diff options
Diffstat (limited to 'anm/na.lyx')
| -rw-r--r-- | anm/na.lyx | 971 |
1 files changed, 971 insertions, 0 deletions
diff --git a/anm/na.lyx b/anm/na.lyx new file mode 100644 index 0000000..e9f8b58 --- /dev/null +++ b/anm/na.lyx @@ -0,0 +1,971 @@ +#LyX 2.3 created this file. For more info see http://www.lyx.org/ +\lyxformat 544 +\begin_document +\begin_header +\save_transient_properties true +\origin unavailable +\textclass book +\use_default_options true +\maintain_unincluded_children false +\language spanish +\language_package default +\inputencoding auto +\fontencoding global +\font_roman "default" "default" +\font_sans "default" "default" +\font_typewriter "default" "default" +\font_math "auto" "auto" +\font_default_family default +\use_non_tex_fonts false +\font_sc false +\font_osf false +\font_sf_scale 100 100 +\font_tt_scale 100 100 +\use_microtype false +\use_dash_ligatures true +\graphics default +\default_output_format default +\output_sync 0 +\bibtex_command default +\index_command default +\paperfontsize default +\spacing single +\use_hyperref false +\papersize default +\use_geometry false +\use_package amsmath 1 +\use_package amssymb 1 +\use_package cancel 1 +\use_package esint 1 +\use_package mathdots 1 +\use_package mathtools 1 +\use_package mhchem 1 +\use_package stackrel 1 +\use_package stmaryrd 1 +\use_package undertilde 1 +\cite_engine basic +\cite_engine_type default +\biblio_style plain +\use_bibtopic false +\use_indices false +\paperorientation portrait +\suppress_date false +\justification true +\use_refstyle 1 +\use_minted 0 +\index Index +\shortcut idx +\color #008000 +\end_index +\secnumdepth 3 +\tocdepth 3 +\paragraph_separation indent +\paragraph_indentation default +\is_math_indent 0 +\math_numbering_side default +\quotes_style french +\dynamic_quotes 0 +\papercolumns 1 +\papersides 1 +\paperpagestyle default +\tracking_changes false +\output_changes false +\html_math_output 0 +\html_css_as_file 0 +\html_be_strict false +\end_header + +\begin_body + +\begin_layout Standard +\begin_inset ERT +status open + +\begin_layout Plain Layout + + +\backslash +begin{sloppypar} +\end_layout + +\end_inset + +En Octave, todos los valores son matrices. + Los números (con sintaxis +\family typewriter +[-+]?(( +\backslash +d+ +\backslash +.?| +\backslash +d* +\backslash +. +\backslash +d+)([eE][-+]? +\backslash +d+)?|[Ii]nf) +\family default + o +\family typewriter +( +\family default +{número} +\family typewriter + +\backslash ++)? +\family default +{número} +\family typewriter +?i +\family default +) representan matrices +\begin_inset Formula $1\times1$ +\end_inset + + de números de doble precisión, y las cadenas de caracteres (con sintaxis + +\family typewriter +'([^']|'')*' +\family default + o +\family typewriter +"([^ +\backslash + +\backslash +']| +\backslash + +\backslash + +\family default +{escape} +\family typewriter +)*" +\family default +) representan matrices fila de caracteres. +\begin_inset ERT +status open + +\begin_layout Plain Layout + + +\backslash +end{sloppypar} +\end_layout + +\end_inset + + +\end_layout + +\begin_layout Standard +La expresión +\family typewriter +[ +\begin_inset Formula $a_{1}$ +\end_inset + +, +\family default +... +\family typewriter +, +\begin_inset Formula $a_{p}$ +\end_inset + +] +\family default + concatena horizontalmente las matrices +\begin_inset Formula $a_{1}\in{\cal M}_{m\times n_{1}}(S)$ +\end_inset + + hasta +\begin_inset Formula $a_{p}\in{\cal M}_{m\times n_{p}}(S)$ +\end_inset + + en una matriz en +\begin_inset Formula ${\cal M}_{m\times\sum_{k=1}^{p}n_{k}}(S)$ +\end_inset + +, y la sintaxis +\family typewriter +[ +\begin_inset Formula $a_{11}$ +\end_inset + +, +\family default +... +\family typewriter +, +\begin_inset Formula $a_{1p_{1}}$ +\end_inset + +; +\family default +... +\family typewriter +; +\begin_inset Formula $a_{q1}$ +\end_inset + +, +\family default +... +\family typewriter +, +\begin_inset Formula $a_{qp_{q}}$ +\end_inset + +] +\family default + hace esto en cada parte, resultando en +\begin_inset Formula $q$ +\end_inset + + matrices +\begin_inset Formula $b_{k}\in{\cal M}_{m_{k}\times n}(S)$ +\end_inset + +, y las concatena verticalmente en una +\begin_inset Formula ${\cal M}_{\sum_{k=1}^{q}m_{k}\times n}(S)$ +\end_inset + +. +\end_layout + +\begin_layout Standard +El operador +\family typewriter ++ +\family default + suma matrices numéricas de igual tamaño y +\family typewriter +* +\family default + multiplica matrices o una matriz por un escalar. + Llamamos vector a una matriz fila. + Entonces +\family typewriter +\emph on +a +\emph default +: +\emph on +b +\family default +\emph default + genera el vector +\begin_inset Formula $(a,a+1,\dots,b)$ +\end_inset + + y +\family typewriter +\emph on +a +\emph default +: +\emph on +t +\emph default +: +\emph on +b +\family default +\emph default + genera el vector +\begin_inset Formula $(a,a+t,\dots,b)$ +\end_inset + +. + Cuando es posible, +\family typewriter + +\begin_inset Formula $A$ +\end_inset + + +\backslash + +\begin_inset Formula $B$ +\end_inset + + +\family default + devuelve una matriz +\begin_inset Formula $X$ +\end_inset + + tal que +\begin_inset Formula $AX=B$ +\end_inset + +. + +\family typewriter + +\begin_inset Formula $A$ +\end_inset + +' +\family default + devuelve +\begin_inset Formula $A^{*}$ +\end_inset + +. + +\end_layout + +\begin_layout Standard + +\family typewriter +\emph on +A +\emph default +( +\emph on +x +\emph default +, +\emph on +y +\emph default +) +\family default + devuelve la submatriz de +\family typewriter +\emph on +A +\family default +\emph default + formada por las columnas con índice en el vector +\family typewriter +\emph on +x +\family default +\emph default + y las filas con índice en el vector +\family typewriter +\emph on +y +\family default +\emph default +, y +\family typewriter +\emph on +A +\emph default +( +\emph on +x +\emph default +) +\family default + convierte la matriz en un vector concatenando las traspuestas de sus columnas + y toma los elementos del vector con índice en el vector +\family typewriter +\emph on +x +\family default +\emph default +. + Ambos vectores se pueden sustituir por +\family typewriter +: +\family default + para tomar todas las filas o columnas, y los índices empiezan por 1. + +\end_layout + +\begin_layout Standard +Las expresiones son sentencias, y estas deben terminar por salto de línea + si se quiere que se imprima su resultado o por +\family typewriter +; +\family default +, seguido opcionalmente de salto de línea, si no. + La sentencia +\family typewriter +\emph on +A +\emph default + = +\emph on +expr +\family default +\emph default + asigna a la variable +\family typewriter +\emph on +A +\family default +\emph default + el valor +\family typewriter +\emph on +expr +\family default +\emph default +, y +\family typewriter +\emph on +A +\emph default +( +\emph on +x +\emph default +, +\emph on +y +\emph default +) = +\emph on +expr +\family default +\emph default + o +\family typewriter +\emph on +A +\emph default +( +\emph on +x +\emph default +) = +\emph on +expr +\family default +\emph default + asigna los elementos de la submatriz a la izquierda del +\family typewriter += +\family default + a los de la devuelta por la expresión, que debe ser del mismo tamaño. + Si la variable no existe, se crea, y si la submatriz indicada supone que + +\family typewriter +\emph on +A +\family default +\emph default + es más grande, esta se amplía y se rellena con ceros. +\end_layout + +\begin_layout Section +Funciones sobre matrices +\end_layout + +\begin_layout Description + +\family typewriter +cond( +\series bold +\emph on +A +\series default +\emph default +, +\emph on +p +\emph default +) +\family default + +\family typewriter +norm( +\emph on +A +\emph default +, +\emph on +p +\emph default +) * norm(inv( +\emph on +A +\emph default +), +\emph on +p +\emph default +) +\family default +. +\end_layout + +\begin_layout Description + +\family typewriter +cond( +\series bold +\emph on +A +\series default +\emph default +) +\family default + +\family typewriter +cond( +\emph on +A +\emph default +,2) +\family default +. +\end_layout + +\begin_layout Description + +\family typewriter +diag( +\emph on +A +\emph default +, +\emph on +k +\emph default +) +\family default + Si +\family typewriter +\emph on +A +\family default +\emph default + es vector, devuelve una matriz diagonal con elementos del vector en la + diagonal, y de lo contrario devuelve un vector con los elementos de la + diagonal de +\family typewriter +\emph on +A +\family default +\emph default +. +\end_layout + +\begin_layout Description + +\family typewriter +dot( +\emph on +x +\emph default +, +\emph on +y +\emph default +) +\family default + Producto escalar hermitiano +\begin_inset Formula $\langle\text{\emph{\texttt{y}}},\text{\emph{\texttt{x}}}\rangle$ +\end_inset + +. +\end_layout + +\begin_layout Description + +\family typewriter +[ +\emph on +V +\emph default +, +\emph on +lambda +\emph default +]=eig( +\emph on +A +\emph default +) +\family default + Devuelve una matriz diagonal +\family typewriter +\emph on +lambda +\family default +\emph default + en la que los elementos de la diagonal son los valores propios de +\family typewriter +\emph on +A +\family default +\emph default + y una matriz +\family typewriter +\emph on +V +\family default +\emph default + cuyas columnas son los vectores propios correspondientes. +\end_layout + +\begin_layout Description + +\family typewriter +eye( +\emph on +n +\emph default +) +\family default + Matriz identidad de tamaño +\family typewriter +\emph on +n +\family default +\emph default +. +\end_layout + +\begin_layout Description + +\family typewriter +inv( +\emph on +A +\emph default +) +\family default + Inversa de la matriz cuadrada no singular +\family typewriter +\emph on +A +\family default +\emph default +. +\end_layout + +\begin_layout Description + +\family typewriter +linspace( +\emph on +start +\emph default +, +\emph on +end +\emph default +, +\emph on +n +\emph default +) +\family default + Vector de +\family typewriter +\emph on +n +\family default +\emph default + puntos equiespaciados de +\family typewriter +\emph on +start +\family default +\emph default + a +\family typewriter +\emph on +end +\family default +\emph default +. +\end_layout + +\begin_layout Description + +\family typewriter +norm( +\emph on +A +\series medium +\emph default +, +\emph on +p +\emph default +) +\family default + Norma +\family typewriter +\series default +\emph on +p +\family default +\emph default + de +\family typewriter +\emph on +A +\family default +\emph default +, matricial o vectorial según corresponda, donde +\family typewriter +\emph on +p +\family default +\emph default + es un entero positivo o +\family typewriter +Inf +\family default +. + +\end_layout + +\begin_layout Description + +\family typewriter +norm( +\emph on +A +\emph default +) +\family default + +\family typewriter +norm( +\emph on +A +\emph default +,2) +\family default +. +\end_layout + +\begin_layout Description + +\family typewriter +rand( +\emph on +m +\emph default +, +\emph on +n +\emph default +) +\family default + Matriz de +\family typewriter +\emph on +m +\family default +\emph default + filas y +\family typewriter +\emph on +n +\family default +\emph default + columnas con elementos aleatorios entre 0 y 1. +\end_layout + +\begin_layout Description + +\family typewriter +[ +\emph on +U +\emph default +, +\emph on +S +\emph default +, +\emph on +V +\emph default +]=svd( +\emph on +A +\emph default +) +\family default + Devuelve dos matriz ortogonales +\family typewriter +\emph on +U +\family default +\emph default + y +\family typewriter +\emph on +V +\family default +\emph default + y una diagonal +\family typewriter +\emph on +S +\family default +\emph default + tales que +\begin_inset Formula $\text{\emph{\texttt{A}}}=\text{\emph{\texttt{U}}}\text{\emph{\texttt{S}}}\text{\emph{\texttt{V}}}^{*}$ +\end_inset + +. +\end_layout + +\begin_layout Description + +\family typewriter +trace( +\emph on +A +\emph default +) +\family default + Traza de +\family typewriter +\emph on +A +\family default +\emph default +. +\end_layout + +\begin_layout Description + +\family typewriter +tril( +\emph on +A +\emph default +, +\emph on +k +\emph default +) +\family default + Matriz como +\family typewriter +\emph on +A +\family default +\emph default + pero con los elementos +\begin_inset Formula $(i,j)$ +\end_inset + + con +\begin_inset Formula $j-i>\text{\emph{\texttt{k}}}$ +\end_inset + + a 0. +\end_layout + +\begin_layout Description + +\family typewriter +tril( +\emph on +A +\emph default +) +\family default + +\family typewriter +tril( +\emph on +A +\emph default +,0) +\family default +, matriz triangular inferior. +\end_layout + +\begin_layout Description + +\family typewriter +triu( +\emph on +A +\emph default +, +\emph on +k +\emph default +) +\family default + Matriz como +\family typewriter +\emph on +A +\family default +\emph default + pero con los elementos +\begin_inset Formula $(i,j)$ +\end_inset + + con +\begin_inset Formula $i-j>\text{\emph{\texttt{k}}}$ +\end_inset + + a 0. +\end_layout + +\begin_layout Description + +\family typewriter +triu( +\emph on +A +\series bold +\emph default +) +\family default +\series default + +\family typewriter +triu( +\emph on +A +\emph default +,0) +\family default +, matriz triangular superior. +\end_layout + +\begin_layout Description + +\family typewriter +zeros( +\emph on +m +\emph default +, +\emph on +n +\emph default +) +\family default + Matriz nula de +\family typewriter +\emph on +m +\family default +\emph default + filas y +\family typewriter +\emph on +n +\family default +\emph default + columnas. +\end_layout + +\end_body +\end_document |
