aboutsummaryrefslogtreecommitdiff
path: root/ealg
diff options
context:
space:
mode:
Diffstat (limited to 'ealg')
-rw-r--r--ealg/n1.lyx12
-rw-r--r--ealg/n2.lyx2
-rw-r--r--ealg/n4.lyx8
-rw-r--r--ealg/n5.lyx2
-rw-r--r--ealg/n6.lyx6
-rw-r--r--ealg/n7.lyx8
6 files changed, 19 insertions, 19 deletions
diff --git a/ealg/n1.lyx b/ealg/n1.lyx
index 7068e05..a5d022d 100644
--- a/ealg/n1.lyx
+++ b/ealg/n1.lyx
@@ -223,7 +223,7 @@ grado
\end_inset
a
-\begin_inset Formula $\text{gr}(p):=\max\{k\in\mathbb{N}:p_{k}\neq0\}$
+\begin_inset Formula $\text{gr}(p):=\max\{k\in\mathbb{N}\mid p_{k}\neq0\}$
\end_inset
,
@@ -831,7 +831,7 @@ euclídea
\end_layout
\begin_layout Enumerate
-\begin_inset Formula $\forall a\in D,b\in D\setminus\{0\},\exists q,r\in D:(a=bq+r\land(r=0\lor\delta(r)<\delta(b)))$
+\begin_inset Formula $\forall a\in D,b\in D\setminus\{0\},\exists q,r\in D\mid (a=bq+r\land(r=0\lor\delta(r)<\delta(b)))$
\end_inset
.
@@ -968,7 +968,7 @@ Para
\end_inset
, existe
-\begin_inset Formula $m:=\max\{k\in\mathbb{N}:(X-a)^{k}\mid f\}$
+\begin_inset Formula $m:=\max\{k\in\mathbb{N}\mid (X-a)^{k}\mid f\}$
\end_inset
.
@@ -1875,7 +1875,7 @@ teorema
\end_inset
],
-\begin_inset Formula $c(p):=\{x:x=\text{mcd}_{k\geq0}p_{k}\}$
+\begin_inset Formula $c(p):=\{x\mid x=\text{mcd}_{k\geq0}p_{k}\}$
\end_inset
, y [...] si
@@ -3967,11 +3967,11 @@ Queremos ver que, para
.
Con esto, sean
-\begin_inset Formula $A:=\{i\in\mathbb{N}^{n}:a_{i}\neq0\}$
+\begin_inset Formula $A:=\{i\in\mathbb{N}^{n}\mid a_{i}\neq0\}$
\end_inset
,
-\begin_inset Formula $B:=\{j\in\mathbb{N}^{n}:b_{j}\neq0\}$
+\begin_inset Formula $B:=\{j\in\mathbb{N}^{n}\mid b_{j}\neq0\}$
\end_inset
,
diff --git a/ealg/n2.lyx b/ealg/n2.lyx
index a006108..cbcd97d 100644
--- a/ealg/n2.lyx
+++ b/ealg/n2.lyx
@@ -4611,7 +4611,7 @@ clausura algebraica
es
\begin_inset Formula
\[
-\overline{K}_{L}:=\{\alpha\in L:\alpha\text{ es algebraico sobre }K\}.
+\overline{K}_{L}:=\{\alpha\in L\mid \alpha\text{ es algebraico sobre }K\}.
\]
\end_inset
diff --git a/ealg/n4.lyx b/ealg/n4.lyx
index e9f8c50..4a46a08 100644
--- a/ealg/n4.lyx
+++ b/ealg/n4.lyx
@@ -1089,7 +1089,7 @@ grupo de Galois
\end_inset
lleva raíces a raíces y por tanto
-\begin_inset Formula $\sigma|_{\{\alpha_{1},\dots,\alpha_{n}\}}:\{\alpha_{1},\dots,\alpha_{n}\}\to\{\alpha_{1},\dots,\alpha_{n}\}$
+\begin_inset Formula $\sigma|_{\{\alpha_{1},\dots,\alpha_{n}\}}\mid \{\alpha_{1},\dots,\alpha_{n}\}\to\{\alpha_{1},\dots,\alpha_{n}\}$
\end_inset
es inyectiva por serlo
@@ -1491,7 +1491,7 @@ teorema
\end_inset
,
-\begin_inset Formula $K(\{\alpha\in\overline{K}:\exists f\in{\cal P}:f(\alpha)=0\})$
+\begin_inset Formula $K(\{\alpha\in\overline{K}\mid \exists f\in{\cal P}:f(\alpha)=0\})$
\end_inset
, por lo que existe un cuerpo de descomposición de
@@ -2010,7 +2010,7 @@ Para cada
\end_inset
elementos y viene dado por
-\begin_inset Formula $\mathbb{F}_{p^{n}}:=\{\alpha\in\overline{\mathbb{Z}_{p}}:\alpha^{p^{n}}=\alpha\}$
+\begin_inset Formula $\mathbb{F}_{p^{n}}:=\{\alpha\in\overline{\mathbb{Z}_{p}}\mid \alpha^{p^{n}}=\alpha\}$
\end_inset
.
@@ -2019,7 +2019,7 @@ Para cada
\begin_deeper
\begin_layout Standard
Sea
-\begin_inset Formula $S:=\{\alpha\in\overline{\mathbb{Z}_{p}}:\alpha^{p^{n}}=\alpha\}$
+\begin_inset Formula $S:=\{\alpha\in\overline{\mathbb{Z}_{p}}\mid \alpha^{p^{n}}=\alpha\}$
\end_inset
el conjunto de raíces de
diff --git a/ealg/n5.lyx b/ealg/n5.lyx
index a3eaed8..18c97fd 100644
--- a/ealg/n5.lyx
+++ b/ealg/n5.lyx
@@ -112,7 +112,7 @@ de uno
, y llamamos
\begin_inset Formula
\[
-{\cal U}_{n}(K):=\{\xi\in K:\xi^{n}=1\}=\{\xi\in K:o_{K^{*}}(\xi)\mid n\}.
+{\cal U}_{n}(K):=\{\xi\in K\mid \xi^{n}=1\}=\{\xi\in K\mid o_{K^{*}}(\xi)\mid n\}.
\]
\end_inset
diff --git a/ealg/n6.lyx b/ealg/n6.lyx
index 343a1ac..fd441a7 100644
--- a/ealg/n6.lyx
+++ b/ealg/n6.lyx
@@ -243,7 +243,7 @@ Demostración:
\end_inset
y
-\begin_inset Formula $R:=\{\alpha_{1}:=\alpha,\dots,\alpha_{m}\}$
+\begin_inset Formula $R:=\{\alpha_{1}\mid =\alpha,\dots,\alpha_{m}\}$
\end_inset
el conjunto de las raíces de
@@ -354,7 +354,7 @@ teorema
\end_inset
Sean
-\begin_inset Formula ${\cal P}:=\{f_{\alpha}:=\text{Irr}(\alpha,K)\}_{\alpha\in L}\subseteq K[X]\setminus0$
+\begin_inset Formula ${\cal P}:=\{f_{\alpha}\mid =\text{Irr}(\alpha,K)\}_{\alpha\in L}\subseteq K[X]\setminus0$
\end_inset
y
@@ -1107,7 +1107,7 @@ clausura normal
, y viene dada por
\begin_inset Formula
\[
-N:=\bigcap\{E\text{ intermedio en }L\subseteq\overline{L}:K\subseteq E\text{ normal}\}.
+N:=\bigcap\{E\text{ intermedio en }L\subseteq\overline{L}\mid K\subseteq E\text{ normal}\}.
\]
\end_inset
diff --git a/ealg/n7.lyx b/ealg/n7.lyx
index 2faa1a1..f5f15b6 100644
--- a/ealg/n7.lyx
+++ b/ealg/n7.lyx
@@ -83,7 +83,7 @@
\begin_layout Standard
\begin_inset Formula
\[
-\text{Gal}(K(X)/K)=\bigg\{\sigma\,\Big\vert\,\exists a,b,c,d\in K:\bigg(ad-bc\neq0\land\sigma(X)=\frac{aX+b}{cX+d}\bigg)\bigg\}.
+\text{Gal}(K(X)/K)=\bigg\{\sigma\,\Big\vert\,\exists a,b,c,d\in K\mid \bigg(ad-bc\neq0\land\sigma(X)=\frac{aX+b}{cX+d}\bigg)\bigg\}.
\]
\end_inset
@@ -139,8 +139,8 @@ conexión de Galois
dado por
\begin_inset Formula
\begin{align*}
-f(F):=F' & :=\{\sigma\in G:\forall\alpha\in F,\sigma(\alpha)=\alpha\}=\text{Gal}(L/F),\\
-g(H):=H' & :=\{\alpha\in L:\forall\sigma\in H,\sigma(\alpha)=\alpha\}=\bigcap_{\sigma\in H}\text{Fix}\sigma.
+f(F):=F' & :=\{\sigma\in G\mid \forall\alpha\in F,\sigma(\alpha)=\alpha\}=\text{Gal}(L/F),\\
+g(H):=H' & :=\{\alpha\in L\mid \forall\sigma\in H,\sigma(\alpha)=\alpha\}=\bigcap_{\sigma\in H}\text{Fix}\sigma.
\end{align*}
\end_inset
@@ -150,7 +150,7 @@ En particular, para
\end_inset
,
-\begin_inset Formula $K(\beta)'=\{\sigma\in G:\sigma(\beta)=\beta\}$
+\begin_inset Formula $K(\beta)'=\{\sigma\in G\mid \sigma(\beta)=\beta\}$
\end_inset
, y para