sea +\begin_inset Formula $V=V_{1}\oplus\dots\oplus V_{t}$ +\end_inset + + con los +\begin_inset Formula $V_{i}$ +\end_inset + + +\begin_inset Formula $f$ +\end_inset + +-invariantes, el polinomio mínimo de +\begin_inset Formula $f$ +\end_inset + + es el mínimo común múltiplo de los polinomios mínimos de los +\begin_inset Formula $f|_{V_{i}}:V_{i}\to V_{i}$ +\end_inset + +. + +\end_layout + +\begin_deeper +\begin_layout Standard +Sean +\begin_inset Formula $\hat{f}_{i}\coloneqq f|_{V_{i}}:V_{i}\to V_{i}$ +\end_inset + +, +\begin_inset Formula $P$ +\end_inset + + el polinomio mínimo de +\begin_inset Formula $f$ +\end_inset + + y +\begin_inset Formula $Q_{i}$ +\end_inset + + el de +\begin_inset Formula $\hat{f}_{i}$ +\end_inset + +, como +\begin_inset Formula $P(\hat{f}_{i})=P(f)|_{V_{i}}=0$ +\end_inset + +, +\begin_inset Formula $Q_{i}\mid P$ +\end_inset + +, y si +\begin_inset Formula $F\in K[X]$ +\end_inset + + es tal que +\begin_inset Formula $Q_{1},\dots,Q_{t}\mid F$ +\end_inset + +, para +\begin_inset Formula $v\in V$ +\end_inset + +, sea +\begin_inset Formula $v\eqqcolon v_{1}+\dots+v_{t}$ +\end_inset + + con cada +\begin_inset Formula $v_{i}\in V_{i}$ +\end_inset + +, entonces +\begin_inset Formula $f(v)=f(v_{1})+\dots+f(v_{t})=\hat{f}_{1}(v_{1})+\dots+\hat{f}_{t}(v_{t})=0$ +\end_inset + +, luego +\begin_inset Formula $F(f)=0$ +\end_inset + + y +\begin_inset Formula $P\mid F$ +\end_inset + +. +\end_layout + +\end_deeper +\begin_layout Standard +\begin_inset ERT +status open + +\begin_layout Plain Layout + + +\backslash +begin{exinfo} +\end_layout + +\end_inset + + +\end_layout + +\begin_layout Enumerate +\begin_inset Argument item:1 +status open + +\begin_layout Plain Layout +7. +\end_layout + +\end_inset + +Si +\begin_inset Formula $f$ +\end_inset + + es nilpotente, su polinomio característico es +\begin_inset Formula $X^{n}$ +\end_inset + + con +\begin_inset Formula $n\coloneqq\dim V$ +\end_inset + +. +\end_layout + +\begin_layout Enumerate +\begin_inset Argument item:1 +status open + +\begin_layout Plain Layout +8. +\end_layout + +\end_inset + +Dados +\begin_inset Formula $f,g\in\text{End}_{K}V$ +\end_inset + +, las matrices asociadas a +\begin_inset Formula $f$ +\end_inset + + y +\begin_inset Formula $g$ +\end_inset + + son semejantes si y solo si +\begin_inset Formula $f$ +\end_inset + + y +\begin_inset Formula $g$ +\end_inset + + tienen el mismo polinomio característico con factorización irreducible + +\begin_inset Formula $\varphi=p_{1}^{m_{1}}\cdots p_{k}^{m_{k}}$ +\end_inset + + y +\begin_inset Formula $\text{rk}(p_{i}(f)^{s})=\text{rk}(p_{i}(g)^{s})$ +\end_inset + + para todo +\begin_inset Formula $i$ +\end_inset + + y +\begin_inset Formula $s\in\mathbb{N}^{*}$ +\end_inset + +, si y sólo si tienen el mismo polinomio mínimo con factorización irreducible + +\begin_inset Formula $d=p_{1}^{n_{1}}\cdots p_{k}^{n_{k}}$ +\end_inset + + y +\begin_inset Formula $\text{rk}(p_{i}(f)^{s})=\text{rk}(p_{i}(g)^{s})$ +\end_inset + + para todo +\begin_inset Formula $i$ +\end_inset + + y +\begin_inset Formula $s\in\mathbb{N}^{*}$ +\end_inset + +. +\end_layout + +\begin_layout Standard +Que dos endomorfismos tengan el mismo polinomio característico y el mismo + polinomio mínimo no implica que sus matrices asociadas bajo alguna base + sean semejantes. +\begin_inset ERT +status open + +\begin_layout Plain Layout + + +\backslash +end{exinfo} +\end_layout + +\end_inset + + +\end_layout + +\begin_layout Section +Formas canónicas +\end_layout + +\begin_layout Standard +Para +\begin_inset Formula $F\in K[X]$ +\end_inset + + mónico de grado +\begin_inset Formula $n>0$ +\end_inset + +, llamamos +\series bold +matriz compañera +\series default + de +\begin_inset Formula $F$ +\end_inset + + a +\begin_inset Formula +\[ +C(F)\coloneqq\begin{pmatrix} & & & -F_{0}\\ +1 & & & -F_{1}\\ + & \ddots & & \vdots\\ + & & 1 & -F_{n-1} +\end{pmatrix}\in{\cal M}_{n}(K), +\] + +\end_inset + +y para +\begin_inset Formula $r>0$ +\end_inset + + escribimos +\begin_inset Formula +\[ +C_{r}(F)=\begin{pmatrix}\boxed{C(F)} & \boxed{U}\\ + & \ddots & \ddots\\ + & & \ddots & \boxed{U}\\ + & & & \boxed{C(F)} +\end{pmatrix}\in{\cal M}_{rn}(K), +\] + +\end_inset + +donde +\begin_inset Formula +\[ +U\coloneqq\begin{pmatrix} & & 1\\ +\\ +\\ +\end{pmatrix}\in{\cal M}_{n}(K). +\] + +\end_inset + + +\end_layout + +\begin_layout Standard +El polinomio característico de un +\begin_inset Formula $C_{r}(F)$ +\end_inset + + es +\begin_inset Formula $F^{r}$ +\end_inset + +. + +\series bold +Demostración: +\series default + Primero vemos que el de +\begin_inset Formula $C(F)$ +\end_inset + + es +\begin_inset Formula $F$ +\end_inset + +. + Para +\begin_inset Formula $n\coloneqq\text{gr}F=1$ +\end_inset + +, +\begin_inset Formula $C(F)=(-F_{0})\in{\cal M}_{1}(K)$ +\end_inset + + y +\begin_inset Formula $\det(XI-C(F))=X+F_{0}=F$ +\end_inset + +. + Para +\begin_inset Formula $n>1$ +\end_inset + +, +\begin_inset Formula +\begin{align*} +\det(XI-C(F)) & =\begin{vmatrix}X & & & F_{0}\\ +-1 & \ddots & & \vdots\\ + & \ddots & X & F_{n-2}\\ + & & -1 & X+F_{n-1} +\end{vmatrix}=\\ + & =X\begin{vmatrix}X & & & F_{1}\\ +-1 & \ddots & & \vdots\\ + & \ddots & X & F_{n-2}\\ + & & -1 & X+F_{n-1} +\end{vmatrix}+(-1)^{n+1}F_{0}\begin{vmatrix}-1 & X\\ + & \ddots & \ddots\\ + & & \ddots & X\\ + & & & -1 +\end{vmatrix}=\\ + & =X(F_{1}+XF_{2}+\dots+X^{n-2}F_{n-1}+X^{n-1}F_{n})+(-1)^{n+1}(-1)^{n-1}F_{0}=F, +\end{align*} + +\end_inset + +donde para el primer sumando hemos usado la hipótesis de inducción. + Para +\begin_inset Formula $C_{r}F$ +\end_inset + +, el caso +\begin_inset Formula $r=1$ +\end_inset + + está hecho, y para +\begin_inset Formula $r>1$ +\end_inset + +, +\begin_inset Formula +\[ +\det(XI-C_{r}(F))=\begin{vmatrix}\boxed{C(F)} & \boxed{U}\\ + & \ddots & \ddots\\ + & & \ddots & \boxed{U}\\ + & & & \boxed{C(F)} +\end{vmatrix}=\det(C(F))\det(C_{r-1}(F))=FF^{r-1}=F^{r}. +\] + +\end_inset + + +\end_layout + +\begin_layout Standard +\begin_inset ERT +status open + +\begin_layout Plain Layout + + +\backslash +begin{exinfo} +\end_layout + +\end_inset + + +\end_layout + +\begin_layout Standard +Sean +\begin_inset Formula $p\in K[X]$ +\end_inset + + un divisor irreducible del polinomio característico de +\begin_inset Formula $f$ +\end_inset + +, +\begin_inset Formula $h\in\mathbb{N}^{*}$ +\end_inset + + y +\begin_inset Formula $\{v_{1},\dots,v_{t}\}\subseteq\ker(p(f)^{h})$ +\end_inset + +, +\begin_inset Formula $(\overline{v_{1}},\dots,\overline{v_{t}})$ +\end_inset + + es base de +\begin_inset Formula $\frac{\ker(p(f)^{h})}{\ker(p(f)^{h-1})}$ +\end_inset + + como +\begin_inset Formula $\frac{K[X]}{(p)}$ +\end_inset + +-espacio vectorial si y sólo si +\begin_inset Formula $\left(\overline{f^{i}(v_{j})}\right)_{0\leq i<d}^{1\leq j\leq t}$ +\end_inset + + es base de +\begin_inset Formula $\frac{\ker(p(f)^{h})}{\ker(p(f)^{h-1})}$ +\end_inset + + como +\begin_inset Formula $K$ +\end_inset + +-espacio vectorial. + En particular, si +\begin_inset Formula $p\in K[X]$ +\end_inset + + es mónico irreducible con +\begin_inset Formula $p(f)=0$ +\end_inset + + y +\begin_inset Formula $\{v_{1},\dots,v_{t}\}\subseteq V$ +\end_inset + +, +\begin_inset Formula $(v_{1},\dots,v_{t})$ +\end_inset + + es base de +\begin_inset Formula $M$ +\end_inset + + como +\begin_inset Formula $\frac{K[X]}{(p)}$ +\end_inset + +-espacio vectorial si y sólo si +\begin_inset Formula $(f^{i}(v_{j}))_{0\leq i<d}^{1\leq j\leq t}$ +\end_inset + + es base del +\begin_inset Formula $K$ +\end_inset + +-espacio vectorial +\begin_inset Formula $V$ +\end_inset + +. +\end_layout + +\begin_layout Standard +\begin_inset ERT +status open + +\begin_layout Plain Layout + + +\backslash +end{exinfo} +\end_layout + +\end_inset + + +\end_layout + +\begin_layout Standard +Sean +\begin_inset Formula $F\in K[X]$ +\end_inset + + un polinomio mónico de grado +\begin_inset Formula $n>0$ +\end_inset + + y +\begin_inset Formula $r\in\mathbb{N}^{*}$ +\end_inset + +, +\begin_inset Formula $M\cong\frac{K[X]}{(F^{r})}$ +\end_inset + + si y sólo si existe +\begin_inset Formula $v\in V$ +\end_inset + + tal que +\begin_inset Formula $(f^{s}(v))_{s=0}^{rn-1}$ +\end_inset + + es base de +\begin_inset Formula $v$ +\end_inset + + y +\begin_inset Formula $F(f)^{r}(v)=0$ +\end_inset + +, si y sólo si existe una base +\begin_inset Formula ${\cal B}$ +\end_inset + + de +\begin_inset Formula $V$ +\end_inset + + con +\begin_inset Formula $M_{{\cal B}}(f)=C_{r}(F)$ +\end_inset + +, en cuyo caso el polinomio mínimo de +\begin_inset Formula $M$ +\end_inset + + coincide con el polinomio característico de +\begin_inset Formula $f$ +\end_inset + + y es +\begin_inset Formula $F^{r}$ +\end_inset + +. +\end_layout + +\begin_layout Description +\begin_inset Formula $1\implies3]$ +\end_inset + + Sea +\begin_inset Formula ${\cal \tilde{B}}_{j}\coloneqq(\overline{F^{j}},\overline{XF^{j}},\dots,\overline{X^{n-1}F^{j}})$ +\end_inset + + para +\begin_inset Formula $j\in\{0,\dots,r-1\}$ +\end_inset + + y +\begin_inset Quotes cld +\end_inset + + +\begin_inset Formula $\star$ +\end_inset + + +\begin_inset Quotes crd +\end_inset + + la concatenación de secuencias, +\begin_inset Formula $\tilde{{\cal B}}\coloneqq\tilde{{\cal B}}_{r-1}\star\dots\star\tilde{{\cal B}}_{1}\star\tilde{{\cal B}}_{0}$ +\end_inset + + es base de +\begin_inset Formula $\frac{K[X]}{(F^{r})}$ +\end_inset + + como +\begin_inset Formula $K$ +\end_inset + +-espacio vectorial. + Para verlo, como +\begin_inset Formula $|\tilde{{\cal B}}|=rn=\dim\frac{K[X]}{(F^{r})}$ +\end_inset + +, basta ver que +\begin_inset Formula $\tilde{{\cal B}}$ +\end_inset + + es linealmente independiente. + Si +\begin_inset Formula $r=1$ +\end_inset + +, +\begin_inset Formula $\tilde{{\cal B}}=(\overline{1},\overline{X},\dots,\overline{X}^{n-1})$ +\end_inset + + y el resultado es claro. + Si +\begin_inset Formula $r>1$ +\end_inset + +, sea +\begin_inset Formula $\sum_{i=0}^{n-1}\sum_{j=0}^{r-1}\lambda_{ij}X^{i}F^{j}=0\in\frac{K[X]}{(F^{r})}$ +\end_inset + + para ciertos +\begin_inset Formula $\lambda_{ij}\in K$ +\end_inset + +, entonces +\begin_inset Formula $\sum_{ij}\lambda_{ij}X^{i}F^{j}=F^{r}G\in K[X]$ +\end_inset + + para cierto +\begin_inset Formula $G\in K[X]$ +\end_inset + +, pero +\begin_inset Formula $\sum_{ij}\lambda_{ij}X^{i}F^{j}=\sum_{i=0}^{n-1}\lambda_{i0}X^{i}+F(\sum_{i=0}^{n-1}\sum_{j=1}^{r-1}\lambda_{ij}X^{i}F^{j})$ +\end_inset + +, luego debe ser +\begin_inset Formula $F\mid\sum_{i=0}^{n-1}\lambda_{i0}X^{i}$ +\end_inset + + y, como +\begin_inset Formula $\text{gr}F=n$ +\end_inset + +, +\begin_inset Formula $\sum_{i=0}^{n-1}\lambda_{i0}X^{i}=0$ +\end_inset + + y cada +\begin_inset Formula $\lambda_{i0}=0$ +\end_inset + +. + Pero entonces, dividiendo por +\begin_inset Formula $F$ +\end_inset + +, +\begin_inset Formula $\sum_{i=0}^{n-1}\sum_{j=1}^{r-1}\lambda_{ij}X^{i}F^{j-1}=F^{r-1}G$ +\end_inset + + y por hipótesis de inducción todos los +\begin_inset Formula $\lambda_{ij}=0$ +\end_inset + +. + Sea +\begin_inset Formula $g:\frac{K[X]}{(F^{r})}\to\frac{K[X]}{(F^{r})}$ +\end_inset + + el endomorfismo +\begin_inset Formula $G\mapsto XG$ +\end_inset + +, queremos ver que +\begin_inset Formula $C\coloneqq M_{{\cal B}}(g)=C_{r}(F)$ +\end_inset + +. + Para +\begin_inset Formula $j\in\{0,\dots,r-1\}$ +\end_inset + +, +\begin_inset Formula $g(\tilde{{\cal B}}_{j})=(\overline{XF^{j}},\overline{X^{2}F^{j}},\dots,\overline{X^{n}F^{j}})$ +\end_inset + +, pero +\begin_inset Formula +\[ +\overline{F^{j+1}}-\overline{X^{n}F^{j}}=\overline{(F-X^{n})F^{j}}=\left(\sum_{i=0}^{n-1}F_{i}\overline{X^{i}}\right)\overline{F^{j}}=\sum_{i=0}^{n-1}F_{i}\overline{X^{i}F^{j}} +\] + +\end_inset + +y por tanto +\begin_inset Formula +\[ +\overline{X^{n}F^{j}}=\overline{F^{j+1}}-\sum_{i=0}^{n-1}F_{i}\overline{X^{i}F^{j}}. +\] + +\end_inset + +Entonces, para +\begin_inset Formula $j=r-1$ +\end_inset + +, +\begin_inset Formula $\overline{F^{r+1}}=0$ +\end_inset + + y las primeras +\begin_inset Formula $n$ +\end_inset + + columnas de +\begin_inset Formula $C$ +\end_inset + + solo tienen entradas no nulas en las primeras +\begin_inset Formula $n$ +\end_inset + + filas y estas entradas son +\begin_inset Formula +\[ +\begin{pmatrix} & & & -F_{0}\\ +1 & & & -F_{1}\\ + & \ddots & & \vdots\\ + & & 1 & -F_{n-1} +\end{pmatrix}=C(F), +\] + +\end_inset + +mientras que para +\begin_inset Formula $j<r-1$ +\end_inset + +, +\begin_inset Formula $\overline{F^{j+1}}$ +\end_inset + + es un elemento de la base y las columnas de +\begin_inset Formula $C$ +\end_inset + + correspondientes a +\begin_inset Formula $\tilde{{\cal B}}_{j}$ +\end_inset + + solo tienen entradas no nulas en las filas de +\begin_inset Formula $\tilde{{\cal B}}_{j}$ +\end_inset + +, formando la submatriz +\begin_inset Formula $C(F)$ +\end_inset + +, y en la columna de +\begin_inset Formula $\overline{X^{n-1}F^{j}}$ +\end_inset + + con la fila de +\begin_inset Formula $\overline{F^{j+1}}$ +\end_inset + +, dando la submatriz +\begin_inset Formula $U$ +\end_inset + + de la definición de +\begin_inset Formula $C_{r}(F)$ +\end_inset + +. + Finalmente, el +\begin_inset Formula $K[X]$ +\end_inset + +-módulo generado por +\begin_inset Formula $(\frac{K[X]}{(F^{r})},g)$ +\end_inset + + es claramente +\begin_inset Formula $\frac{K[X]}{(F^{r})}$ +\end_inset + +, y si +\begin_inset Formula $\phi:M\to\frac{K[X]}{(F^{r})}$ +\end_inset + + es el isomorfismo de la hipótesis, como +\begin_inset Formula $\phi(f(v))=\phi(Xv)=X\phi(v)=g(\phi(v))$ +\end_inset + +, tomando la base +\begin_inset Formula ${\cal B}$ +\end_inset + + de +\begin_inset Formula $V$ +\end_inset + + inducida por +\begin_inset Formula $\tilde{{\cal B}}$ +\end_inset + + mediante +\begin_inset Formula $\phi^{-1}$ +\end_inset + + queda +\begin_inset Formula $M_{{\cal B}}(f)=M_{\tilde{{\cal B}}}(g)=C_{r}(F)$ +\end_inset + +, y el polinomio característico de +\begin_inset Formula $f$ +\end_inset + + es el de +\begin_inset Formula $C_{r}(F)$ +\end_inset + + que es +\begin_inset Formula $F^{r}$ +\end_inset + +. +\end_layout + +\begin_layout Description +\begin_inset Formula $3\implies1]$ +\end_inset + + Tomando +\begin_inset Formula $g$ +\end_inset + + y +\begin_inset Formula $\tilde{{\cal B}}$ +\end_inset + + de la parte anterior de la prueba, +\begin_inset Formula $M_{{\cal B}}(f)=C_{r}(f)=M_{\tilde{B}}(g)$ +\end_inset + + y, como esto también significa que +\begin_inset Formula $\dim V=\dim\frac{K[X]}{(F^{r})}$ +\end_inset + +, queda el isomorfismo +\begin_inset Formula $M\to\frac{K[X]}{(F^{r})}$ +\end_inset + + deseado, y como +\begin_inset Formula $\text{ann}_{K[X]}(M)=\text{ann}_{K[X]}\frac{K[X]}{(F^{r})}=(F^{r})$ +\end_inset + + y +\begin_inset Formula $F^{r}$ +\end_inset + + es mónico, +\begin_inset Formula $F^{r}$ +\end_inset + + es el polinomio mínimo de +\begin_inset Formula $M$ +\end_inset + +. +\end_layout + +\begin_layout Description +\begin_inset Formula $1\implies2]$ +\end_inset + + Sea +\begin_inset Formula $\phi:\frac{K[X]}{(F^{r})}\to M$ +\end_inset + + un +\begin_inset Formula $K[X]$ +\end_inset + +-isomorfismo, que induce un +\begin_inset Formula $K$ +\end_inset + +-isomorfismo +\begin_inset Formula $\phi:\frac{K[X]}{(F^{r})}\to V$ +\end_inset + +, como +\begin_inset Formula $(\overline{1},\overline{X},\dots,\overline{X}^{rn-1})$ +\end_inset + + es base de +\begin_inset Formula $\frac{K[X]}{(F^{r})}$ +\end_inset + +, tomando +\begin_inset Formula $v\coloneqq\phi(\overline{1})$ +\end_inset + +, +\begin_inset Formula $(\overline{v},\overline{f(v)},\dots,\overline{f^{rn-1}(v)})$ +\end_inset + + es base de +\begin_inset Formula $V$ +\end_inset + + y +\begin_inset Formula $F(f)^{r}(v)=F^{r}(f)(v)=\overline{F^{r}}=0$ +\end_inset + +. +\end_layout + +\begin_layout Description +\begin_inset Formula $2\implies1]$ +\end_inset + + Para +\begin_inset Formula $w\in M=V$ +\end_inset + +, existen +\begin_inset Formula $b_{s}\in K$ +\end_inset + + con +\begin_inset Formula $w=\sum_{s=0}^{rn-1}b_{s}f^{s}(v)=(\sum_{s=0}^{rn-1}b_{s}X^{s})v$ +\end_inset + +, luego +\begin_inset Formula $M=(v)$ +\end_inset + + y +\begin_inset Formula $\pi:K[X]\twoheadrightarrow M$ +\end_inset + + dada por +\begin_inset Formula $\pi(G)\coloneqq Gv$ +\end_inset + + es un epimorfismo, pero +\begin_inset Formula $F^{r}\in\ker\pi$ +\end_inset + +, por lo que +\begin_inset Formula $\pi$ +\end_inset + + induce un epimorfismo +\begin_inset Formula $\hat{\pi}:\frac{K[X]}{(F^{r})}\twoheadrightarrow M$ +\end_inset + +, y como +\begin_inset Formula $\dim_{K}\frac{K[X]}{(F^{r})}=rn=\dim_{K}M$ +\end_inset + +, +\begin_inset Formula $\hat{\pi}$ +\end_inset + + es un isomorfismo. +\end_layout + +\begin_layout Standard + +\series bold +Teorema de clasificación de endomorfismos: +\series default + Existen una base +\begin_inset Formula ${\cal B}$ +\end_inset + + de +\begin_inset Formula $V$ +\end_inset + +, +\begin_inset Formula $h_{1},\dots,h_{t}\in\mathbb{N}^{*}$ +\end_inset + + y +\begin_inset Formula $p_{1},\dots,p_{t}\in K[X]$ +\end_inset + + irreducibles tales que +\begin_inset Formula +\[ +M_{{\cal B}}(f)=\begin{pmatrix}\boxed{C_{h_{1}}(p_{1})}\\ + & \ddots\\ + & & \boxed{C_{h_{t}}(p_{t})} +\end{pmatrix}, +\] + +\end_inset + +siendo esta matriz, llamada +\series bold +forma canónica +\series default + de +\begin_inset Formula $f$ +\end_inset + +, unívocamente determinada por +\begin_inset Formula $f$ +\end_inset + + salvo reordenación de bloques y formada, exactamente, por +\begin_inset Formula +\[ +\frac{\text{rk}(p(f)^{h-1})+\text{rk}(p(f)^{h+1})-2\text{rk}(p(f)^{h})}{\text{rg}p} +\] + +\end_inset + +bloques +\begin_inset Formula $C_{h}(p)$ +\end_inset + + para cada divisor irreducible mónico +\begin_inset Formula $p$ +\end_inset + + del polinomio característico de +\begin_inset Formula $f$ +\end_inset + + y cada +\begin_inset Formula $h\leq\min\{s\in\mathbb{N}^{*}\mid\text{rk}(p(f)^{s})=\text{rk}(p(f)^{s+1})\}$ +\end_inset + +. +\end_layout + +\begin_layout Standard + +\series bold +Demostración: +\series default + Sea +\begin_inset Formula $M=\bigoplus_{i=1}^{k}\bigoplus_{j=1}^{r_{i}}N_{ij}$ +\end_inset + + una descomposición canónica con cada +\begin_inset Formula $N_{ij}\cong\frac{K[X]}{(p_{i}^{n_{ij}})}$ +\end_inset + +, cada +\begin_inset Formula $N_{ij}$ +\end_inset + + es un subespacio +\begin_inset Formula $f$ +\end_inset + +-invariante de +\begin_inset Formula $V$ +\end_inset + +, por lo que existe una base +\begin_inset Formula ${\cal B}_{ij}$ +\end_inset + + de +\begin_inset Formula $N_{ij}$ +\end_inset + + como +\begin_inset Formula $K$ +\end_inset + +-espacio vectorial con +\begin_inset Formula $M_{{\cal B}_{ij}}(f|_{N_{ij}})=C_{n_{ij}}(p_{i})$ +\end_inset + +, y uniendo las bases se obtiene una base +\begin_inset Formula ${\cal B}$ +\end_inset + + con +\begin_inset Formula $M_{{\cal B}}(f)$ +\end_inset + + de la forma buscada. +\end_layout + +\begin_layout Standard +Si ahora +\begin_inset Formula ${\cal B}'$ +\end_inset + + es otra base tal que +\begin_inset Formula $M_{{\cal B}}(f)$ +\end_inset + + está formada por bloques diagonales +\begin_inset Formula $(C_{h_{s}}(q_{s}))_{s=1}^{u}$ +\end_inset + +, +\begin_inset Formula $V$ +\end_inset + + se puede descomponer en suma directa interna de subespacios +\begin_inset Formula $f$ +\end_inset + +-invariantes +\begin_inset Formula $W_{s}$ +\end_inset + + con bases +\begin_inset Formula ${\cal B}_{s}$ +\end_inset + + tales que, si +\begin_inset Formula $\hat{f}_{s}\coloneqq f|_{W_{s}}:W_{s}\to W_{S}$ +\end_inset + +, +\begin_inset Formula $M_{{\cal B}_{s}}(\hat{f}_{s})=C_{h_{s}}(q_{s})$ +\end_inset + +, con lo que el módulo generado por +\begin_inset Formula $(W_{s},\hat{f}_{s})$ +\end_inset + + es un submódulo no nulo de +\begin_inset Formula $M$ +\end_inset + + isomorfo a +\begin_inset Formula $\frac{K[X]}{(q_{s}^{h_{s}})}$ +\end_inset + +, de modo que +\begin_inset Formula $M=\bigoplus_{s=1}^{u}\frac{K[X]}{(q_{s}^{h_{s}})}$ +\end_inset + + y, como las descomposiciones de esta forma son únicas, los bloques son + los mismos que en la descomposición que hemos encontrado y los irreducibles + que aparecen son los divisores irreducibles de +\begin_inset Formula $f$ +\end_inset + +. +\end_layout + +\begin_layout Standard +Para la última parte, otra forma de obtener la forma canónica de cada +\begin_inset Formula $M(p)$ +\end_inset + + es usando los +\begin_inset Formula $(F_{h})_{h=1}^{n}$ +\end_inset + + con +\begin_inset Formula $n\coloneqq\max_{i}r_{i}=\min\{s\in\mathbb{N}^{*}\mid\text{ann}_{M(p)}(p^{s})=\text{ann}_{M(p)}(p^{s+1})\}$ +\end_inset + +, cada +\begin_inset Formula $F_{h}\subseteq\text{ann}_{M}(p^{h})$ +\end_inset + + y tales que cada +\begin_inset Formula $F_{h}\dot{\cup}pF_{h+1}\dot{\cup}\dots\dot{\cup}p^{n-h}F_{n}$ +\end_inset + + induce una base de +\begin_inset Formula $\frac{\text{ann}_{M}(p^{h})}{\text{ann}_{M}(p^{h-1})}=\frac{\ker(p(f)^{h})}{\ker(p(f)^{h-1})}$ +\end_inset + + como +\begin_inset Formula $\frac{K[X]}{(p)}$ +\end_inset + +-espacio vectorial. + Si +\begin_inset Formula $\hat{f}\coloneqq f|_{M(p)}:M(p)\to M(p)$ +\end_inset + +, +\begin_inset Formula $\text{ann}_{M(p)}(p^{s})=\ker(p(\hat{f})^{s})=\ker(p(f)^{s})$ +\end_inset + + ya que +\begin_inset Formula $p(f)^{s}(v)=0\implies p^{s}v=0\implies v\in\text{ann}_{M}(p^{s})\subseteq M(p)$ +\end_inset + +, de modo que +\begin_inset Formula $n=\min\{s\in\mathbb{N}^{*}\mid\text{rk}(p(f)^{s})=\text{rk}(p(f)^{s+1})\}$ +\end_inset + +. + Además, el número de apariciones de +\begin_inset Formula $p^{s}$ +\end_inset + + como divisor elemental de +\begin_inset Formula $M$ +\end_inset + + es +\begin_inset Formula $\mu_{h}=\delta_{h}-\delta_{h+1}\coloneqq\dim_{\frac{K[X]}{(p)}}\frac{\ker(p(f)^{h})}{\ker(p(f)^{h-1})}-\dim_{\frac{K[X]}{(p)}}\frac{\ker(p(f)^{h+1})}{\ker(p(f)^{h})}$ +\end_inset + +, pero es fácil ver que todo +\begin_inset Formula $\frac{K[X]}{(p)}$ +\end_inset + +-espacio vectorial +\begin_inset Formula $U$ +\end_inset + + es un +\begin_inset Formula $K$ +\end_inset + +-espacio vectorial y +\begin_inset Formula $\dim_{\frac{K[X]}{(p)}}(U)=\frac{\dim_{K}(U)}{\text{gr}p}$ +\end_inset + +, luego +\begin_inset Formula $\mu_{h}=\frac{1}{\text{gr}p}(\dim_{K}\ker(p(f)^{h})-\dim_{K}\ker(p(f)^{h-1})-\dim_{K}\ker(p(f)^{h+1})+\dim_{K}\ker(p(f)^{h}))$ +\end_inset + + y el resultado sale de que +\begin_inset Formula $\dim_{K}\ker(p(f)^{h})=\dim_{K}V-\text{rk}(p(f)^{h})$ +\end_inset + +. +\end_layout + +\begin_layout Standard +Como +\series bold +teorema +\series default +, toda +\begin_inset Formula $C\in{\cal M}_{n}(K)$ +\end_inset + + es semejante a una de la forma +\begin_inset Formula +\[ +\begin{pmatrix}\boxed{C_{h_{1}}(p_{1})}\\ + & \ddots\\ + & & \boxed{C_{h_{t}}(p_{t})} +\end{pmatrix} +\] + +\end_inset + +con los +\begin_inset Formula $p_{i}\in K[X]$ +\end_inset + + irreducibles, siendo esta matriz, llamada +\series bold +forma canónica +\series default + de +\begin_inset Formula $C$ +\end_inset + +, unívocamente determinada por +\begin_inset Formula $C$ +\end_inset + + salvo reordenación de bloques y formada, exactamente, por +\begin_inset Formula +\[ +\frac{\text{rk}(p(C)^{h-1})+\text{rk}(p(C)^{h+1})-2\text{rk}(p(C)^{h})}{\text{rg}p} +\] + +\end_inset + +bloques +\begin_inset Formula $C_{h}(p)$ +\end_inset + + para cada divisor irreducible mónico +\begin_inset Formula $p$ +\end_inset + + del polinomio característico de +\begin_inset Formula $p$ +\end_inset + + y cada +\begin_inset Formula $h\leq\min\{s\in\mathbb{N}^{*}\mid\text{rk}(p(f)^{s})=\text{rk}(p(f)^{s+1})\}$ +\end_inset + +. +\end_layout + +\begin_layout Standard +\begin_inset ERT +status open + +\begin_layout Plain Layout + + +\backslash +begin{exinfo} +\end_layout + +\end_inset + + +\end_layout + +\begin_layout Standard +Si +\begin_inset Formula $F\in K[X]$ +\end_inset + + es no constante con factorización irreducible +\begin_inset Formula $F=p_{1}^{m_{1}}\cdots p_{k}^{m_{k}}$ +\end_inset + + con los +\begin_inset Formula $p_{i}$ +\end_inset + + mónicos irreducibles distintos, la forma canónica de la matriz compañera + +\begin_inset Formula $C$ +\end_inset + + de +\begin_inset Formula $F$ +\end_inset + + es +\begin_inset Formula +\[ +\begin{pmatrix}\boxed{C_{m_{1}}(p_{1})}\\ + & \ddots\\ + & & \boxed{C_{m_{k}}(p_{k})} +\end{pmatrix}, +\] + +\end_inset + +y en particular +\begin_inset Formula $C$ +\end_inset + + tiene un único divisor elemental asociado a cada divisor mónico irreducible + de +\begin_inset Formula $F$ +\end_inset + +. +\end_layout + +\begin_layout Standard +\begin_inset ERT +status open + +\begin_layout Plain Layout + + +\backslash +end{exinfo} +\end_layout + +\end_inset + + +\end_layout + +\begin_layout Section +Formas de Jordan +\end_layout + +\begin_layout Standard +\begin_inset ERT +status open + +\begin_layout Plain Layout + + +\backslash +begin{exinfo} +\end_layout + +\end_inset + + +\end_layout + +\begin_layout Standard +Un +\series bold +valor propio +\series default + de +\begin_inset Formula $f$ +\end_inset + + es un +\begin_inset Formula $\lambda\in K$ +\end_inset + + tal que +\begin_inset Formula $X-\lambda$ +\end_inset + + divide al polinomio característico de +\begin_inset Formula $f$ +\end_inset + +, y su +\series bold +multiplicidad geométrica +\series default + es +\begin_inset Formula $\nu_{\text{g}}(\lambda)\coloneqq\dim_{K}\ker(f-\lambda1_{V})>0$ +\end_inset + +. +\end_layout + +\begin_layout Standard +\begin_inset ERT +status open + +\begin_layout Plain Layout + + +\backslash +end{exinfo} +\end_layout + +\end_inset + + +\end_layout + +\begin_layout Standard +Para +\begin_inset Formula $\lambda\in K$ +\end_inset + +, +\begin_inset Formula $C(X-\lambda)=(\lambda)\in{\cal M}_{1}(K)$ +\end_inset + + y, para +\begin_inset Formula $r>0$ +\end_inset + +, llamamos +\series bold +bloque de Jordan +\series default + de tamaño +\begin_inset Formula $r$ +\end_inset + + asociado al valor propio +\begin_inset Formula $\lambda$ +\end_inset + + a +\begin_inset Formula $J_{r}(\lambda)\coloneqq C_{r}(X-\lambda)$ +\end_inset + +. +\end_layout + +\begin_layout Standard +\begin_inset ERT +status open + +\begin_layout Plain Layout + + +\backslash +begin{samepage} +\end_layout + +\end_inset + + +\end_layout + +\begin_layout Standard + +\series bold +Teorema de Jordan: +\end_layout + +\begin_layout Enumerate +Si el polinomio característico de +\begin_inset Formula $f$ +\end_inset + + se descompone completamente en +\begin_inset Formula $K[X]$ +\end_inset + +, existe una base +\begin_inset Formula ${\cal B}$ +\end_inset + + de +\begin_inset Formula $V$ +\end_inset + + tal que +\begin_inset Formula +\[ +M_{{\cal B}}(f)=\begin{pmatrix}\boxed{J_{h_{1}}(\lambda_{1})}\\ + & \ddots\\ + & & \boxed{J_{h_{t}}(\lambda_{t})} +\end{pmatrix} +\] + +\end_inset + +para ciertos +\begin_inset Formula $h_{i}>0$ +\end_inset + + y +\begin_inset Formula $\lambda_{i}\in K$ +\end_inset + +, siendo esta matriz unívocamente determinada por +\begin_inset Formula $f$ +\end_inset + + salvo reordenación de bloques y formada por +\begin_inset Formula $\text{rk}((f-\lambda1_{V})^{h-1})+\text{rk}((f-\lambda1_{V})^{h+1})-2\text{rk}((f-\lambda1_{V})^{h})$ +\end_inset + + bloques +\begin_inset Formula $J_{h}(\lambda)$ +\end_inset + + para cada valor propio +\begin_inset Formula $\lambda$ +\end_inset + + de +\begin_inset Formula $f$ +\end_inset + + y cada +\begin_inset Formula $h\in\mathbb{N}^{*}$ +\end_inset + +. +\end_layout + +\begin_deeper +\begin_layout Standard +Por el teorema de clasificación de endomorfismos usando que los irreducibles + del polinomio característico son los +\begin_inset Formula $X-\lambda$ +\end_inset + + con +\begin_inset Formula $\lambda$ +\end_inset + + valor propio de +\begin_inset Formula $f$ +\end_inset + + y que el grado de estos es 1. +\end_layout + +\end_deeper +\begin_layout Enumerate +Si +\begin_inset Formula $C\in{\cal M}_{n}(K)$ +\end_inset + + es una matriz cuadrada cuyo polinomio característico se descompone completament +e en +\begin_inset Formula $K[X]$ +\end_inset + +, +\begin_inset Formula $C$ +\end_inset + + es semejante a una matriz como la del apartado anterior, única salvo reordenaci +ón de bloques y formada por +\begin_inset Formula $\text{rk}((C-\lambda I)^{h-1})+\text{rk}((C-\lambda I)^{h+1})-2\text{rk}((C-\lambda I)^{h})$ +\end_inset + + bloques +\begin_inset Formula $J_{h}(\lambda)$ +\end_inset + + para cada valor propio +\begin_inset Formula $\lambda$ +\end_inset + + de +\begin_inset Formula $C$ +\end_inset + + y cada +\begin_inset Formula $h\in\mathbb{N}^{*}$ +\end_inset + +. +\end_layout + +\begin_layout Standard +\begin_inset ERT +status open + +\begin_layout Plain Layout + + +\backslash +end{samepage} +\end_layout + +\end_inset + + +\end_layout + +\begin_layout Standard +Sean +\begin_inset Formula $\varphi$ +\end_inset + + el polinomio característico de +\begin_inset Formula $f$ +\end_inset + + y +\begin_inset Formula $p$ +\end_inset + + un divisor mónico irreducible de grado +\begin_inset Formula $d$ +\end_inset + + y multiplicidad 1: +\end_layout + +\begin_layout Enumerate +\begin_inset Formula $M(p)=\ker(p(f))\cong\frac{K[X]}{(p)}$ +\end_inset + +. +\end_layout + +\begin_deeper +\begin_layout Standard +Claramente +\begin_inset Formula $\ker(p(f))\subseteq M(p)$ +\end_inset + +, y si +\begin_inset Formula $x\in M(p)$ +\end_inset + +, existe +\begin_inset Formula $s>0$ +\end_inset + + con +\begin_inset Formula $p^{s}x=0$ +\end_inset + + y +\begin_inset Formula $x\in\ker(p(f)^{s})$ +\end_inset + +, pero como la multiplicidad de +\begin_inset Formula $p$ +\end_inset + + en +\begin_inset Formula $\varphi$ +\end_inset + + es 1, +\begin_inset Formula $\ker(p(f))=\ker(p(f)^{s})$ +\end_inset + +. +\end_layout + +\end_deeper +\begin_layout Enumerate +Para todo +\begin_inset Formula $v\in M(p)\setminus\{0\}$ +\end_inset + +, +\begin_inset Formula ${\cal B}\coloneqq\{f^{s}(v)\}_{s\in\mathbb{N}_{d}}$ +\end_inset + + es una base de +\begin_inset Formula $\ker(p(f))$ +\end_inset + + y +\begin_inset Formula $M_{{\cal B}}(f|_{M(p)}:M(p)\to M(p))=C_{1}(p)$ +\end_inset + +. +\end_layout + +\begin_deeper +\begin_layout Standard +Sean +\begin_inset Formula $\phi_{0}:\frac{K[X]}{(p)}\to M(p)$ +\end_inset + + un isomorfismo, +\begin_inset Formula $\overline{q}\coloneqq(\phi_{0})^{-1}(v)\neq0$ +\end_inset + + y +\begin_inset Formula $\pi:\frac{K[X]}{(p)}\twoheadrightarrow\frac{K[X]}{(p)}$ +\end_inset + + el epimorfismo +\begin_inset Formula $\pi(\overline{F})\coloneqq\overline{qF}$ +\end_inset + +, como +\begin_inset Formula $\gcd\{p,q\}=1$ +\end_inset + +, existe una identidad de Bézout +\begin_inset Formula $1=pR+qS$ +\end_inset + +, luego +\begin_inset Formula $\overline{1}=\overline{qS}\in\text{Im}\pi$ +\end_inset + + y +\begin_inset Formula $\pi$ +\end_inset + + es un isomorfismo. + Por tanto +\begin_inset Formula $\phi\coloneqq\phi_{0}\circ\pi L\frac{K[X]}{(p)}\to M(p)$ +\end_inset + + es un isomorfismo con +\begin_inset Formula $\phi(\overline{1})=v$ +\end_inset + + y, como +\begin_inset Formula $(X^{s})_{s\in\mathbb{N}_{d}}$ +\end_inset + + es base de +\begin_inset Formula $\frac{K[X]}{(p)}$ +\end_inset + + como +\begin_inset Formula $K$ +\end_inset + +-espacio vectorial, +\begin_inset Formula ${\cal B}\coloneqq(f^{s}(v))_{s\in\mathbb{N}_{d}}$ +\end_inset + + es base de +\begin_inset Formula $M(p)$ +\end_inset + + como +\begin_inset Formula $K$ +\end_inset + +-espacio vectorial. + Ahora bien, si +\begin_inset Formula $b_{i}\coloneqq f^{i}(v)$ +\end_inset + +, para +\begin_inset Formula $i\in\{0,\dots,d-2\}$ +\end_inset + +, +\begin_inset Formula $f(b_{i})=f(f^{i}(v))=f^{i+1}(v)=b_{i+1}$ +\end_inset + +, y para +\begin_inset Formula $d-1$ +\end_inset + +, +\begin_inset Formula +\[ +f(b_{d-1})=f^{d}(v)=\phi(X^{d})=\phi(X^{d}-p)=\phi\left(-\sum_{i=0}^{d-1}p_{i}X^{i}\right)=\sum_{i=0}^{d-1}-p_{i}b_{i}, +\] + +\end_inset + +lo que nos da +\begin_inset Formula $M_{{\cal B}}(f)=C(p)$ +\end_inset + +. +\end_layout + +\end_deeper +\begin_layout Standard +Análogamente, si +\begin_inset Formula $C\in{\cal M}_{n}(K)$ +\end_inset + + y +\begin_inset Formula $p\in K[X]$ +\end_inset + + es un irreducible con multiplicidad 1 en el polinomio característico de + +\begin_inset Formula $C$ +\end_inset + +, la forma canónica de +\begin_inset Formula $C$ +\end_inset + + tiene exactamente un bloque de la forma +\begin_inset Formula $C_{h}(p)$ +\end_inset + + que es precisamente +\begin_inset Formula $C(p)$ +\end_inset + +. +\end_layout + +\begin_layout Standard +\begin_inset ERT +status open + +\begin_layout Plain Layout + + +\backslash +begin{samepage} +\end_layout + +\end_inset + + +\end_layout + +\begin_layout Standard +Un +\begin_inset Formula $\lambda\in\mathbb{R}$ +\end_inset + + es un +\series bold +valor propio simple +\series default + de +\begin_inset Formula $f$ +\end_inset + + o de +\begin_inset Formula $C\in{\cal M}_{n}(K)$ +\end_inset + + si +\begin_inset Formula $X-\lambda$ +\end_inset + + es divisor de su polinomio característico con multiplicidad 1, en cuyo + caso: +\end_layout + +\begin_layout Enumerate +\begin_inset Formula $M(X-\lambda)=\ker((X-\lambda)(f))=\{v\in V\mid f(v)=\lambda v\}\cong\frac{K[X]}{(X-\lambda)}$ +\end_inset + + es el subespacio propio de +\begin_inset Formula $V$ +\end_inset + + asociado al valor propio +\begin_inset Formula $\lambda$ +\end_inset + + de +\begin_inset Formula $f$ +\end_inset + +. +\end_layout + +\begin_layout Enumerate +Para todo +\begin_inset Formula $v\in M(X-\lambda)\setminus\{0\}$ +\end_inset + +, +\begin_inset Formula $M(X-\lambda)=(v)$ +\end_inset + + y +\begin_inset Formula $f|_{(v)}$ +\end_inset + + es el producto por +\begin_inset Formula $\lambda$ +\end_inset + +. +\end_layout + +\begin_layout Enumerate +La forma canónica de +\begin_inset Formula $C$ +\end_inset + + tiene un único bloque de la forma +\begin_inset Formula $J_{h}(\lambda)$ +\end_inset + +, que es +\begin_inset Formula $J(\lambda)$ +\end_inset + +. +\end_layout + +\begin_layout Standard +\begin_inset ERT +status open + +\begin_layout Plain Layout + + +\backslash +end{samepage} +\end_layout + +\end_inset + + +\end_layout + +\begin_layout Section +Anillos de polinomios y matrices +\end_layout + +\begin_layout Standard +Si +\begin_inset Formula $B\in\text{GL}_{s}(K)$ +\end_inset + + y +\begin_inset Formula +\[ +C\coloneqq\begin{pmatrix} & \boxed{B} & \boxed{I_{s}}\\ + & & \ddots & \ddots\\ + & & & \ddots & \boxed{I_{s}}\\ + & & & & \boxed{B}\\ +\\ +\end{pmatrix}\in{\cal M}_{rs}(K), +\] + +\end_inset + +para +\begin_inset Formula $k\in\{1,\dots,r-1\}$ +\end_inset + +, viendo +\begin_inset Formula $C^{k}$ +\end_inset + + por bloques como elemento de +\begin_inset Formula ${\cal M}_{r}({\cal M}_{s}(K))$ +\end_inset + +, su +\begin_inset Formula $k$ +\end_inset + +-ésima diagonal por encima de la principal está formada por copias de +\begin_inset Formula $B^{k}$ +\end_inset + + y las de debajo de dicha diagonal son nulas, y +\begin_inset Formula $C^{r}=0\neq C^{r-1}$ +\end_inset + +. + +\series bold +Demostración: +\series default + +\begin_inset Formula $\phi:{\cal M}_{rs}(K)\to{\cal M}_{r}({\cal M}_{s}(K))$ +\end_inset + + que agrupa las matrices en bloques es un isomorfismo de anillos, pues clarament +e conserva la suma y la identidad y, para el producto, haciendo los índices + de matrices empezar por 0 por simplicidad, +\begin_inset Foot +status open + +\begin_layout Plain Layout +Como debería ser siempre. +\end_layout + +\end_inset + + si +\begin_inset Formula $A,B\in{\cal M}_{rs}(K)$ +\end_inset + +, para +\begin_inset Formula $i,j\in\{0,\dots,r-1\}$ +\end_inset + + y +\begin_inset Formula $k,l\in\{1,\dots,s\}$ +\end_inset + +, +\begin_inset Formula +\begin{align*} +(\phi(A)\phi(B))_{ijkl} & =\left(\sum_{p\in\mathbb{N}_{r}}\phi(A)_{ir}\phi(B)_{rj}\right)_{kl}=\sum_{p\in\mathbb{N}_{r}}\left(\phi(A)_{ip}\phi(B)_{pj}\right)_{kl}=\\ + & =\sum_{p\in\mathbb{N}_{r}}\sum_{q\in\mathbb{N}_{s}}\phi(A)_{ipkq}\phi(B)_{pjql}=\sum_{p\in\mathbb{N}_{r}}\sum_{q\in\mathbb{N}_{s}}A_{is+k,ps+q}B_{ps+q,js+l}=\\ + & =\sum_{z\in\mathbb{N}_{rs}}A_{is+k,z}B_{z,js+l}=(AB)_{is+k,js+l}=\phi(AB)_{ijkl}. +\end{align*} + +\end_inset + +Entonces, si +\begin_inset Formula $C\in{\cal M}_{r}({\cal M}_{s}(K))$ +\end_inset + +, queremos ver que cada +\begin_inset Formula $(C^{k})_{ij}=\binom{k}{2k+i-j}B^{2k+i-j}$ +\end_inset + +, con lo que +\begin_inset Formula $(C^{k})_{i,i+k}=\binom{k}{k}B^{k}=B^{k}$ +\end_inset + + y, para +\begin_inset Formula $j<i+k$ +\end_inset + +, +\begin_inset Formula $2k+i-j>k$ +\end_inset + + y +\begin_inset Formula $\binom{k}{2k+i-j}=0$ +\end_inset + +. + Por inducción, para +\begin_inset Formula $k=1$ +\end_inset + +, +\begin_inset Formula $C_{i,i+1}=B=\binom{1}{1}B^{1}$ +\end_inset + +, +\begin_inset Formula $C_{i,i+2}=I_{s}=\binom{1}{0}B^{0}$ +\end_inset + + y el resto de entradas son nulas, y para +\begin_inset Formula $k>1$ +\end_inset + +, +\begin_inset Formula +\begin{align*} +(C^{k})_{ij} & =\sum_{l=1}^{r}(C^{k-1})_{il}C_{lj}=\sum_{l=1}^{r}\binom{k-1}{2k-2+i-l}\binom{1}{2+l-j}B^{2k-2+i-l+2-j+l}=\\ + & =\sum_{l}\binom{k-1}{(1-k-i)+l}\binom{1}{(2-j)+l}B^{2k+i-j}=\binom{k}{2k+i-j}B^{2k+i-j}, +\end{align*} + +\end_inset + +donde en la última igualdad hemos usado que +\begin_inset Formula $\sum_{k}\binom{r}{m+k}\binom{s}{n+k}=\binom{r+s}{r-m+n}$ +\end_inset + + y en la penúltima hemos usado que +\begin_inset Formula $(k-1)-(2k-2+i-l)=1-k-i+l$ +\end_inset + + y que podemos expandir el rango del sumatorio ya que, si el producto de + los dos coeficientes no se anula, entonces +\begin_inset Formula $2+l-j\in\{0,1\}\implies l\leq j-1<r$ +\end_inset + + y +\begin_inset Formula $0\leq1-k-i+l\leq k-1\implies k-1\leq l-i\leq2(k-1)\implies l\geq k+i-1>1$ +\end_inset + +. +\end_layout + +\begin_layout Standard +Sean +\begin_inset Formula $C\in{\cal M}_{n}(K)$ +\end_inset + +, +\begin_inset Formula $P\in\text{GL}_{n}(K)$ +\end_inset + + y +\begin_inset Formula $C'\coloneqq PCP^{-1}$ +\end_inset + +: +\end_layout + +\begin_layout Enumerate +Para +\begin_inset Formula $F\in K[X]$ +\end_inset + +, +\begin_inset Formula $F(C')=PF(C)P^{-1}$ +\end_inset + +. +\end_layout + +\begin_deeper +\begin_layout Standard +Para +\begin_inset Formula $k\in\mathbb{N}$ +\end_inset + +, +\begin_inset Formula $(PCP^{-1})^{k}=PC^{k}P^{-1}$ +\end_inset + +, con lo que +\begin_inset Formula $F(PCP^{-1})=\sum_{k}F_{k}PC^{k}P^{-1}\overset{F_{k}\in K}{=}P(\sum_{k}F_{k}C^{k})P^{-1}=PF(C)P^{-1}$ +\end_inset + +. +\end_layout + +\end_deeper +\begin_layout Enumerate +\begin_inset Formula $C$ +\end_inset + + y +\begin_inset Formula $C'$ +\end_inset + + tienen el mismo polinomio mínimo. + +\end_layout + +\begin_deeper +\begin_layout Standard +Por lo anterior, usando que el polinomio mínimo de una matriz +\begin_inset Formula $C$ +\end_inset + + es el menor +\begin_inset Formula $d_{t}$ +\end_inset + + con +\begin_inset Formula $d_{t}(C)=0$ +\end_inset + + y que +\begin_inset Formula $F(C')=PF(C)P^{-1}=0\iff F(C)=0$ +\end_inset + +. +\end_layout + +\end_deeper +\begin_layout Section +Formas canónicas reales +\end_layout + +\begin_layout Standard +Si +\begin_inset Formula $(a,b)\in\mathbb{R}\times\mathbb{R}^{*}$ +\end_inset + + y +\begin_inset Formula $r>0$ +\end_inset + +, llamamos +\begin_inset Formula +\begin{align*} +J(a,b) & \coloneqq\begin{pmatrix}a & -b\\ +b & a +\end{pmatrix}, +\end{align*} + +\end_inset + +con polinomio característico irreducible +\begin_inset Formula $p\coloneqq(X-a)^{2}+b^{2}$ +\end_inset + +, pues +\begin_inset Formula $p=X^{2}-2aX+a^{2}+b^{2}$ +\end_inset + + y +\begin_inset Formula $(-2a)^{2}-4(a^{2}+b^{2})=-b^{2}<0$ +\end_inset + +. + Entonces, para +\begin_inset Formula $r\in\mathbb{N}^{*}$ +\end_inset + +, llamamos +\series bold +bloque de Jordan real +\series default + de tamaño +\begin_inset Formula $r$ +\end_inset + + asociado a +\begin_inset Formula $(a,b)$ +\end_inset + + o a +\begin_inset Formula $p$ +\end_inset + + a +\begin_inset Formula +\[ +J_{r}(a,b)\coloneqq\begin{pmatrix}\boxed{J(a,b)} & \boxed{I_{2}}\\ + & \ddots & \ddots\\ + & & \ddots & \boxed{I_{2}}\\ + & & & \boxed{J(a,b)} +\end{pmatrix}\in{\cal M}_{2r}(\mathbb{R}). +\] + +\end_inset + + +\end_layout + +\begin_layout Standard +Toda +\begin_inset Formula $C\in{\cal M}_{n}(\mathbb{R})$ +\end_inset + + es semejante a una matriz de la forma +\begin_inset Formula +\[ +\begin{pmatrix}\boxed{J_{r_{1}}(a_{1},b_{1})}\\ + & \ddots\\ + & & \boxed{J_{r_{t}}(a_{t},b_{t})}\\ + & & & \boxed{J_{h_{1}}(\lambda_{1})}\\ + & & & & \ddots\\ + & & & & & \boxed{J_{h_{s}}(\lambda_{s})} +\end{pmatrix}, +\] + +\end_inset + +única salvo reordenación de bloques, formada por +\begin_inset Formula +\[ +\text{rk}((C-\lambda I)^{h-1})+\text{rk}((C-\lambda I)^{h+1})-2\text{rk}((C-\lambda I)^{h}) +\] + +\end_inset + +bloques +\begin_inset Formula $J_{h}(\lambda)$ +\end_inset + + para cada +\begin_inset Formula $h\in\mathbb{N}^{*}$ +\end_inset + + y +\begin_inset Formula $\lambda$ +\end_inset + + valor propio real de +\begin_inset Formula $C$ +\end_inset + + y +\begin_inset Formula +\[ +\frac{1}{2}(\text{rk}(p(C)^{r-1})+\text{rk}(p(C)^{r+1})-2\text{rk}(p(C)^{r}) +\] + +\end_inset + +bloques +\begin_inset Formula $J_{r}(a,b)$ +\end_inset + + para cada +\begin_inset Formula $r\in\mathbb{N}^{*}$ +\end_inset + + y +\begin_inset Formula $p=(X-a)^{2}+b^{2}$ +\end_inset + + divisor irreducible cuadrático del polinomio característico de +\begin_inset Formula $C$ +\end_inset + +. + +\series bold +Demostración: +\series default + Por el teorema de clasificación de matrices cuadradas y el hecho de que + todos los irreducibles en +\begin_inset Formula $\mathbb{R}[X]$ +\end_inset + + son de grado 1 o 2, solo hay que ver que +\begin_inset Formula $J_{r}(a,b)$ +\end_inset + + es semejante a +\begin_inset Formula $C_{r}(p)$ +\end_inset + +, ambas con polinomio característico +\begin_inset Formula $p^{r}$ +\end_inset + +. + Pero si +\begin_inset Formula $J\coloneqq J_{r}(a,b)$ +\end_inset + +, +\begin_inset Formula $(J-aI)=J_{r}(0,b)$ +\end_inset + + y, viendo +\begin_inset Formula $J_{r}(0,b)\in{\cal M}_{r}({\cal M}_{2}(K))$ +\end_inset + +, +\begin_inset Formula +\[ +J_{r}(0,b)_{ij}=\begin{cases} +J(0,b), & j=i;\\ +I_{2}, & j=i+1;\\ +0, & \text{en otro caso}, +\end{cases} +\] + +\end_inset + +y como además +\begin_inset Formula $J(0,b)^{2}=-b^{2}I_{2}\in\text{GL}_{2}(\mathbb{R})$ +\end_inset + +, +\begin_inset Formula +\[ +(J_{r}(0,b)^{2})_{ij}=\begin{cases} +J(0,b)^{2}=-b^{2}I_{2}, & j=i;\\ +2J(0,b), & j=i+1;\\ +I_{2}, & j=i+2;\\ +0, & \text{en otro caso}, +\end{cases} +\] + +\end_inset + +con lo que +\begin_inset Formula $p(J)=(J-aI)^{2}+b^{2}$ +\end_inset + + tiene la forma de la matriz del resultado anterior y +\begin_inset Formula $p(J)^{r}=0\neq p(J)^{r-1}$ +\end_inset + +. + Entonces el +\begin_inset Formula $\mathbb{R}[X]$ +\end_inset + +-módulo +\begin_inset Formula $M$ +\end_inset + + asociado a +\begin_inset Formula $(\mathbb{R}^{2r},v\mapsto Jv)$ +\end_inset + + tiene un sumando directo isomorfo a +\begin_inset Formula $\frac{\mathbb{R}[X]}{(p^{r})}$ +\end_inset + +, y como +\begin_inset Formula $\dim_{\mathbb{R}}\frac{\mathbb{R}[X]}{(p^{r})}=2h=\dim_{\mathbb{R}}M$ +\end_inset + +, +\begin_inset Formula $M\cong\frac{\mathbb{R}[X]}{(p^{r})}$ +\end_inset + +. + Pero por el teorema de clasificación de endomorfismos, +\begin_inset Formula $v\mapsto Jv$ +\end_inset + + se expresa como +\begin_inset Formula $C_{r}(p)$ +\end_inset + + en alguna base de +\begin_inset Formula $\mathbb{R}^{2r}$ +\end_inset + + y por tanto en alguna de +\begin_inset Formula $M$ +\end_inset + +. +\end_layout + +\begin_layout Section +Series de Taylor pero en álgebra y son un porro +\begin_inset Foot +status open + +\begin_layout Plain Layout +En realidad el porro es todo lo de antes. +\end_layout + +\end_inset + + +\end_layout + +\begin_layout Standard +Sean +\begin_inset Formula $\lambda\in K$ +\end_inset + +, +\begin_inset Formula $r,k\in\mathbb{N}^{*}$ +\end_inset + + y +\begin_inset Formula $J\coloneqq J_{r}(\lambda)$ +\end_inset + +, si +\begin_inset Formula $k<r$ +\end_inset + +, +\begin_inset Formula $(J-\lambda I_{r})^{k}$ +\end_inset + + tiene a 1 las celdas de la diagonal +\begin_inset Formula $k$ +\end_inset + +-ésima por encima de la diagonal principal y a 0 el resto, y si +\begin_inset Formula $k\geq r$ +\end_inset + +, +\begin_inset Formula $(J-\lambda I_{r})^{k}=0$ +\end_inset + +. + +\series bold +Demostración: +\series default + Esto equivale a que, en cualquier caso, +\begin_inset Formula $((J-\lambda I_{r})^{k})_{ij}\equiv\delta_{i-j,k}$ +\end_inset + +. + Para +\begin_inset Formula $k=1$ +\end_inset + + esto es claro, y para +\begin_inset Formula $k>1$ +\end_inset + +, +\begin_inset Formula $((J-\lambda I_{r})^{k})_{ij}=\sum_{l=1}^{r}\delta_{i-l,k-1}\delta_{l-j,1}=\delta_{i-j,k}$ +\end_inset + +, pues lo de dentro del sumatorio vale 1 si y sólo si +\begin_inset Formula $i-l=k-1$ +\end_inset + + y +\begin_inset Formula $l-j=1$ +\end_inset + +, si y sólo si +\begin_inset Formula $l=j+1$ +\end_inset + + e +\begin_inset Formula $i=j+k$ +\end_inset + +, pero si +\begin_inset Formula $j+k\leq r$ +\end_inset + +, +\begin_inset Formula $l\leq r$ +\end_inset + + está dentro de rango y hay exactamente un sumando en que se da esto, y + si +\begin_inset Formula $j+k>r$ +\end_inset + +, esto no se da en ningún sumando pero tampoco se da +\begin_inset Formula $i-j=k$ +\end_inset + + porque entonces sería +\begin_inset Formula $i>r$ +\end_inset + +. +\end_layout + +\begin_layout Standard +Sean +\begin_inset Formula $\mathbb{K}$ +\end_inset + + igual a +\begin_inset Formula $\mathbb{R}$ +\end_inset + + o +\begin_inset Formula $\mathbb{C}$ +\end_inset + +, +\begin_inset Formula $D\subseteq\mathbb{K}$ +\end_inset + + abierto, +\begin_inset Formula $\psi:D\to\mathbb{K}$ +\end_inset + + infinitamente derivable, +\begin_inset Formula $\lambda\in D$ +\end_inset + + y +\begin_inset Formula $J\coloneqq J_{r}(\lambda)$ +\end_inset + +, llamamos +\series bold +valor +\series default + o +\series bold +evaluación +\series default + de +\begin_inset Formula $\psi$ +\end_inset + + en +\begin_inset Formula $J$ +\end_inset + + a +\begin_inset Formula $\psi(J)$ +\end_inset + +, que es un polinomio en +\begin_inset Formula $J$ +\end_inset + +. + En efecto, +\begin_inset Formula $\psi$ +\end_inset + + tiene una serie de Taylor +\begin_inset Formula $\psi(x)=\sum_{n\geq0}\frac{\psi^{(n)}(\lambda)}{n!}(x-\lambda)^{n}$ +\end_inset + + y entonces +\begin_inset Formula $\psi(J)=\sum_{n\geq0}\frac{\psi^{(n)}(\lambda)}{n!}(J-\lambda I)^{n}$ +\end_inset + +, pero para +\begin_inset Formula $n\geq r$ +\end_inset + + es +\begin_inset Formula $(J-\lambda I)^{n}=0$ +\end_inset + +, por lo que queda una suma finita que es un polinomio en +\begin_inset Formula $J$ +\end_inset + +. + Además: +\end_layout + +\begin_layout Enumerate +Para +\begin_inset Formula $k\in\{1,\dots,r-1\}$ +\end_inset + +, +\begin_inset Formula +\[ +(J^{k})_{ij}=\binom{k}{j-i}\lambda^{k-j+i}, +\] + +\end_inset + +tomando el criterio +\begin_inset Formula $0\cdot\infty=0$ +\end_inset + +. +\end_layout + +\begin_deeper +\begin_layout Standard +Para +\begin_inset Formula $k=1$ +\end_inset + + es claro, pues para +\begin_inset Formula $j=i$ +\end_inset + + es +\begin_inset Formula $J_{ij}=\lambda=\binom{1}{0}\lambda^{1}$ +\end_inset + +, para +\begin_inset Formula $j=i+1$ +\end_inset + + es +\begin_inset Formula $J_{ij}=1=\binom{1}{1}\lambda^{0}$ +\end_inset + + y en otro caso la fórmula da 0, usando el criterio si fuese necesario. + Para +\begin_inset Formula $k>1$ +\end_inset + +, por inducción, +\begin_inset Formula +\begin{align*} +(J^{k})_{ij} & =\sum_{l=1}^{r}(J^{k-1})_{il}J_{lj}=\sum_{l=1}^{r}\binom{k-1}{l-i}\binom{1}{j-l}\lambda^{(k-1-l+i)+(1-j+l)}=\\ + & =\sum_{l}\binom{k-1}{l-i}\binom{1}{(j-i)-(l-i)}\lambda^{k+i-j}=\binom{k}{j-i}\lambda^{k+i-j}, +\end{align*} + +\end_inset + +donde justificamos expandir el rango del sumatorio viendo que, si +\begin_inset Formula $0\leq l-i\leq k-1$ +\end_inset + + y +\begin_inset Formula $0\leq j-l\leq1$ +\end_inset + +, entonces por lo primero +\begin_inset Formula $i\leq l$ +\end_inset + + y por lo segundo +\begin_inset Formula $l\leq j$ +\end_inset + +, luego +\begin_inset Formula $l\in\{1,\dots,r\}$ +\end_inset + +. + +\end_layout + +\end_deeper +\begin_layout Enumerate +\begin_inset Formula +\[ +(\psi(J))_{ij}=\begin{cases} +\frac{\psi^{(j-i)}(\lambda)}{(j-i)!}, & j\geq i;\\ +0, & \text{en otro caso}. +\end{cases} +\] + +\end_inset + + +\end_layout + +\begin_deeper +\begin_layout Standard +\begin_inset Formula $\psi(J)=\sum_{n\geq0}\frac{\psi^{(n)}(\lambda)}{n!}(J-\lambda I)^{n}$ +\end_inset + +, con lo que +\begin_inset Formula +\[ +(\psi(J))_{ij}=\sum_{n\geq0}\frac{\psi^{(n)}(\lambda)}{n!}\delta_{j-i,n}=\begin{cases} +\frac{\psi^{(n)}(\lambda)}{n!}, & n\coloneqq j-i\geq0;\\ +0, & \text{en otro caso}. +\end{cases} +\] + +\end_inset + + +\end_layout + +\end_deeper +\begin_layout Standard +Sean +\begin_inset Formula $C\in{\cal M}_{n}(\mathbb{K})$ +\end_inset + + y +\begin_inset Formula $P\in\text{GL}_{n}(\mathbb{K})$ +\end_inset + + son tales que +\begin_inset Formula $P^{-1}CP\eqqcolon\text{diag}(J_{1},\dots,J_{t})$ +\end_inset + + con los +\begin_inset Formula $J_{i}$ +\end_inset + + bloques de Jordan, +\begin_inset Formula $D\subseteq\mathbb{K}$ +\end_inset + + es un abierto que contiene a todos los valores propios de +\begin_inset Formula $C$ +\end_inset + + y +\begin_inset Formula $\psi:D\to\mathbb{K}$ +\end_inset + + es infinitamente derivable, llamamos +\series bold +valor +\series default + o +\series bold +evaluación +\series default + de +\begin_inset Formula $\psi$ +\end_inset + + en +\begin_inset Formula $C$ +\end_inset + + a +\begin_inset Formula $\psi(C)\coloneqq P(\psi(J_{1})\oplus\dots\oplus\psi(J_{t}))P^{-1}$ +\end_inset + +, que no depende de la +\begin_inset Formula $P$ +\end_inset + + elegida. +\end_layout + +\end_body +\end_document |
