aboutsummaryrefslogtreecommitdiff
path: root/anm/n4.lyx
diff options
context:
space:
mode:
Diffstat (limited to 'anm/n4.lyx')
-rw-r--r--anm/n4.lyx46
1 files changed, 24 insertions, 22 deletions
diff --git a/anm/n4.lyx b/anm/n4.lyx
index 2e71428..8dc7b08 100644
--- a/anm/n4.lyx
+++ b/anm/n4.lyx
@@ -181,15 +181,15 @@ Sean
\end_inset
las sucesiones dadas por
-\begin_inset Formula $x_{0}:=p$
+\begin_inset Formula $x_{0}\coloneqq p$
\end_inset
,
-\begin_inset Formula $x_{k+1}:=Ax_{k}$
+\begin_inset Formula $x_{k+1}\coloneqq Ax_{k}$
\end_inset
y
-\begin_inset Formula $r_{k}:=\frac{\langle x_{k+1},y\rangle}{\langle x_{k},y\rangle}$
+\begin_inset Formula $r_{k}\coloneqq \frac{\langle x_{k+1},y\rangle}{\langle x_{k},y\rangle}$
\end_inset
, entonces
@@ -214,7 +214,7 @@ Sean
Demostración:
\series default
Sean
-\begin_inset Formula $\phi(x):=\langle x,y\rangle$
+\begin_inset Formula $\phi(x)\coloneqq \langle x,y\rangle$
\end_inset
,
@@ -317,11 +317,11 @@ En la práctica no se calcula
\end_inset
dada por
-\begin_inset Formula $y_{0}:=\frac{x_{0}}{\Vert x_{0}\Vert}$
+\begin_inset Formula $y_{0}\coloneqq \frac{x_{0}}{\Vert x_{0}\Vert}$
\end_inset
e
-\begin_inset Formula $y_{k+1}:=\frac{Ay_{k}}{\Vert Ay_{k}\Vert}$
+\begin_inset Formula $y_{k+1}\coloneqq \frac{Ay_{k}}{\Vert Ay_{k}\Vert}$
\end_inset
, y entonces
@@ -457,7 +457,7 @@ método de Jacobi
de giros en planos determinados por dos vectores de la base canónica de
forma que
-\begin_inset Formula $(A_{k}:=(O_{1}\cdots O_{k})^{t}A(O_{1}\cdots O_{k}))_{k}$
+\begin_inset Formula $(A_{k}\coloneqq (O_{1}\cdots O_{k})^{t}A(O_{1}\cdots O_{k}))_{k}$
\end_inset
, que podemos obtener como
@@ -481,7 +481,7 @@ Sean
\end_inset
,
-\begin_inset Formula $A:=(a_{ij})\in{\cal M}_{n}(\mathbb{R})$
+\begin_inset Formula $A\coloneqq (a_{ij})\in{\cal M}_{n}(\mathbb{R})$
\end_inset
simétrica,
@@ -689,7 +689,7 @@ egroup
\end_inset
y
-\begin_inset Formula $B:=(b_{ij}):=O^{t}AO$
+\begin_inset Formula $B\coloneqq (b_{ij})\coloneqq O^{t}AO$
\end_inset
, entonces:
@@ -839,7 +839,7 @@ de donde se obtiene la primera parte del enunciado.
\end_inset
, y dada
-\begin_inset Formula $C:=(c_{ij})\in{\cal M}_{n}(\mathbb{R})$
+\begin_inset Formula $C\coloneqq (c_{ij})\in{\cal M}_{n}(\mathbb{R})$
\end_inset
,
@@ -885,7 +885,7 @@ Para el
\end_inset
descrito en el apartado anterior, sean
-\begin_inset Formula $x:=\frac{a_{qq}-a_{pp}}{2a_{pq}}$
+\begin_inset Formula $x\coloneqq \frac{a_{qq}-a_{pp}}{2a_{pq}}$
\end_inset
,
@@ -900,11 +900,11 @@ t:=\begin{cases}
\end_inset
-\begin_inset Formula $c:=\frac{1}{\sqrt{1+t^{2}}}$
+\begin_inset Formula $c\coloneqq \frac{1}{\sqrt{1+t^{2}}}$
\end_inset
y
-\begin_inset Formula $s:=\frac{t}{\sqrt{1+t^{2}}}$
+\begin_inset Formula $s\coloneqq \frac{t}{\sqrt{1+t^{2}}}$
\end_inset
, para
@@ -926,11 +926,11 @@ b_{pi}=b_{ip} & =ca_{ip}-sa_{iq}, & b_{qi}=b_{iq} & =sa_{ip}+ca_{iq}, & b_{ij} &
\begin_deeper
\begin_layout Standard
Sean
-\begin_inset Formula $x:=\frac{a_{qq}-a_{pp}}{2a_{pq}}$
+\begin_inset Formula $x\coloneqq \frac{a_{qq}-a_{pp}}{2a_{pq}}$
\end_inset
y
-\begin_inset Formula $t:=\tan\theta$
+\begin_inset Formula $t\coloneqq \tan\theta$
\end_inset
.
@@ -1036,7 +1036,9 @@ status open
\backslash
-Entrada{Matriz simétrica real $A:=(a_{ij})$ de tamaño $n$ y nivel de tolerancia
+Entrada{Matriz simétrica real $A
+\backslash
+coloneqq (a_{ij})$ de tamaño $n$ y nivel de tolerancia
a errores $e>0$.}
\end_layout
@@ -1644,7 +1646,7 @@ Para la primera parte del teorema, sean
\end_inset
y
-\begin_inset Formula $\varepsilon_{k}:=\sum_{i\neq j}(a_{kij})^{2}$
+\begin_inset Formula $\varepsilon_{k}\coloneqq \sum_{i\neq j}(a_{kij})^{2}$
\end_inset
.
@@ -1747,7 +1749,7 @@ de donde
\begin_layout Standard
Sea
-\begin_inset Formula $D_{k}:=\text{diag}(a_{k11},\dots,a_{knn})$
+\begin_inset Formula $D_{k}\coloneqq \text{diag}(a_{k11},\dots,a_{knn})$
\end_inset
.
@@ -2096,11 +2098,11 @@ Dada una matriz
\end_inset
como
-\begin_inset Formula $A_{0}:=A$
+\begin_inset Formula $A_{0}\coloneqq A$
\end_inset
y
-\begin_inset Formula $A_{k+1}:=R_{k}Q_{k}$
+\begin_inset Formula $A_{k+1}\coloneqq R_{k}Q_{k}$
\end_inset
, donde
@@ -2119,11 +2121,11 @@ Dada una matriz
\begin_layout Standard
Para obtener una aproximación de los valores propios a partir de una aproximació
n
-\begin_inset Formula $A_{p}:=(u_{ij})$
+\begin_inset Formula $A_{p}\coloneqq (u_{ij})$
\end_inset
de dicha matriz, definimos una matriz
-\begin_inset Formula $V:=(v_{ij})\in{\cal M}_{n}$
+\begin_inset Formula $V\coloneqq (v_{ij})\in{\cal M}_{n}$
\end_inset
dada por