diff options
Diffstat (limited to 'dsi/n6.lyx')
| -rw-r--r-- | dsi/n6.lyx | 1357 |
1 files changed, 1357 insertions, 0 deletions
diff --git a/dsi/n6.lyx b/dsi/n6.lyx new file mode 100644 index 0000000..bfb739b --- /dev/null +++ b/dsi/n6.lyx @@ -0,0 +1,1357 @@ +#LyX 2.3 created this file. For more info see http://www.lyx.org/ +\lyxformat 544 +\begin_document +\begin_header +\save_transient_properties true +\origin unavailable +\textclass book +\begin_preamble +\input{../defs} +\end_preamble +\use_default_options true +\maintain_unincluded_children false +\language spanish +\language_package default +\inputencoding auto +\fontencoding global +\font_roman "default" "default" +\font_sans "default" "default" +\font_typewriter "default" "default" +\font_math "auto" "auto" +\font_default_family default +\use_non_tex_fonts false +\font_sc false +\font_osf false +\font_sf_scale 100 100 +\font_tt_scale 100 100 +\use_microtype false +\use_dash_ligatures true +\graphics default +\default_output_format default +\output_sync 0 +\bibtex_command default +\index_command default +\paperfontsize default +\spacing single +\use_hyperref false +\papersize default +\use_geometry false +\use_package amsmath 1 +\use_package amssymb 1 +\use_package cancel 1 +\use_package esint 1 +\use_package mathdots 1 +\use_package mathtools 1 +\use_package mhchem 1 +\use_package stackrel 1 +\use_package stmaryrd 1 +\use_package undertilde 1 +\cite_engine basic +\cite_engine_type default +\biblio_style plain +\use_bibtopic false +\use_indices false +\paperorientation portrait +\suppress_date false +\justification true +\use_refstyle 1 +\use_minted 0 +\index Index +\shortcut idx +\color #008000 +\end_index +\secnumdepth 3 +\tocdepth 3 +\paragraph_separation indent +\paragraph_indentation default +\is_math_indent 0 +\math_numbering_side default +\quotes_style french +\dynamic_quotes 0 +\papercolumns 1 +\papersides 1 +\paperpagestyle default +\tracking_changes false +\output_changes false +\html_math_output 0 +\html_css_as_file 0 +\html_be_strict false +\end_header + +\begin_body + +\begin_layout Standard +Un +\series bold +conjunto borroso +\series default + +\begin_inset Formula $F$ +\end_inset + + sobre un +\series bold +universo de discurso +\series default + +\begin_inset Formula $U$ +\end_inset + + es una función +\begin_inset Formula $\mu_{F}:U\to[0,1]$ +\end_inset + + llamada +\series bold +función de pertenencia +\series default + de +\begin_inset Formula $F$ +\end_inset + +, que representa el grado de pertenencia de cada elemento de +\begin_inset Formula $U$ +\end_inset + + en +\begin_inset Formula $F$ +\end_inset + +. + Escribimos +\begin_inset Formula +\[ +F\eqqcolon\sum_{x\in U}\frac{\mu_{F}(x)}{x}\eqqcolon\int_{x\in U}\frac{\mu_{F}(x)}{x}, +\] + +\end_inset + +donde la fracción y los símbolos sumatorio e integral son solo símbolos + y no se pueden simplificar. + Si +\begin_inset Formula $U=\{x_{1},\dots,x_{n}\}$ +\end_inset + +, escribimos +\begin_inset Formula +\[ +F\eqqcolon\left\{ \frac{\mu_{F}(x_{1})}{x_{1}}+\dots+\frac{\mu_{F}(x_{n})}{x_{n}}\right\} . +\] + +\end_inset + +Llamamos +\series bold +soporte +\series default + de +\begin_inset Formula $F$ +\end_inset + + a +\begin_inset Formula $\text{Supp}_{F}\coloneqq\{x\in U\mid F(x)>0\}$ +\end_inset + +, +\series bold +núcleo +\series default + de +\begin_inset Formula $F$ +\end_inset + + a +\begin_inset Formula $\ker F\coloneqq\{x\in U\mid\mu_{F}(x)=\sup_{x\in U}F(x)\}$ +\end_inset + +, +\series bold +altura +\series default + de +\begin_inset Formula $F$ +\end_inset + + a +\begin_inset Formula $\text{Height}_{F}\coloneqq\sup_{x\in U}F(x)$ +\end_inset + + y, para +\begin_inset Formula $\alpha\in[0,1)$ +\end_inset + +, +\series bold + +\begin_inset Formula $\alpha$ +\end_inset + +-corte +\series default + de +\begin_inset Formula $F$ +\end_inset + + a +\begin_inset Formula $F_{\alpha}=\{x\in U\mid F(x)>\alpha\}$ +\end_inset + +. + +\begin_inset Formula $F$ +\end_inset + + es +\series bold +vacío +\series default +, +\begin_inset Formula $F=\emptyset$ +\end_inset + +, si +\begin_inset Formula $\text{Supp}_{F}=\emptyset$ +\end_inset + +; +\series bold +unitario +\series default + o +\series bold +\emph on +\lang english +singleton +\series default +\emph default +\lang spanish + si +\begin_inset Formula $|\text{Supp}_{F}|=1$ +\end_inset + +, y +\series bold +normalizado +\series default + si +\begin_inset Formula $\text{Height}_{F}=1$ +\end_inset + +. +\end_layout + +\begin_layout Standard +Funciones de pertenencia comunes sobre el universo +\begin_inset Formula $\mathbb{R}$ +\end_inset + +: +\end_layout + +\begin_layout Enumerate + +\series bold +Funciones trapezoidales: +\series default + Para +\begin_inset Formula $a<b\leq c<d$ +\end_inset + +, +\begin_inset Formula +\[ +\text{trapmf}(x;a,b,c,d)\coloneqq\begin{cases} +\frac{x-a}{b-a}, & x\in[a,b];\\ +1, & x\in[b,c];\\ +\frac{d-x}{d-c}, & x\in[c,d];\\ +0, & \text{en otro caso.} +\end{cases} +\] + +\end_inset + + +\end_layout + +\begin_layout Enumerate + +\series bold +Funciones triangulares: +\series default + Para +\begin_inset Formula $a<b<c$ +\end_inset + +, +\begin_inset Formula $\text{trimmf}(x;a,b,c)\coloneqq\text{trapmf}(x;a,b,b,c)$ +\end_inset + +. +\end_layout + +\begin_layout Enumerate + +\series bold +Funciones S: +\series default + Para +\begin_inset Formula $a<b$ +\end_inset + +, +\begin_inset Formula +\[ +\text{smf}(x;a,b)\coloneqq\begin{cases} +0, & x\leq a;\\ +2\left(\frac{x-a}{b-a}\right)^{2}, & x\in\left[a,\frac{a+b}{2}\right];\\ +1-2\left(\frac{b-x}{b-a}\right)^{2}, & x\in\left[\frac{a+b}{2},b\right],\\ +1, & x\geq b. +\end{cases} +\] + +\end_inset + + +\end_layout + +\begin_layout Enumerate + +\series bold +Funciones +\begin_inset Formula $\Pi$ +\end_inset + +: +\series default + Para +\begin_inset Formula $a<b\leq c<d$ +\end_inset + +, +\begin_inset Formula +\[ +\text{pimf}(x;a,b,c,d)\coloneqq\begin{cases} +2\left(\frac{x-a}{b-a}\right)^{2}, & x\in\left[a,\frac{a+b}{2}\right];\\ +1-2\left(\frac{b-x}{b-a}\right)^{2}, & x\in\left[\frac{a+b}{2},b\right];\\ +1, & x\in[b,c];\\ +1-2\left(\frac{x-c}{d-c}\right)^{2}, & x\in\left[c,\frac{c+d}{2}\right];\\ +2\left(\frac{d-x}{d-c}\right)^{2}, & x\in\left[\frac{c+d}{2},d\right];\\ +0, & \text{en otro caso}. +\end{cases} +\] + +\end_inset + + +\end_layout + +\begin_layout Standard +Dados dos conjuntos borrosos +\begin_inset Formula $A$ +\end_inset + + y +\begin_inset Formula $B$ +\end_inset + + sobre +\begin_inset Formula $U$ +\end_inset + +, +\begin_inset Formula $A\subseteq B$ +\end_inset + + si +\begin_inset Formula $\forall x\in U,A(x)\leq B(x)$ +\end_inset + +. + +\end_layout + +\begin_layout Standard +Un operador +\begin_inset Formula $\#:D\subseteq(\mathbb{R}\times\mathbb{R})\to\mathbb{R}$ +\end_inset + + es +\series bold +monótono +\series default + si para +\begin_inset Formula $(a,b),(a',b')\in D$ +\end_inset + + con +\begin_inset Formula $a\leq a'$ +\end_inset + + y +\begin_inset Formula $b\leq b'$ +\end_inset + + es +\begin_inset Formula $a\#b\leq a'\#b'$ +\end_inset + +. + Una operador +\begin_inset Formula $\#:[0,1]\times[0,1]\to[0,1]$ +\end_inset + + asociativo, conmutativo y monótono es una +\series bold +t-norma +\series default + si +\begin_inset Formula $\forall a\in[0,1],(a\#0=0\land a\#1=a)$ +\end_inset + +, y es una +\series bold +s-norma +\series default + o +\series bold +t-conorma +\series default + si +\begin_inset Formula $\forall a\in[0,1],(a\#0=a\land a\#1=1)$ +\end_inset + +. + Llamamos +\begin_inset Formula $*$ +\end_inset + + a una t-norma cualquiera y +\begin_inset Formula $\oplus$ +\end_inset + + a una s-norma cualquiera. +\end_layout + +\begin_layout Standard +Algunas t-normas: +\end_layout + +\begin_layout Enumerate + +\series bold +Mínimo: +\series default + +\begin_inset Formula $a\wedge b\coloneqq\min\{a,b\}$ +\end_inset + +. +\end_layout + +\begin_layout Enumerate + +\series bold +Producto algebraico: +\series default + +\begin_inset Formula $a*b\coloneqq ab$ +\end_inset + +. +\end_layout + +\begin_layout Enumerate + +\series bold +Producto acotado: +\series default + Para +\begin_inset Formula $p\in[-1,\infty)$ +\end_inset + +, +\begin_inset Formula $a*b\coloneqq\max\{0,(1+p)(a+b-1)-pab\}$ +\end_inset + +. + Se suele tomar +\begin_inset Formula $p=0$ +\end_inset + +. +\begin_inset Foot +status open + +\begin_layout Plain Layout +Las diapositivas dicen +\begin_inset Formula $p\in\mathbb{R}$ +\end_inset + +, pero es fácil ver que la monotonía y otras propiedades sólo se cumplen + cuando +\begin_inset Formula $p\geq-1$ +\end_inset + +. +\end_layout + +\end_inset + + +\begin_inset Note Comment +status open + +\begin_layout Plain Layout +Claramente es conmutativa. + Además, +\begin_inset Formula $a*0=\max\{0,(1+p)(a-1)\}=0\iff(1+p)(a-1)\leq0$ +\end_inset + +, lo que se cumple porque +\begin_inset Formula $1+p\geq0$ +\end_inset + + y +\begin_inset Formula $a-1\leq0$ +\end_inset + +, y +\begin_inset Formula $a*1=\max\{0,(1+p)a-pa\}=\max\{0,a\}=a$ +\end_inset + +. + Para ver que es monótona, sea +\begin_inset Formula $f(a,b)\coloneqq(1+p)(a+b-1)-pab$ +\end_inset + +, +\begin_inset Formula +\begin{align*} +\frac{\partial f}{\partial a} & =1+p-pb, & \frac{\partial f}{\partial b} & =1+p-pa, +\end{align*} + +\end_inset + +pero +\begin_inset Formula $p-pb=p(1-b),p-pa=p(1-a)\geq-1$ +\end_inset + +, pues +\begin_inset Formula $p\geq-1$ +\end_inset + + y +\begin_inset Formula $1-a,1-b\in[0,1]$ +\end_inset + +, luego +\begin_inset Formula $\frac{\partial f}{\partial a},\frac{\partial f}{\partial b}\geq0$ +\end_inset + + en todo punto. + Para ver que +\begin_inset Formula $\text{Im}(*)\subseteq[0,1]$ +\end_inset + +, es claro por las derivadas de +\begin_inset Formula $f$ +\end_inset + + que los extremos interiores se dan cuando +\begin_inset Formula $a=b=\frac{1+p}{p}$ +\end_inset + +. + Si esta valor está en +\begin_inset Formula $[0,1]$ +\end_inset + +, +\begin_inset Formula +\begin{align*} +f(a,b) & =(1+p)\left(2\frac{1+p}{p}-1\right)-p\left(\frac{1+p}{p}\right)^{2}=\\ + & =(1+p)\frac{2+p}{p}-\frac{(1+p)^{2}}{p}=\frac{1+p}{p}(2+p-1-p)=\frac{1+p}{p}\in[0,1]. +\end{align*} + +\end_inset + +Respecto a las aristas del cuadrado, la función restringida a una de estas + 4 es afín ya que, por ejemplo, si +\begin_inset Formula $a=0$ +\end_inset + +, +\begin_inset Formula $\frac{\partial f}{\partial b}=1+p$ +\end_inset + +, y si +\begin_inset Formula $a=1$ +\end_inset + +, +\begin_inset Formula $\frac{\partial f}{\partial b}=1$ +\end_inset + +. + Finalmente, para los vértices, +\begin_inset Formula $f(0,0)=-(1+p)>1\iff p<-2$ +\end_inset + +, +\begin_inset Formula $f(0,1)=f(1,0)=0$ +\end_inset + + y +\begin_inset Formula $f(1,1)=1$ +\end_inset + +. + Para ver que es asociativa, primero vemos que lo es +\begin_inset Formula $f$ +\end_inset + +. + Si +\begin_inset Formula $g(x,y,z)\coloneqq f(f(x,y),z)-f(x,f(y,z))$ +\end_inset + +: +\begin_inset Formula +\begin{align*} +\frac{\partial g}{\partial x} & =\frac{\partial f}{\partial a}(f(x,y),z)\frac{\partial f}{\partial a}(x,y)-\frac{\partial f}{\partial a}(x,f(y,z))=\\ + & =(1+p-pz)(1+p-py)-(1+p-p((1+p)(y+z-1)-pyz))=\\ + & =1+2p+p^{2}-py-p^{2}y-pz-p^{2}z+p^{2}yz-\\ + & -1-2p+py+pz+p^{2}y+p^{2}z-p^{2}-p^{2}yz=0,\\ +\frac{\partial g}{\partial y} & =\frac{\partial f}{\partial a}(f(x,y),z)\frac{\partial f}{\partial b}(x,y)-\frac{\partial f}{\partial b}(x,f(y,z))\frac{\partial f}{\partial a}(y,z)=\\ + & =(1+p-pz)(1+p-px)-(1+p-px)(1+p-pz)=0;\\ +\frac{\partial g}{\partial z} & =0, +\end{align*} + +\end_inset + +donde la última derivada es por simetría respecto a la primera usando la + conmutatividad de +\begin_inset Formula $f$ +\end_inset + +. + Entonces, como +\begin_inset Formula $g(0,0,0)=f(f(0,0),0)-f(0,f(0,0))=0$ +\end_inset + + por conmutatividad de +\begin_inset Formula $f$ +\end_inset + +, +\begin_inset Formula $g\equiv0$ +\end_inset + + y +\begin_inset Formula $f$ +\end_inset + + es asociativa. + Una propiedad de +\begin_inset Formula $f$ +\end_inset + + es que +\begin_inset Formula $f(a,b)\leq\min\{a,b\}$ +\end_inset + + para +\begin_inset Formula $a,b\in[0,1]$ +\end_inset + +, pues +\begin_inset Formula $f(a,b)\leq f(a,1)=a$ +\end_inset + + y del mismo modo +\begin_inset Formula $f(a,b)\leq b$ +\end_inset + +. + Si +\begin_inset Formula $f(a,b)\leq0$ +\end_inset + +, +\begin_inset Formula $a*b=0$ +\end_inset + + y +\begin_inset Formula $(a*b)*c=0$ +\end_inset + +, pero entonces +\begin_inset Formula $b*c\leq b$ +\end_inset + + y por tanto +\begin_inset Formula $a*(b*c)\leq a*b=0$ +\end_inset + +. + Si +\begin_inset Formula $f(a,b)>0$ +\end_inset + + pero +\begin_inset Formula $f(f(a,b),c)\leq0$ +\end_inset + +, entonces +\begin_inset Formula $(a*b)*c=0$ +\end_inset + +, pero si +\begin_inset Formula $f(b,c)>0$ +\end_inset + + entonces +\begin_inset Formula $a*(b*c)=\max\{0,f(a,f(b,c))\}=\max\{0,f(f(a,b),c)\}=0$ +\end_inset + +, y si +\begin_inset Formula $f(b,c)\leq0$ +\end_inset + + entonces +\begin_inset Formula $a*(b*c)=a*0=0$ +\end_inset + +. + Finalmente, si +\begin_inset Formula $f(a,b)>0$ +\end_inset + + y +\begin_inset Formula $f(f(a,b),c)>0$ +\end_inset + +, entonces +\begin_inset Formula $f(a,f(b,c))>0$ +\end_inset + + y por monotonía +\begin_inset Formula $f(b,c)\geq f(f(a,b),c)>0$ +\end_inset + +, luego +\begin_inset Formula $a*(b*c)=f(a,f(b,c))=f(f(a,b),c)=(a*b)*c$ +\end_inset + +. + Esto prueba la asociatividad. +\end_layout + +\end_inset + + +\end_layout + +\begin_layout Enumerate + +\series bold +Producto drástico: +\series default + +\begin_inset Formula +\[ +x*y\coloneqq\begin{cases} +x, & y=1;\\ +y, & x=1;\\ +0, & \text{en otro caso}. +\end{cases} +\] + +\end_inset + + +\begin_inset Note Comment +status open + +\begin_layout Plain Layout +Claramente es conmutativa y monótona. + Se tiene +\begin_inset Formula $1*1=1$ +\end_inset + + y +\begin_inset Formula $1*0=0$ +\end_inset + +, y si +\begin_inset Formula $a\in[0,1)$ +\end_inset + +, +\begin_inset Formula $a*1=a$ +\end_inset + + y +\begin_inset Formula $a*0=0$ +\end_inset + +. + Para la asociatividad, sean +\begin_inset Formula $a,b,c\in[0,1]$ +\end_inset + +. + Si +\begin_inset Formula $b=1$ +\end_inset + +, +\begin_inset Formula $(a*b)*c=a*c=a*(b*c)$ +\end_inset + +. + En otro caso, si +\begin_inset Formula $a=1$ +\end_inset + +, +\begin_inset Formula $(a*b)*c=b*c=a*(b*c)$ +\end_inset + +, y si +\begin_inset Formula $c=1$ +\end_inset + + es análogo. + Si ninguno es 1, +\begin_inset Formula $(a*b)*c=0*c=0=a*0=a*(b*c)$ +\end_inset + +. +\end_layout + +\end_inset + + +\end_layout + +\begin_layout Enumerate + +\series bold +Familia Dubois-Prade: +\series default + Para +\begin_inset Formula $p\in[0,1]$ +\end_inset + +, +\begin_inset Formula $x*y=\frac{xy}{\max\{x,y,p\}}$ +\end_inset + + (tomando límites cuando +\begin_inset Formula $x,y=0$ +\end_inset + + para +\begin_inset Formula $p=0$ +\end_inset + +). +\begin_inset Note Comment +status open + +\begin_layout Plain Layout +Claramente es conmutativa. + Como +\begin_inset Formula $0\leq xy\leq\max\{x,y,p\}$ +\end_inset + +, la función está en +\begin_inset Formula $[0,1]$ +\end_inset + + donde esté definida, y para +\begin_inset Formula $p=0$ +\end_inset + +, +\begin_inset Formula +\[ +0*0=\lim_{x,y\to0^{+}}\frac{xy}{\max\{x,y\}}=\lim_{x,y\to0^{+}}\min\{x,y\}=0. +\] + +\end_inset + +En general, +\begin_inset Formula $a*0=\frac{0}{\max\{a,p\}}=0$ +\end_inset + + (salvo en el caso +\begin_inset Formula $\max\{a,p\}=0$ +\end_inset + + que ya hemos tratado) y +\begin_inset Formula $a*1=\frac{a}{\max\{a,1,p\}}=a$ +\end_inset + +. + Se tiene +\begin_inset Formula +\begin{align*} +\frac{\partial(x*y)}{\partial x} & =\begin{cases} +0, & x\geq y,p;\\ +1, & y\geq x,p;\\ +y, & p\geq x,y; +\end{cases} & \frac{\partial(x*y)}{\partial y} & =\begin{cases} +1, & x\geq y,p;\\ +0, & y\geq x,p;\\ +x, & p\geq x,y; +\end{cases} +\end{align*} + +\end_inset + +con lo que +\begin_inset Formula $*$ +\end_inset + + es monótona. + Para la asociatividad, si +\begin_inset Formula $a,b,c\in[0,1]$ +\end_inset + +, +\begin_inset Formula +\begin{align*} +(a*b)*c & =\frac{(a*b)c}{\max\{a*b,c,p\}}=\frac{abc}{\max\{a,b,p\}\max\{a*b,c,p\}},\\ +a*(b*c) & =\frac{a(b*c)}{\max\{a,b*c,p\}}=\frac{abc}{\max\{b,c,p\}\max\{a,b*c,p\}}. +\end{align*} + +\end_inset + +Si +\begin_inset Formula $p\geq a,b,c$ +\end_inset + +, +\begin_inset Formula $(a*b)*c=\frac{abc}{p^{2}}=a*(b*c)$ +\end_inset + +. + Si +\begin_inset Formula $a\geq p,b,c$ +\end_inset + +, +\begin_inset Formula $a*b=\frac{ab}{\max\{a,b,p\}}=\frac{ab}{a}=b$ +\end_inset + +, luego +\begin_inset Formula $(a*b)*c=\frac{abc}{a\max\{a*b,c,p\}}=\frac{abc}{a\max\{b,c,p\}}=a*(b*c)$ +\end_inset + +. + Si +\begin_inset Formula $c\geq p,b,a$ +\end_inset + + es análogo. + Si +\begin_inset Formula $b\geq p,a,c$ +\end_inset + +, +\begin_inset Formula $a*b=a$ +\end_inset + + y +\begin_inset Formula $b*c=c$ +\end_inset + +, luego +\begin_inset Formula $(a*b)*c=\frac{abc}{b\max\{a,c,p\}}=a*(b*c)$ +\end_inset + +. +\end_layout + +\end_inset + + +\end_layout + +\begin_layout Enumerate + +\series bold +Familia Yager: +\series default + Para +\begin_inset Formula $p\in\mathbb{R}^{+}$ +\end_inset + +, +\begin_inset Formula $x*y\coloneqq1-\min\{1,\sqrt[p]{(1-x)^{p}+(1-y)^{p}}\}$ +\end_inset + +. +\begin_inset Note Comment +status open + +\begin_layout Plain Layout +Las propiedades se deducen de las de la familia correspondiente de s-normas. +\end_layout + +\end_inset + + +\end_layout + +\begin_layout Standard +Algunas s-normas: +\end_layout + +\begin_layout Enumerate + +\series bold +Máximo: +\series default + +\begin_inset Formula $x\vee y\coloneqq\max\{x,y\}$ +\end_inset + +. +\end_layout + +\begin_layout Enumerate + +\series bold +Suma algebraica: +\series default + +\begin_inset Formula $x\oplus y\coloneqq x+y-xy$ +\end_inset + +. +\begin_inset Note Comment +status open + +\begin_layout Plain Layout +Claramente es conmutativa, y es monótona porque +\begin_inset Formula $\frac{\partial(x\oplus y)}{\partial x}=1-y$ +\end_inset + + y +\begin_inset Formula $\frac{\partial(x\oplus y)}{\partial y}=1-x$ +\end_inset + +. + +\begin_inset Formula $a\oplus0=a$ +\end_inset + + y +\begin_inset Formula $a\oplus1=a+1-a=1$ +\end_inset + +. + Para ver que es asociativa, +\begin_inset Formula $(a\oplus b)\oplus c=a\oplus b+c-(a\oplus b)c=a+b-ab+c-ac-bc+abc$ +\end_inset + +, que es simétrica respecto a las variables, por lo que +\begin_inset Formula $(a\oplus b)\oplus c=(c\oplus b)\oplus a=a\oplus(b\oplus c)$ +\end_inset + +. +\end_layout + +\end_inset + + +\end_layout + +\begin_layout Enumerate + +\series bold +Suma acotada: +\series default + Para +\begin_inset Formula $p\geq-1$ +\end_inset + +, +\begin_inset Formula $x\oplus y\coloneqq\min(1,x+y+pxy)$ +\end_inset + +. + Se suele usar +\begin_inset Formula $p=0$ +\end_inset + +. +\begin_inset Note Comment +status open + +\begin_layout Plain Layout +Claramente es conmutativa, +\begin_inset Formula $a\oplus0=\min(1,a)=a$ +\end_inset + + y +\begin_inset Formula $a\oplus1=\min(1,a+1+pa)=1$ +\end_inset + +. +\end_layout + +\begin_layout Plain Layout +Para la monotonía, sea +\begin_inset Formula $f(a,b)\coloneqq a+b-pab$ +\end_inset + +, +\begin_inset Formula +\begin{align*} +\frac{\partial f}{\partial a} & =1+pb, & \frac{\partial f}{\partial b} & =1+pa. +\end{align*} + +\end_inset + +Para ver que es asociativa, primero vemos que lo es +\begin_inset Formula $f$ +\end_inset + +. + Sea entonces +\begin_inset Formula $g(x,y,z)\coloneqq f(f(x,y),z)-f(x,f(y,z))$ +\end_inset + +, +\begin_inset Formula +\begin{align*} +\frac{\partial g}{\partial x} & =\frac{\partial f}{\partial a}(f(x,y),z)\frac{\partial f}{\partial a}(x,y)-\frac{\partial f}{\partial a}(x,f(y,z))=\\ + & =(1+pz)(1+py)-(1+p(y+z-pyz))=\\ + & =1+py+pz-p^{2}yz-1-py-pz-p^{2}yz=0,\\ +\frac{\partial g}{\partial y} & =\frac{\partial f}{\partial a}(f(x,y),z)\frac{\partial f}{\partial b}(x,y)-\frac{\partial f}{\partial b}(x,f(y,z))\frac{\partial f}{\partial a}(y,z)=\\ + & =(1+pz)(1+px)-(1+px)(1+pz)=0,\\ +\frac{\partial g}{\partial z} & =0, +\end{align*} + +\end_inset + +donde la última es por simetría, y como +\begin_inset Formula $g(0,0,0)=f(f(0,0),0)-f(0,f(0,0))=0$ +\end_inset + + por conmutatividad, +\begin_inset Formula $g\equiv0$ +\end_inset + + y +\begin_inset Formula $f$ +\end_inset + + es asociativa. + Se tiene +\begin_inset Formula $f(a,b)\geq\max\{a,b\}$ +\end_inset + +, pues +\begin_inset Formula $f(a,b)\geq a\oplus b\geq a\oplus0=a$ +\end_inset + + y análogamente para +\begin_inset Formula $b$ +\end_inset + +. + Si +\begin_inset Formula $f(a,b)\geq1$ +\end_inset + +, +\begin_inset Formula $(a\oplus b)\oplus c=1\oplus c=1$ +\end_inset + +, pero +\begin_inset Formula $a\oplus(b\oplus c)\geq a\oplus b=1$ +\end_inset + +. + Si +\begin_inset Formula $f(a,b)<1$ +\end_inset + + pero +\begin_inset Formula $f(f(a,b),c)\geq1$ +\end_inset + +, +\begin_inset Formula $(a\oplus b)\oplus c=\min\{1,f(f(a,b),c)\}=1$ +\end_inset + +, pero si +\begin_inset Formula $f(b,c)\geq1$ +\end_inset + + entonces +\begin_inset Formula $a\oplus(b\oplus c)=a\oplus1=1$ +\end_inset + +, y si +\begin_inset Formula $f(b,c)<1$ +\end_inset + + entonces +\begin_inset Formula $a\oplus(b\oplus c)=\min\{1,f(a,f(b,c))\}=\min\{1,f(f(a,b),c)\}=1$ +\end_inset + +. + Finalmente, si +\begin_inset Formula $f(a,b)<1$ +\end_inset + + y +\begin_inset Formula $f(f(a,b),c)<1$ +\end_inset + +, +\begin_inset Formula $f(a,f(b,c))<1$ +\end_inset + + y por monotonía +\begin_inset Formula $f(b,c)\leq f(f(a,b),c)<1$ +\end_inset + +, luego +\begin_inset Formula $a\oplus(b\oplus c)=f(a,f(b,c))=f(f(a,b),c)=(a\oplus b)\oplus c$ +\end_inset + +. +\end_layout + +\end_inset + + +\end_layout + +\begin_layout Enumerate + +\series bold +Suma drástica: +\series default + +\begin_inset Formula +\[ +x\oplus y=\begin{cases} +x, & y=0;\\ +y, & x=0;\\ +1, & \text{en otro caso}. +\end{cases} +\] + +\end_inset + + +\begin_inset Note Comment +status open + +\begin_layout Plain Layout +Claramente es conmutativa y monótona, +\begin_inset Formula $a\oplus0=a$ +\end_inset + +, +\begin_inset Formula $0\oplus1=1$ +\end_inset + + y, para +\begin_inset Formula $a>0$ +\end_inset + +, +\begin_inset Formula $a\oplus1=1$ +\end_inset + +. + Para la asociatividad, sean +\begin_inset Formula $a,b,c\in[0,1]$ +\end_inset + +, si +\begin_inset Formula $b=0$ +\end_inset + +, +\begin_inset Formula $(a\oplus b)\oplus c=a\oplus c=a\oplus(b\oplus c)$ +\end_inset + +; en otro caso, si +\begin_inset Formula $a=0$ +\end_inset + +, +\begin_inset Formula $(a\oplus b)\oplus c=b\oplus c=a\oplus(b\oplus c)$ +\end_inset + +; si +\begin_inset Formula $c=0$ +\end_inset + + es análogo, y si +\begin_inset Formula $a,b,c>0$ +\end_inset + +, +\begin_inset Formula $(a\oplus b)\oplus c=1\oplus c=1=a\oplus1=a\oplus(b\oplus c)$ +\end_inset + +. +\end_layout + +\end_inset + + +\end_layout + +\begin_layout Enumerate + +\series bold +Familia Dubois-Prade: +\series default + Para +\begin_inset Formula $p\in[0,1]$ +\end_inset + +, +\begin_inset Formula $x\oplus y\coloneqq1-\frac{(1-x)(1-y)}{\max\{1-x,1-y,p\}}$ +\end_inset + +. +\begin_inset Note Comment +status open + +\begin_layout Plain Layout +Las propiedades se deducen de las de la familia correspondiente de t-normas. +\end_layout + +\end_inset + + +\end_layout + +\begin_layout Enumerate +\begin_inset Note Note +status open + +\begin_layout Plain Layout +TODO from pg 27 familia Yager & proof +\end_layout + +\end_inset + + +\end_layout + +\end_body +\end_document |
