diff options
Diffstat (limited to 'ealg/n1.lyx')
| -rw-r--r-- | ealg/n1.lyx | 318 |
1 files changed, 286 insertions, 32 deletions
diff --git a/ealg/n1.lyx b/ealg/n1.lyx index 7434dd6..6086c51 100644 --- a/ealg/n1.lyx +++ b/ealg/n1.lyx @@ -2329,6 +2329,22 @@ donde \end_layout \begin_layout Standard +\begin_inset ERT +status open + +\begin_layout Plain Layout + + +\backslash +hbox{ +\backslash +vline +\backslash +vbox{ +\end_layout + +\end_inset + Para \begin_inset Formula $n,m\in\mathbb{Z}^{+}$ \end_inset @@ -2338,6 +2354,17 @@ Para \end_inset . +\begin_inset ERT +status open + +\begin_layout Plain Layout + +}} +\end_layout + +\end_inset + + \end_layout \begin_layout Section @@ -2663,6 +2690,223 @@ primitiva . \end_layout +\begin_layout Standard +Dado +\begin_inset Formula $f:=Y^{3}+3pY+2q\in\mathbb{C}[X]$ +\end_inset + +, si +\begin_inset Formula $\omega:=e^{2\pi i/3}$ +\end_inset + +, existe +\begin_inset Formula $k\in\{0,1,2\}$ +\end_inset + + tal que, si +\begin_inset Formula +\begin{align*} +r & :=\sqrt[3]{-q+\sqrt{q^{2}+p^{3}}}, & s & :=\omega^{k}\sqrt[3]{-q-\sqrt{q^{2}-p^{3}}}, +\end{align*} + +\end_inset + +las raíces de +\begin_inset Formula $f$ +\end_inset + + son +\begin_inset Formula $r+s$ +\end_inset + +, +\begin_inset Formula $r\omega+s\omega^{2}$ +\end_inset + + y +\begin_inset Formula $r\omega^{2}+s\omega$ +\end_inset + +. +\begin_inset Note Comment +status open + +\begin_layout Plain Layout + +\series bold +Demostración: +\series default + Sean +\begin_inset Formula $r$ +\end_inset + + y +\begin_inset Formula $s$ +\end_inset + + incógnitas tales que +\begin_inset Formula $Y=r+s$ +\end_inset + +, entonces +\begin_inset Formula +\[ +f(Y)=r^{3}+3(r+s)rs+s^{3}+3p(r+s)+2q=(r^{3}+s^{3}+2q)+3(r+s)(rs+p). +\] + +\end_inset + +Podemos tomar +\begin_inset Formula $rs=-p$ +\end_inset + +, ya que como +\begin_inset Formula $r=Y-s$ +\end_inset + + esto equivale a que +\begin_inset Formula $(Y-s)s=Ys-s^{2}=-p$ +\end_inset + +, una ecuación de segundo grado con incógnita +\begin_inset Formula $s$ +\end_inset + + que tiene sus raíces en +\begin_inset Formula $\mathbb{C}$ +\end_inset + +. + Entonces +\begin_inset Formula $rs+p=0$ +\end_inset + + y +\begin_inset Formula $f(Y)=r^{3}+s^{3}+2q=0$ +\end_inset + +. + Multiplicando esto por +\begin_inset Formula $r^{3}$ +\end_inset + + o +\begin_inset Formula $s^{3}$ +\end_inset + +, +\begin_inset Formula $r^{6}+2qr^{3}-p^{3}=0$ +\end_inset + + y +\begin_inset Formula $s^{6}+2qs^{3}-p^{3}=0$ +\end_inset + +, luego +\begin_inset Formula $r$ +\end_inset + + y +\begin_inset Formula $s$ +\end_inset + + son raíces de +\begin_inset Formula $T^{6}+2qT^{3}-p^{3}=0$ +\end_inset + +, con soluciones +\begin_inset Formula $T^{3}=-q\pm\sqrt{q^{2}+p^{3}}$ +\end_inset + +. + Podemos suponer +\begin_inset Formula $r^{3}=-q+\sqrt{q^{2}+p^{3}}$ +\end_inset + + y +\begin_inset Formula $s^{3}=-q-\sqrt{q^{2}+p^{3}}$ +\end_inset + +, y entonces existen +\begin_inset Formula $i,j\in\{0,1,2\}$ +\end_inset + + con +\begin_inset Formula +\begin{align*} +r & =\omega^{i}\sqrt[3]{-q+\sqrt{q^{2}+p^{3}}}, & s & =\omega^{j}\sqrt[3]{-q-\sqrt{q^{2}+p^{3}}}. +\end{align*} + +\end_inset + +Para +\begin_inset Formula $a,b\in\mathbb{Z}$ +\end_inset + +, +\begin_inset Formula $(r\omega^{a})(s\omega^{b})=-p\omega^{a+b}$ +\end_inset + +, de modo que las únicas tres raíces posibles son aquellas en las que +\begin_inset Formula $\omega^{a+b}=1$ +\end_inset + +, que son +\begin_inset Formula $r+s$ +\end_inset + +, +\begin_inset Formula $r\omega+s\omega^{2}$ +\end_inset + + y +\begin_inset Formula $r\omega^{2}+s\omega$ +\end_inset + +, y con esto podemos elegir +\begin_inset Formula $r$ +\end_inset + + tal que +\begin_inset Formula $i=0$ +\end_inset + + y habrá un único +\begin_inset Formula $j\in\{0,1,2\}$ +\end_inset + + tal que +\begin_inset Formula $r+s$ +\end_inset + + es raíz. +\end_layout + +\end_inset + + +\end_layout + +\begin_layout Standard +Si +\begin_inset Formula $f:=aX^{3}+bX^{2}+cX+d\in\mathbb{C}[X]$ +\end_inset + +, podemos obtener las raíces de +\begin_inset Formula $f(X)$ +\end_inset + + obteniendo las de +\begin_inset Formula $(\frac{1}{a}f)(X-\frac{b}{3a})$ +\end_inset + +, que será de la forma +\begin_inset Formula $X^{3}+3pX+2q$ +\end_inset + +. +\end_layout + \begin_layout Section Polinomios en varias variables \end_layout @@ -3404,10 +3648,14 @@ y son simétricos. . Si -\begin_inset Formula $\tilde{s}_{1}(X_{1},\dots,X_{n-1}),\dots,\tilde{s}_{n-1}(X_{1},\dots,X_{n-1})$ +\begin_inset Formula +\[ +\tilde{s}_{1}(X_{1},\dots,X_{n-1}),\dots,\tilde{s}_{n-1}(X_{1},\dots,X_{n-1}) +\] + \end_inset - son los polinomios simétricos elementales en las variables +son los polinomios simétricos elementales en las variables \begin_inset Formula $X_{1},\dots,X_{n-1}$ \end_inset @@ -3427,36 +3675,7 @@ y son simétricos. \end_layout \begin_layout Standard - -\series bold -Teorema fundamental de los polinomios simétricos: -\series default - Sea -\begin_inset Formula $S[X_{1},\dots,X_{n}]$ -\end_inset - - el subanillo de los polinomios simétricos de -\begin_inset Formula $A[X_{1},\dots,X_{n}]$ -\end_inset - -, el homomorfismo de evaluación -\begin_inset Formula $\varphi:A[X_{1},\dots,X_{n}]\to S[X_{1},\dots,X_{n}]$ -\end_inset - - con -\begin_inset Formula $\varphi(X_{i})=s_{i}$ -\end_inset - - es un isomorfismo, es decir, todo polinomio simétrico se escribe de forma - única como expresión polinómica en los polinomios simétricos elementales. -\end_layout - -\begin_layout Standard - -\series bold -Fórmulas de Cardano-Vieta: -\series default - Sean +Sean \begin_inset Formula $A$ \end_inset @@ -3488,6 +3707,11 @@ Fórmulas de Cardano-Vieta: \end_inset + +\begin_inset Note Comment +status open + +\begin_layout Plain Layout En efecto, sea \begin_inset Formula \[ @@ -3507,6 +3731,36 @@ f(X)=(X-\alpha_{1})\cdots(X-\alpha_{n})=f(\alpha_{1},\dots,\alpha_{n},X)=X^{n}+s \end_layout +\end_inset + + +\end_layout + +\begin_layout Standard + +\series bold +Teorema fundamental de los polinomios simétricos: +\series default + Sea +\begin_inset Formula $S[X_{1},\dots,X_{n}]$ +\end_inset + + el subanillo de los polinomios simétricos de +\begin_inset Formula $A[X_{1},\dots,X_{n}]$ +\end_inset + +, el homomorfismo de evaluación +\begin_inset Formula $\varphi:A[X_{1},\dots,X_{n}]\to S[X_{1},\dots,X_{n}]$ +\end_inset + + con +\begin_inset Formula $\varphi(X_{i})=s_{i}$ +\end_inset + + es un isomorfismo, es decir, todo polinomio simétrico se escribe de forma + única como expresión polinómica en los polinomios simétricos elementales. +\end_layout + \begin_layout Standard El \series bold |
