aboutsummaryrefslogtreecommitdiff
path: root/cyn
diff options
context:
space:
mode:
Diffstat (limited to 'cyn')
-rw-r--r--cyn/n1.lyx12
-rw-r--r--cyn/n2.lyx10
-rw-r--r--cyn/n4.lyx2
-rw-r--r--cyn/n5.lyx2
-rw-r--r--cyn/n7.lyx10
-rw-r--r--cyn/n8.lyx2
6 files changed, 19 insertions, 19 deletions
diff --git a/cyn/n1.lyx b/cyn/n1.lyx
index 21cc0c8..d1f538e 100644
--- a/cyn/n1.lyx
+++ b/cyn/n1.lyx
@@ -608,11 +608,11 @@ Una familia de conjuntos es una colección
Unión arbitraria:
\series default
-\begin_inset Formula $\cup{\cal C}=\{x|\exists A\in{\cal C}:x\in A\}$
+\begin_inset Formula $\cup{\cal C}=\{x|\exists A\in{\cal C}\mid x\in A\}$
\end_inset
;
-\begin_inset Formula $\cup_{i\in I}A_{i}=\{x|\exists i\in I:x\in A_{i}\}$
+\begin_inset Formula $\cup_{i\in I}A_{i}=\{x|\exists i\in I\mid x\in A_{i}\}$
\end_inset
@@ -624,11 +624,11 @@ Unión arbitraria:
Intersección arbitraria:
\series default
-\begin_inset Formula $\cap{\cal C}=\{x|\forall A\in{\cal C}:x\in A\}$
+\begin_inset Formula $\cap{\cal C}=\{x|\forall A\in{\cal C}\mid x\in A\}$
\end_inset
;
-\begin_inset Formula $\cap_{i\in I}A_{i}=\{x|\forall i\in I:x\in A_{i}\}$
+\begin_inset Formula $\cap_{i\in I}A_{i}=\{x|\forall i\in I\mid x\in A_{i}\}$
\end_inset
@@ -888,7 +888,7 @@ Conjunto final:
Dominio:
\series default
-\begin_inset Formula $\text{Dom}R=\{a\in A|\exists b\in B:(a,b)\in R\}$
+\begin_inset Formula $\text{Dom}R=\{a\in A|\exists b\in B\mid (a,b)\in R\}$
\end_inset
.
@@ -900,7 +900,7 @@ Dominio:
Imagen:
\series default
-\begin_inset Formula $\text{Im}R=\{b\in B|\exists a\in A:(a,b)\in R\}$
+\begin_inset Formula $\text{Im}R=\{b\in B|\exists a\in A\mid (a,b)\in R\}$
\end_inset
.
diff --git a/cyn/n2.lyx b/cyn/n2.lyx
index 386c747..bc13575 100644
--- a/cyn/n2.lyx
+++ b/cyn/n2.lyx
@@ -121,7 +121,7 @@ aplicación
\end_inset
, de modo que
-\begin_inset Formula $f=\{(n,n^{2}):n\in\mathbb{N}\}$
+\begin_inset Formula $f=\{(n,n^{2})\mid n\in\mathbb{N}\}$
\end_inset
.
@@ -221,7 +221,7 @@ imagen directa
\end_inset
:
-\begin_inset Formula $\text{Im}f=f(A)=\{b\in B:\exists a:f(a)=b\}\subseteq B$
+\begin_inset Formula $\text{Im}f=f(A)=\{b\in B\mid\exists a\mid f(a)=b\}\subseteq B$
\end_inset
.
@@ -1359,7 +1359,7 @@ producto directo
como el conjunto
\begin_inset Formula
\[
-\prod_{i\in I}A_{i}=\left\{ f:I\rightarrow\cup_{i\in I}:f(i)\in A_{i}\forall i\in I\right\}
+\prod_{i\in I}A_{i}=\left\{ f\mid I\rightarrow\bigcup_{i\in I}\;\middle|\;f(i)\in A_{i}\forall i\in I\right\}
\]
\end_inset
@@ -1383,7 +1383,7 @@ Si
es finito y se escribe como una lista, podemos escribir el conjunto como
-\begin_inset Formula $A_{1}\times\cdots\times A_{n}=\{(x_{1},\dots,x_{n}):x_{i}\in A_{i},i=1,\dots,n\}$
+\begin_inset Formula $A_{1}\times\cdots\times A_{n}=\{(x_{1},\dots,x_{n})\mid x_{i}\in A_{i},i=1,\dots,n\}$
\end_inset
.
@@ -1420,7 +1420,7 @@ Sean
\end_inset
y un conjunto de biyecciones
-\begin_inset Formula $\{f_{i}:A_{i}\rightarrow B_{\sigma(i)}\}_{i\in I}$
+\begin_inset Formula $\{f_{i}\mid A_{i}\rightarrow B_{\sigma(i)}\}_{i\in I}$
\end_inset
, entonces existe una biyección
diff --git a/cyn/n4.lyx b/cyn/n4.lyx
index 50a4550..52b35f2 100644
--- a/cyn/n4.lyx
+++ b/cyn/n4.lyx
@@ -125,7 +125,7 @@ Sea
\end_inset
, su clase de equivalencia es
-\begin_inset Formula $[a]=\{b\in A:a\sim b\}$
+\begin_inset Formula $[a]=\{b\in A\mid a\sim b\}$
\end_inset
.
diff --git a/cyn/n5.lyx b/cyn/n5.lyx
index 0315b5a..9264de2 100644
--- a/cyn/n5.lyx
+++ b/cyn/n5.lyx
@@ -2100,7 +2100,7 @@ raíz
Así, todo número complejo tiene
\begin_inset Formula
\[
-\phi(n)=|\{m\in\{1,\dots,n-1\}:\text{mcd}(m,n)=1\}|
+\phi(n)=|\{m\in\{1,\dots,n-1\}\mid \text{mcd}(m,n)=1\}|
\]
\end_inset
diff --git a/cyn/n7.lyx b/cyn/n7.lyx
index 102ac10..525fc3d 100644
--- a/cyn/n7.lyx
+++ b/cyn/n7.lyx
@@ -201,7 +201,7 @@ Demostración:
\end_inset
y
-\begin_inset Formula $R=\{x\in\mathbb{Z}|x\geq0\land\exists n\in\mathbb{Z}:x=a-bn\}\subseteq\mathbb{N}$
+\begin_inset Formula $R=\{x\in\mathbb{Z}|x\geq0\land\exists n\in\mathbb{Z}\mid x=a-bn\}\subseteq\mathbb{N}$
\end_inset
.
@@ -512,7 +512,7 @@ Dados
máximo común divisor
\series default
es
-\begin_inset Formula $\text{mcd}(a,b)=\max\{d\in\mathbb{Z}:d|a\land d|b\}$
+\begin_inset Formula $\text{mcd}(a,b)=\max\{d\in\mathbb{Z}\mid d|a\land d|b\}$
\end_inset
(excepción:
@@ -792,7 +792,7 @@ El máximo común divisor de
\end_inset
es
-\begin_inset Formula $\text{mcd}(a_{1},\dots,a_{n})=\max\{d\in\mathbb{Z}:\forall i,d|a_{i}\}$
+\begin_inset Formula $\text{mcd}(a_{1},\dots,a_{n})=\max\{d\in\mathbb{Z}\mid \forall i,d|a_{i}\}$
\end_inset
.
@@ -1071,7 +1071,7 @@ Dados
mínimo común múltiplo
\series default
es
-\begin_inset Formula $\text{mcm}(a,b)=\min\{m\in\mathbb{Z}^{+}:a|m\land b|m\}$
+\begin_inset Formula $\text{mcm}(a,b)=\min\{m\in\mathbb{Z}^{+}\mid a|m\land b|m\}$
\end_inset
.
@@ -1215,7 +1215,7 @@ El mínimo común múltiplo de
\end_inset
es
-\begin_inset Formula $\text{mcm}(a_{1},\dots,a_{n})=\min\{m\in\mathbb{Z}^{+}:\forall i,a_{i}|m\}$
+\begin_inset Formula $\text{mcm}(a_{1},\dots,a_{n})=\min\{m\in\mathbb{Z}^{+}\mid \forall i,a_{i}|m\}$
\end_inset
.
diff --git a/cyn/n8.lyx b/cyn/n8.lyx
index 1249714..b4589b3 100644
--- a/cyn/n8.lyx
+++ b/cyn/n8.lyx
@@ -453,7 +453,7 @@ divisor
\end_layout
\begin_layout Enumerate
-\begin_inset Formula $A|B\land B|A\implies\exists\mu\in K\backslash\{0\}:A=\mu B$
+\begin_inset Formula $A|B\land B|A\implies\exists\mu\in K\backslash\{0\}\mid A=\mu B$
\end_inset
.