diff options
Diffstat (limited to 'fuvr2/n1.lyx')
| -rw-r--r-- | fuvr2/n1.lyx | 4028 |
1 files changed, 4028 insertions, 0 deletions
diff --git a/fuvr2/n1.lyx b/fuvr2/n1.lyx new file mode 100644 index 0000000..a8766da --- /dev/null +++ b/fuvr2/n1.lyx @@ -0,0 +1,4028 @@ +#LyX 2.3 created this file. For more info see http://www.lyx.org/ +\lyxformat 544 +\begin_document +\begin_header +\save_transient_properties true +\origin unavailable +\textclass book +\use_default_options true +\maintain_unincluded_children false +\language spanish +\language_package default +\inputencoding auto +\fontencoding global +\font_roman "default" "default" +\font_sans "default" "default" +\font_typewriter "default" "default" +\font_math "auto" "auto" +\font_default_family default +\use_non_tex_fonts false +\font_sc false +\font_osf false +\font_sf_scale 100 100 +\font_tt_scale 100 100 +\use_microtype false +\use_dash_ligatures true +\graphics default +\default_output_format default +\output_sync 0 +\bibtex_command default +\index_command default +\paperfontsize default +\spacing single +\use_hyperref false +\papersize default +\use_geometry false +\use_package amsmath 1 +\use_package amssymb 1 +\use_package cancel 1 +\use_package esint 1 +\use_package mathdots 1 +\use_package mathtools 1 +\use_package mhchem 1 +\use_package stackrel 1 +\use_package stmaryrd 1 +\use_package undertilde 1 +\cite_engine basic +\cite_engine_type default +\biblio_style plain +\use_bibtopic false +\use_indices false +\paperorientation portrait +\suppress_date false +\justification true +\use_refstyle 1 +\use_minted 0 +\index Index +\shortcut idx +\color #008000 +\end_index +\secnumdepth 3 +\tocdepth 3 +\paragraph_separation indent +\paragraph_indentation default +\is_math_indent 0 +\math_numbering_side default +\quotes_style swiss +\dynamic_quotes 0 +\papercolumns 1 +\papersides 1 +\paperpagestyle default +\tracking_changes false +\output_changes false +\html_math_output 0 +\html_css_as_file 0 +\html_be_strict false +\end_header + +\begin_body + +\begin_layout Standard +Una función +\begin_inset Formula $f:I\rightarrow\mathbb{R}$ +\end_inset + +, siendo +\begin_inset Formula $I$ +\end_inset + + un intervalo abierto, es +\series bold +derivable +\series default + en +\begin_inset Formula $c\in I$ +\end_inset + + si existe +\begin_inset Formula +\[ +f'(c):=\lim_{h\rightarrow0}\frac{f(c+h)-f(c)}{h} +\] + +\end_inset + +y se dice derivable en +\begin_inset Formula $I$ +\end_inset + + si es derivable en cada punto de +\begin_inset Formula $I$ +\end_inset + +. + Al valor +\begin_inset Formula $f'(c)$ +\end_inset + + lo llamamos +\series bold +derivada +\series default + de +\begin_inset Formula $f$ +\end_inset + + en +\begin_inset Formula $c$ +\end_inset + +, y llamamos +\series bold +cociente incremental +\series default + a la expresión +\begin_inset Formula $\frac{f(c+h)-f(c)}{h}$ +\end_inset + +. + Otra definición de derivada es +\begin_inset Formula +\[ +f'(c):=\lim_{x\rightarrow c}\frac{f(x)-f(c)}{x-c} +\] + +\end_inset + + Si +\begin_inset Formula $f$ +\end_inset + + es derivable en +\begin_inset Formula $I$ +\end_inset + +, llamamos +\series bold +derivada de la función +\series default + +\begin_inset Formula $f$ +\end_inset + + a la función +\begin_inset Formula $f':I\rightarrow\mathbb{R}$ +\end_inset + + que a cada +\begin_inset Formula $x\in I$ +\end_inset + + le hace corresponder +\begin_inset Formula $f'(x)$ +\end_inset + +. + Podemos definir la +\series bold +derivada por la izquierda +\series default + de +\begin_inset Formula $f$ +\end_inset + + en +\begin_inset Formula $c$ +\end_inset + + como +\begin_inset Formula $f'(c^{-}):=f'_{-}(c):=\lim_{h\rightarrow0^{-}}\frac{f(c+h)-f(c)}{h}$ +\end_inset + +, y la +\series bold +derivada por la derecha +\series default + de +\begin_inset Formula $f$ +\end_inset + + en +\begin_inset Formula $c$ +\end_inset + + como +\begin_inset Formula $f'(c^{+}):=f'_{+}(c):=\lim_{h\rightarrow0^{+}}\frac{f(c+h)-f(c)}{h}$ +\end_inset + +. +\end_layout + +\begin_layout Standard +Si +\begin_inset Formula $f$ +\end_inset + + es derivable en +\begin_inset Formula $c$ +\end_inset + +, llamamos +\series bold +recta tangente +\series default + a la curva +\begin_inset Formula $y=f(x)$ +\end_inset + + en el punto +\begin_inset Formula $(c,f(c))$ +\end_inset + + a la función dada por +\begin_inset Formula $g(x)=f(c)+f'(c)(x-c)$ +\end_inset + +. + Podemos formular que +\begin_inset Formula $f'(c)=m$ +\end_inset + + diciendo que +\begin_inset Formula +\[ +f(c+h)=f(c)+mh+h\phi(h) +\] + +\end_inset + +donde +\begin_inset Formula $\phi:(-\delta,\delta)\backslash\{0\}\rightarrow\mathbb{R}$ +\end_inset + + es una función tal que +\begin_inset Formula $\lim_{h\rightarrow0}\phi(h)=0$ +\end_inset + +. + Equivalentemente, podemos hacer uso de la +\series bold + +\begin_inset Quotes cld +\end_inset + +o +\begin_inset Quotes crd +\end_inset + + pequeña de Landau +\series default +, que representa una función cualquiera definida en un entorno reducido + o perforado del origen, +\begin_inset Formula $(-\delta,\delta)\backslash\{0\}$ +\end_inset + +, y cumple que +\begin_inset Formula $\lim_{h\rightarrow0}\frac{o(h)}{h}=0$ +\end_inset + +. + Así, +\begin_inset Formula +\[ +f(c+h)=f(c)+mh+o(h) +\] + +\end_inset + + +\end_layout + +\begin_layout Standard +\begin_inset Formula $f:I\rightarrow\mathbb{R}$ +\end_inset + + es +\series bold +diferenciable +\series default + en +\begin_inset Formula $c\in I$ +\end_inset + + si existe una aplicación +\emph on +lineal +\emph default + +\begin_inset Formula $L:\mathbb{R}\rightarrow\mathbb{R}$ +\end_inset + + llamada +\series bold +diferencial +\series default + de +\begin_inset Formula $f$ +\end_inset + + en +\begin_inset Formula $c$ +\end_inset + +, denotada +\begin_inset Formula $df(c)$ +\end_inset + +, tal que +\begin_inset Formula +\[ +\lim_{h\rightarrow0}\frac{f(c+h)-f(c)-L(h)}{h}=0 +\] + +\end_inset + + +\end_layout + +\begin_layout Standard +Se tiene que +\begin_inset Formula $f$ +\end_inset + + es diferenciable en +\begin_inset Formula $c\in I$ +\end_inset + + si y sólo si es derivable en +\begin_inset Formula $c$ +\end_inset + +, y entonces +\begin_inset Formula $df(c)(x)=f'(c)x$ +\end_inset + +. +\end_layout + +\begin_layout Itemize +\begin_inset Argument item:1 +status open + +\begin_layout Plain Layout +\begin_inset Formula $\implies]$ +\end_inset + + +\end_layout + +\end_inset + +Sea +\begin_inset Formula $\alpha(h):=\frac{f(c+h)-f(c)-L(h)}{h}=\frac{f(c+h)-f(c)}{h}-L\left(\frac{h}{h}\right)=\frac{f(c+h)-f(c)}{h}-L(1)$ +\end_inset + +, entonces +\begin_inset Formula +\[ +f'(c)=\lim_{h\rightarrow0}\frac{f(c+h)-f(c)}{h}=\lim_{h\rightarrow0}\alpha(h)+L(1)=L(1) +\] + +\end_inset + + +\end_layout + +\begin_layout Itemize +\begin_inset Argument item:1 +status open + +\begin_layout Plain Layout +\begin_inset Formula $\impliedby]$ +\end_inset + + +\end_layout + +\end_inset + +Si +\begin_inset Formula $f$ +\end_inset + + es derivable en +\begin_inset Formula $c$ +\end_inset + +, +\begin_inset Formula +\[ +\lim_{h\rightarrow0}\frac{f(c+h)-f(c)}{h}-f'(c)=\lim_{h\rightarrow0}\frac{f(c+h)-f(c)-f'(c)h}{h}=0 +\] + +\end_inset + +por lo que +\begin_inset Formula $f$ +\end_inset + + es derivable en +\begin_inset Formula $c$ +\end_inset + + y +\begin_inset Formula $f'(c)=L(1)$ +\end_inset + +. +\end_layout + +\begin_layout Standard +Si +\begin_inset Formula $f:I\subseteq\mathbb{R}\rightarrow\mathbb{R}$ +\end_inset + + es derivable en +\begin_inset Formula $c\in I$ +\end_inset + + entonces +\begin_inset Formula $f$ +\end_inset + + es continua en +\begin_inset Formula $c$ +\end_inset + +. + +\series bold +Demostración: +\series default + Se tiene que +\begin_inset Formula $f(c+h)-f(c)=(f'(c)+\phi(h))h$ +\end_inset + +, luego dado +\begin_inset Formula $\varepsilon>0$ +\end_inset + +, existe +\begin_inset Formula $\delta'>0$ +\end_inset + + tal que todo +\begin_inset Formula $|h|<\delta'$ +\end_inset + + cumple que +\begin_inset Formula $|\phi(h)|<1$ +\end_inset + +, y tomando +\begin_inset Formula $\delta:=\min\{\delta',\frac{\varepsilon}{|f'(c)|+1}\}$ +\end_inset + +, si +\begin_inset Formula $|h|<\delta$ +\end_inset + + entonces +\begin_inset Formula $|f(c+h)-f(c)|=|f'(c)+\phi(h)||h|\leq(|f'(c)+|\phi(h)|)|h|<\varepsilon$ +\end_inset + +. +\end_layout + +\begin_layout Section +Cálculo de derivadas +\end_layout + +\begin_layout Standard +Sean +\begin_inset Formula $f,g:I\rightarrow\mathbb{R}$ +\end_inset + +, siendo +\begin_inset Formula $I$ +\end_inset + + un intervalo abierto, derivables en +\begin_inset Formula $c\in I$ +\end_inset + +: +\end_layout + +\begin_layout Enumerate +\begin_inset Formula $(f+g)'(c)=f'(c)+g'(c)$ +\end_inset + +. +\begin_inset Formula +\[ +\lim_{h\rightarrow0}\frac{(f+g)(c+h)-(f+g)(c)}{h}=\lim_{h\rightarrow0}\frac{f(c+h)-f(c)+g(c+h)-g(c)}{h}=f'(c)+g'(c) +\] + +\end_inset + + +\end_layout + +\begin_layout Enumerate +\begin_inset Formula $(fg)'(c)=f'(c)g(c)+f(c)g'(c)$ +\end_inset + +. +\begin_inset Formula +\begin{gather*} +(fg)'(c)=\lim_{h\rightarrow0}\frac{f(c+h)g(c+h)-f(c)g(c)}{h}=\\ +=\lim_{h\rightarrow0}\frac{f(c+h)g(c+h)-f(c)g(c+h)+f(c)g(c+h)-f(c)g(c)}{h}=\\ +=\lim_{h\rightarrow0}g(c+h)\frac{f(c+h)-f(c)}{h}+\lim_{h\rightarrow0}f(c)\frac{g(c+h)-g(c)}{h}=g(c)f'(c)+f(c)g'(c) +\end{gather*} + +\end_inset + + +\end_layout + +\begin_layout Enumerate +\begin_inset Formula $g(x)\neq0\forall x\in I\implies\left(\frac{f}{g}\right)'(c)=\frac{f'(c)g(c)-f(c)g'(c)}{g(c)^{2}}$ +\end_inset + +. +\begin_inset Formula +\[ +\begin{gathered}\lim_{h\rightarrow0}\frac{\frac{f(c+h)}{g(c+h)}-\frac{f(c)}{g(c)}}{h}=\lim_{h\rightarrow0}\frac{f(c+h)g(c)-f(c)g(c+h)}{hg(c)g(c+h)}=\\ +=\lim_{h\rightarrow0}\frac{f(c+h)g(c)-f(c)g(c)+f(c)g(c)-f(c)g(c+h)}{hg(c)g(c+h)}=\\ +=\lim_{h\rightarrow0}g(c)\frac{f(c+h)-f(c)}{hg(c)g(c+h)}+f(c)\frac{g(c)-g(c+h)}{hg(c)g(c+h)}=\frac{f'(c)g(c)}{g(c)^{2}}-\frac{f(c)g'(c)}{g(c)^{2}} +\end{gathered} +\] + +\end_inset + + +\end_layout + +\begin_layout Enumerate +\begin_inset Formula $(\alpha f)'(c)=\alpha f'(c)\forall\alpha\in\mathbb{R}$ +\end_inset + +. +\begin_inset Newline newline +\end_inset + +Sea +\begin_inset Formula $g(x)=\alpha$ +\end_inset + + para todo +\begin_inset Formula $x\in I$ +\end_inset + +, +\begin_inset Formula +\[ +g'(c)=\lim_{h\rightarrow0}\frac{g(c+h)-g(c)}{h}=\lim_{h\rightarrow0}\frac{\alpha-\alpha}{h}=0 +\] + +\end_inset + +luego +\begin_inset Formula +\[ +(\alpha f)'(c)=(fg)'(c)=f'(c)g(c)+f(c)g'(c)=f'(c)g(c)=\alpha f'(c) +\] + +\end_inset + + +\end_layout + +\begin_layout Enumerate + +\series bold +Regla de la cadena: +\series default + Sean +\begin_inset Formula $I,J$ +\end_inset + + intervalos abiertos de +\begin_inset Formula $\mathbb{R}$ +\end_inset + + y +\begin_inset Formula $f:I\rightarrow\mathbb{R}$ +\end_inset + + y +\begin_inset Formula $g:J\rightarrow\mathbb{R}$ +\end_inset + + con +\begin_inset Formula $\text{Im}f\subseteq J$ +\end_inset + +, si +\begin_inset Formula $f$ +\end_inset + + es derivable en +\begin_inset Formula $c\in I$ +\end_inset + + y +\begin_inset Formula $g$ +\end_inset + + lo es en +\begin_inset Formula $f(c)$ +\end_inset + +, entonces +\begin_inset Formula $g\circ f$ +\end_inset + + es derivable en +\begin_inset Formula $c$ +\end_inset + + y +\begin_inset Formula +\[ +(g\circ f)'(c)=g'(f(c))f'(c) +\] + +\end_inset + +Para demostrarlo usamos que +\begin_inset Formula $f(c+h)=f(c)+hf'(c)+h\phi(h)$ +\end_inset + + y +\begin_inset Formula $g(f(c)+k)=g(f(c))+kg'(f(c))+k\psi(k)$ +\end_inset + +. + Así, +\begin_inset Formula +\begin{eqnarray*} +g(f(c+h)) & = & g(f(c)+hf'(c)+h\phi(h))\\ + & = & g(f(c))+(hf'(c)+h\phi(h))g'(f(c))+(hf'(c)+h\phi(h))\psi(hf'(c)+h\phi(h))\\ + & = & g(f(c))+hf'(c)g'(f(c))+\\ + & & +h(\phi(h)g'(f(c))+(f'(c)+\phi(h))\psi(hf'(c)+h\phi(h))) +\end{eqnarray*} + +\end_inset + +Si llamamos +\begin_inset Formula $\gamma(h)$ +\end_inset + + al último sumando, vemos que +\begin_inset Formula $(g\circ f)(c+h)=(g\circ f)(c)+hf'(c)g'(f(c))+h\gamma(h)$ +\end_inset + + con +\begin_inset Formula $\lim_{h\rightarrow0}\gamma(h)=0$ +\end_inset + +, lo que prueba el teorema. +\end_layout + +\begin_layout Enumerate +Si +\begin_inset Formula $f:I\rightarrow J$ +\end_inset + + es una biyección derivable entre los intervalos +\begin_inset Formula $I$ +\end_inset + + y +\begin_inset Formula $J$ +\end_inset + + con +\begin_inset Formula $f^{-1}$ +\end_inset + + continua y +\begin_inset Formula $f'(x)\neq0\forall x\in I$ +\end_inset + +, entonces +\begin_inset Formula $f^{-1}$ +\end_inset + + es derivable y +\begin_inset Formula +\[ +(f^{-1})'(y)=\frac{1}{f'(f^{-1}(y))} +\] + +\end_inset + +Sean +\begin_inset Formula $y=f(x),y_{0}=f(x_{0})$ +\end_inset + +, +\begin_inset Formula +\[ +\lim_{y\rightarrow y_{0}}\frac{f^{-1}(y)-f^{-1}(y_{0})}{y-y_{0}}=\lim_{y\rightarrow y_{0}}\frac{1}{\frac{y-y_{0}}{f^{-1}(y)-f^{-1}(y_{0})}}=\lim_{x\rightarrow x_{0}}\frac{1}{\frac{f(x)-f(x_{0})}{x-x_{0}}}=\frac{1}{f'(f^{-1}(y_{0}))} +\] + +\end_inset + + +\end_layout + +\begin_layout Standard +Veamos algunas derivadas importantes. +\end_layout + +\begin_layout Enumerate +Sea +\begin_inset Formula $f:I\rightarrow\mathbb{R}$ +\end_inset + + dada por +\begin_inset Formula $f(x)=\sin x$ +\end_inset + +, entonces +\begin_inset Formula $f'(x)=\cos x$ +\end_inset + +. + Si es +\begin_inset Formula $g(x)=\cos x$ +\end_inset + +, entonces +\begin_inset Formula $g'(x)=-\sin x$ +\end_inset + +. +\begin_inset Newline newline +\end_inset + +Se tiene que +\begin_inset Formula +\[ +\begin{array}{c} +\sin x=\sin\left(\frac{x+c}{2}+\frac{x-c}{2}\right)=\cos\frac{x+c}{2}\sin\frac{x-c}{2}+\sin\frac{x+c}{2}\cos\frac{x-c}{2}\\ +\sin c=\sin\left(\frac{x+c}{2}-\frac{x-c}{2}\right)=-\cos\frac{x+c}{2}\sin\frac{x-c}{2}+\sin\frac{x+c}{2}\cos\frac{x-c}{2} +\end{array} +\] + +\end_inset + +Por tanto, +\begin_inset Formula +\[ +\lim_{x\rightarrow c}\frac{\sin x-\sin c}{x-c}=\lim_{x\rightarrow c}\frac{\cos\frac{x+c}{2}\sin\frac{x-c}{2}}{\frac{x-c}{2}}=\lim_{x\rightarrow c}\cos\frac{x+c}{2}\cdot1=\cos c +\] + +\end_inset + +La derivada del coseno se obtiene de forma análoga. +\end_layout + +\begin_layout Enumerate +Si +\begin_inset Formula $f(x)=\tan x$ +\end_inset + + entonces +\begin_inset Formula $f'(x)=1+\tan^{2}x=\frac{1}{\cos^{2}x}$ +\end_inset + +. +\begin_inset Newline newline +\end_inset + +Como +\begin_inset Formula $f(x)=\frac{\sin x}{\cos x}$ +\end_inset + +, partiendo de la derivada del seno y del coseno, +\begin_inset Formula +\[ +f'(x)=\frac{\cos x\cdot\cos x-\sin x\cdot(-\sin x)}{\cos^{2}x}=\frac{\cos^{2}x+\sin^{2}x}{\cos^{2}x}=1+\tan^{2}x=\frac{1}{\cos^{2}x} +\] + +\end_inset + + +\end_layout + +\begin_layout Enumerate +Sea +\begin_inset Formula $f:I\rightarrow\mathbb{R}$ +\end_inset + + dada por +\begin_inset Formula $f(x)=e^{x}$ +\end_inset + +, entonces +\begin_inset Formula $f'(x)=e^{x}$ +\end_inset + +. +\begin_inset Formula +\[ +\lim_{h\rightarrow0}\frac{e^{x+h}-e^{x}}{h}=\lim_{h\rightarrow0}e^{x}\frac{e^{h}-1}{h}=e^{x} +\] + +\end_inset + + +\end_layout + +\begin_layout Enumerate +Sea +\begin_inset Formula $f:I\subseteq(0,+\infty)\rightarrow\mathbb{R}$ +\end_inset + + dada por +\begin_inset Formula $f(x)=\log x$ +\end_inset + +, entonces +\begin_inset Formula $f'(x)=\frac{1}{x}$ +\end_inset + +. +\begin_inset Newline newline +\end_inset + +El logaritmo es la inversa de +\begin_inset Formula $g(x)=e^{x}$ +\end_inset + +, con +\begin_inset Formula $g'(x)=e^{x}$ +\end_inset + +, luego +\begin_inset Formula +\[ +f'(x)=\frac{1}{e^{\log x}}=\frac{1}{x} +\] + +\end_inset + + +\end_layout + +\begin_layout Enumerate +Sea +\begin_inset Formula $f:I\subseteq(-1,1)\rightarrow(-\frac{\pi}{2},\frac{\pi}{2})$ +\end_inset + + dada por +\begin_inset Formula $f(x)=\arcsin x$ +\end_inset + +, entonces +\begin_inset Formula $f'(x)=\frac{1}{\sqrt{1-x^{2}}}$ +\end_inset + +. + Sea +\begin_inset Formula $g:I\subseteq(-1,1)\rightarrow(0,\pi)$ +\end_inset + + dada por +\begin_inset Formula $g(x)=\arccos x$ +\end_inset + +, +\begin_inset Formula $g'(x)=\frac{-1}{\sqrt{1-x^{2}}}$ +\end_inset + +. +\begin_inset Newline newline +\end_inset + +Al ser +\begin_inset Formula $f$ +\end_inset + + la inversa del seno y +\begin_inset Formula $\sin'(x)=\cos x$ +\end_inset + +, +\begin_inset Formula +\[ +f'(x)=\frac{1}{\cos(\arcsin x)}=\frac{1}{\sqrt{1-\sin^{2}(\arcsin x)}}=\frac{1}{\sqrt{1-x^{2}}} +\] + +\end_inset + +La derivada del arcocoseno se hace de forma análoga. +\end_layout + +\begin_layout Enumerate +Sea +\begin_inset Formula $f:I\rightarrow(-\frac{\pi}{2},\frac{\pi}{2})$ +\end_inset + + dada por +\begin_inset Formula $f(x)=\arctan x$ +\end_inset + +, entonces +\begin_inset Formula $f'(x)=\frac{1}{1+x^{2}}$ +\end_inset + +. +\begin_inset Newline newline +\end_inset + +Esta función es la inversa de la tangente, y como +\begin_inset Formula $\tan'(x)=1+\tan^{2}x$ +\end_inset + +, entonces +\begin_inset Formula +\[ +f'(x)=\frac{1}{1+\tan^{2}(\arctan x)}=\frac{1}{1+x^{2}} +\] + +\end_inset + + +\end_layout + +\begin_layout Enumerate +Dado +\begin_inset Formula $\alpha\in\mathbb{R}$ +\end_inset + +, la derivada de +\begin_inset Formula $f(x)=x^{\alpha}$ +\end_inset + + es +\begin_inset Formula $f'(x)=\alpha x^{\alpha-1}$ +\end_inset + +. + Para demostrarlo usamos +\series bold +derivación logarítmica +\series default +: Tomamos logaritmos en la definición de +\begin_inset Formula $f$ +\end_inset + + y derivamos la expresión resultante. +\begin_inset Formula +\[ +\log(f(x))=\log(x^{\alpha})=\alpha\log x\implies\log(f(x))'=\frac{f'(x)}{f(x)}=\frac{\alpha}{x}\implies f'(x)=f(x)\frac{\alpha}{x}=\alpha x^{\alpha-1} +\] + +\end_inset + + +\end_layout + +\begin_layout Section +Derivabilidad en un intervalo +\end_layout + +\begin_layout Standard +Una función +\begin_inset Formula $f:I\rightarrow\mathbb{R}$ +\end_inset + + definida en un intervalo +\begin_inset Formula $I$ +\end_inset + + es +\series bold +creciente +\series default +, +\series bold +estrictamente creciente +\series default +, +\series bold +decreciente +\series default + o +\series bold +estrictamente decreciente +\series default + en +\begin_inset Formula $I$ +\end_inset + + si para cualesquiera +\begin_inset Formula $x,y\in I$ +\end_inset + + con +\begin_inset Formula $x<y$ +\end_inset + + se tiene, respectivamente, que +\begin_inset Formula $f(x)\leq f(y)$ +\end_inset + +, +\begin_inset Formula $f(x)<f(y)$ +\end_inset + +, +\begin_inset Formula $f(x)\geq f(y)$ +\end_inset + + o +\begin_inset Formula $f(x)>f(y)$ +\end_inset + +. + Es creciente, estrictamente creciente, decreciente o estrictamente decreciente + en un punto +\begin_inset Formula $c\in I$ +\end_inset + + si existe un entorno perforado +\begin_inset Formula $V$ +\end_inset + + de +\begin_inset Formula $c$ +\end_inset + + tal que para +\begin_inset Formula $x\in I\cap V$ +\end_inset + +, si +\begin_inset Formula $m:=\frac{f(x)-f(c)}{x-c}$ +\end_inset + + es, respectivamente, +\begin_inset Formula $m\geq0$ +\end_inset + +, +\begin_inset Formula $m>0$ +\end_inset + +, +\begin_inset Formula $m\leq0$ +\end_inset + + o +\begin_inset Formula $m<0$ +\end_inset + +. + Se tiene que +\begin_inset Formula $f$ +\end_inset + + es creciente o decreciente en +\begin_inset Formula $I$ +\end_inset + + si y sólo si lo es en cada punto de +\begin_inset Formula $I$ +\end_inset + +. +\end_layout + +\begin_layout Itemize +\begin_inset Argument item:1 +status open + +\begin_layout Plain Layout +\begin_inset Formula $\implies]$ +\end_inset + + +\end_layout + +\end_inset + +Trivial. +\end_layout + +\begin_layout Itemize +\begin_inset Argument item:1 +status open + +\begin_layout Plain Layout +\begin_inset Formula $\impliedby]$ +\end_inset + + +\end_layout + +\end_inset + +Sea +\begin_inset Formula $f$ +\end_inset + + creciente en cada +\begin_inset Formula $x\in I$ +\end_inset + +, es menester demostrar que, dados +\begin_inset Formula $x<y$ +\end_inset + +, se tiene que +\begin_inset Formula $f(x)\leq f(y)$ +\end_inset + +. + Sea +\begin_inset Formula $A:=\{z\in(x,y]:f(x)\leq f(z)\}$ +\end_inset + +, como +\begin_inset Formula $A\neq\emptyset$ +\end_inset + + porque +\begin_inset Formula $f$ +\end_inset + + es creciente en +\begin_inset Formula $x$ +\end_inset + + y +\begin_inset Formula $A$ +\end_inset + + es acotado superiormente, podemos definir +\begin_inset Formula $\alpha:=\sup A$ +\end_inset + +, y basta probar que +\begin_inset Formula $\alpha=y$ +\end_inset + + y +\begin_inset Formula $f(x)\leq f(\alpha)$ +\end_inset + +. + Como +\begin_inset Formula $f$ +\end_inset + + es creciente en +\begin_inset Formula $\alpha$ +\end_inset + +, existe +\begin_inset Formula $\delta>0$ +\end_inset + + con +\begin_inset Formula $f(z)\leq f(\alpha)$ +\end_inset + + si +\begin_inset Formula $z\in(\alpha-\delta,\alpha)$ +\end_inset + +. + Pero por definición de +\begin_inset Formula $\alpha$ +\end_inset + + para alguno de esos valores es +\begin_inset Formula $f(x)\leq f(z)$ +\end_inset + +, luego +\begin_inset Formula $f(x)\leq f(\alpha)$ +\end_inset + +. + Si fuera +\begin_inset Formula $\alpha<y$ +\end_inset + + existiría +\begin_inset Formula $z\in(\alpha,y]$ +\end_inset + + con +\begin_inset Formula $f(\alpha)\leq f(z)$ +\end_inset + + por el crecimiento de +\begin_inset Formula $f$ +\end_inset + + en +\begin_inset Formula $\alpha$ +\end_inset + +, pero entonces se tendría que +\begin_inset Formula $f(x)\leq f(\alpha)\leq f(z)$ +\end_inset + +, contradiciendo la definición de +\begin_inset Formula $\alpha$ +\end_inset + +. +\end_layout + +\begin_layout Standard +\begin_inset Formula $f$ +\end_inset + + tiene un +\series bold +máximo relativo +\series default + o +\series bold +local +\series default + en +\begin_inset Formula $c\in I$ +\end_inset + + si existe un entorno +\begin_inset Formula $V$ +\end_inset + + de +\begin_inset Formula $c$ +\end_inset + + tal que +\begin_inset Formula $f(x)\leq f(c)\forall x\in I\cap V$ +\end_inset + +, tiene un +\series bold +mínimo relativo +\series default + o +\series bold +local +\series default + en +\begin_inset Formula $c\in I$ +\end_inset + + si existe un entorno +\begin_inset Formula $V$ +\end_inset + + de +\begin_inset Formula $c$ +\end_inset + + tal que +\begin_inset Formula $f(x)\geq f(c)\forall x\in I\cap V$ +\end_inset + +, y tiene un +\series bold +extremo relativo +\series default + o +\series bold +local +\series default + en +\begin_inset Formula $c$ +\end_inset + + si tiene un máximo o mínimo relativo en +\begin_inset Formula $c$ +\end_inset + +. + Propiedades: +\end_layout + +\begin_layout Enumerate +Si +\begin_inset Formula $f'(c)>0$ +\end_inset + + entonces +\begin_inset Formula $f$ +\end_inset + + es estrictamente creciente en +\begin_inset Formula $c$ +\end_inset + +. +\begin_inset Formula +\[ +f'(c)=\lim_{x\rightarrow c}\frac{f(x)-f(c)}{x-c}>0 +\] + +\end_inset + +por lo que existe un entorno reducido +\begin_inset Formula $V$ +\end_inset + + de +\begin_inset Formula $c$ +\end_inset + + tal que +\begin_inset Formula $\forall x\in I\cap V,\frac{f(x)-f(c)}{x-c}>0$ +\end_inset + +. +\end_layout + +\begin_layout Enumerate +Si +\begin_inset Formula $f'(c)<0$ +\end_inset + + entonces +\begin_inset Formula $f$ +\end_inset + + es estrictamente decreciente en +\begin_inset Formula $c$ +\end_inset + +. +\end_layout + +\begin_layout Enumerate +Si +\begin_inset Formula $c$ +\end_inset + + es un punto interior del intervalo +\begin_inset Formula $I$ +\end_inset + + (no es un extremo) y +\begin_inset Formula $f$ +\end_inset + + es derivable y tiene un extremo relativo en +\begin_inset Formula $c$ +\end_inset + +, entonces +\begin_inset Formula $f'(c)=0$ +\end_inset + +. +\begin_inset Newline newline +\end_inset + +Supongamos que el extremo es un máximo. + Existe un entorno +\begin_inset Formula $V$ +\end_inset + + de +\begin_inset Formula $c$ +\end_inset + + tal que +\begin_inset Formula $\forall x\in I\cap V,f(x)\leq f(c)$ +\end_inset + +, luego para +\begin_inset Formula $x\in I\cap V$ +\end_inset + +, +\begin_inset Formula +\[ +\left\{ \begin{array}{ccccc} +x<c & \implies & \frac{f(x)-f(c)}{x-c}\geq0 & \implies & f'(c^{-})=\lim_{x\rightarrow c^{-}}\frac{f(x)-f(c)}{x-c}\geq0\\ +x>c & \implies & \frac{f(x)-f(c)}{x-c}\leq0 & \implies & f(c^{+})=\lim_{x\rightarrow c^{+}}\frac{f(x)-f(c)}{x-c}\leq0 +\end{array}\right. +\] + +\end_inset + +Pero como +\begin_inset Formula $f$ +\end_inset + + es derivable en +\begin_inset Formula $c$ +\end_inset + +, +\begin_inset Formula $0\leq f'(c^{-})=f'(c)=f'(c^{+})\leq0$ +\end_inset + +, luego +\begin_inset Formula $f'(c)=0$ +\end_inset + +. +\end_layout + +\begin_layout Standard +Sea +\begin_inset Formula $f:(a,b)\rightarrow\mathbb{R}$ +\end_inset + + derivable, +\begin_inset Formula $c\in(a,b)$ +\end_inset + + es un +\series bold +punto crítico +\series default + o +\series bold +estacionario +\series default + de +\begin_inset Formula $f$ +\end_inset + + si +\begin_inset Formula $f'(c)=0$ +\end_inset + +. +\end_layout + +\begin_layout Subsection +Teoremas del valor medio +\end_layout + +\begin_layout Standard + +\series bold +Teorema de Rolle: +\series default + Sea +\begin_inset Formula $f:[a,b]\rightarrow\mathbb{R}$ +\end_inset + + continua en +\begin_inset Formula $[a,b]$ +\end_inset + + y derivable en +\begin_inset Formula $(a,b)$ +\end_inset + + con +\begin_inset Formula $f(a)=f(b)$ +\end_inset + + entonces existe +\begin_inset Formula $c\in(a,b)$ +\end_inset + + con +\begin_inset Formula $f'(c)=0$ +\end_inset + +. + +\series bold +Demostración: +\series default + Si +\begin_inset Formula $f$ +\end_inset + + es constante, tomamos +\begin_inset Formula $c:=\frac{a+b}{2}$ +\end_inset + +. + Si no, supongamos por ejemplo que existe +\begin_inset Formula $x_{0}\in[a,b]$ +\end_inset + + con +\begin_inset Formula $f(x_{0})>f(a)=f(b)$ +\end_inset + +. + Por el teorema de Weierstrass, +\begin_inset Formula $f$ +\end_inset + + alcanza su máximo absoluto en +\begin_inset Formula $[a,b]$ +\end_inset + +, y por lo anterior debe alcanzarse en un punto interior +\begin_inset Formula $c\in(a,b)$ +\end_inset + +. + Pero por ser máximo absoluto es también máximo relativo y por tanto +\begin_inset Formula $f'(c)=0$ +\end_inset + +. +\end_layout + +\begin_layout Standard + +\series bold +Teorema del valor medio de Cauchy: +\series default + Sean +\begin_inset Formula $f,g:[a,b]\rightarrow\mathbb{R}$ +\end_inset + + continuas en +\begin_inset Formula $[a,b]$ +\end_inset + + y derivables en +\begin_inset Formula $(a,b)$ +\end_inset + +, entonces existe +\begin_inset Formula $c\in(a,b)$ +\end_inset + + con +\begin_inset Formula $(f(b)-f(a))g'(c)=(g(b)-g(a))f'(c)$ +\end_inset + + (si +\begin_inset Formula $g(b)\neq g(a)$ +\end_inset + + y +\begin_inset Formula $g'(c)\neq0$ +\end_inset + + podemos expresar esto como +\begin_inset Formula $\frac{f(b)-f(a)}{g(b)-g(a)}=\frac{f'(c)}{g'(c)}$ +\end_inset + +). + +\series bold +Demostración: +\series default + Aplicamos el teorema de Rolle a +\begin_inset Formula $h(x):=f(x)(g(b)-g(a))-g(x)(f(b)-f(a))$ +\end_inset + +, pues +\begin_inset Formula $h(a)=h(b)$ +\end_inset + +. +\end_layout + +\begin_layout Standard + +\series bold +Teorema del valor medio de Lagrange: +\series default + Sea +\begin_inset Formula $f:[a,b]\rightarrow\mathbb{R}$ +\end_inset + + continua en +\begin_inset Formula $[a,b]$ +\end_inset + + y derivable en +\begin_inset Formula $(a,b)$ +\end_inset + +, existe +\begin_inset Formula $\theta\in(a,b)$ +\end_inset + + tal que +\begin_inset Formula $f'(\theta)(b-a)=f(b)-f(a)$ +\end_inset + +. + +\series bold +Demostración: +\series default + Es un caso particular del teorema del valor medio de Cauchy tomando +\begin_inset Formula $g(x):=x$ +\end_inset + +. + El teorema de Rolle es un caso particular de este, por lo que estos tres + teoremas son equivalentes. +\end_layout + +\begin_layout Standard + +\series bold +Teorema de los incrementos finitos: +\series default + Sea +\begin_inset Formula $f:[a,b]\rightarrow\mathbb{R}$ +\end_inset + + continua en +\begin_inset Formula $[a,b]$ +\end_inset + + y derivable en +\begin_inset Formula $(a,b)$ +\end_inset + +, si +\begin_inset Formula $|f'(x)|\leq M\forall x\in(a,b)$ +\end_inset + + entonces +\begin_inset Formula $|f(x)-f(y)|\leq M|x-y|$ +\end_inset + + para cualesquiera +\begin_inset Formula $x,y\in[a,b]$ +\end_inset + +. + A efectos prácticos, esto significa que si +\begin_inset Formula $f'$ +\end_inset + + es acotada entonces +\begin_inset Formula $f$ +\end_inset + + es uniformemente continua. + +\series bold +Demostración: +\series default + Basta aplicar el teorema del valor medio de Lagrange a +\begin_inset Formula $f|_{[x,y]}$ +\end_inset + +. +\end_layout + +\begin_layout Standard +Para +\begin_inset Formula $f$ +\end_inset + + y +\begin_inset Formula $g$ +\end_inset + + continuas en +\begin_inset Formula $[a,b]$ +\end_inset + + y derivable en +\begin_inset Formula $(a,b)$ +\end_inset + + se cumplen las siguientes propiedades: +\end_layout + +\begin_layout Enumerate +\begin_inset Formula $\forall x\in(a,b),f'(x)=0\implies\exists k\in\mathbb{R}:\forall x\in(a,b),f(x)=k$ +\end_inset + +. +\begin_inset Newline newline +\end_inset + +Aplicando el teorema de Lagrange en +\begin_inset Formula $[a,x]$ +\end_inset + +, existe +\begin_inset Formula $c\in(a,x)$ +\end_inset + + con +\begin_inset Formula $\frac{f(x)-f(a)}{x-a}=f'(c)=0$ +\end_inset + +, luego +\begin_inset Formula $f(x)=f(a)$ +\end_inset + +. +\end_layout + +\begin_layout Enumerate +\begin_inset Formula $\forall x\in(a,b),f'(x)=g'(x)\implies\exists k\in\mathbb{R}:\forall x\in(a,b),f(x)=g(x)+k$ +\end_inset + +. +\begin_inset Newline newline +\end_inset + +Sea +\begin_inset Formula $h(x):=f(x)-g(x)$ +\end_inset + +, entonces +\begin_inset Formula $h'(x)=f'(x)-g'(x)=0$ +\end_inset + + para +\begin_inset Formula $x\in[a,b]$ +\end_inset + +, luego +\begin_inset Formula $h(x)$ +\end_inset + + es constante. +\end_layout + +\begin_layout Enumerate +Si para todo +\begin_inset Formula $x\in(a,b)$ +\end_inset + + se tiene que +\begin_inset Formula $f'(x)\geq0$ +\end_inset + +, +\begin_inset Formula $f'(x)>0$ +\end_inset + +, +\begin_inset Formula $f'(x)\leq0$ +\end_inset + + o +\begin_inset Formula $f'(x)<0$ +\end_inset + + entonces +\begin_inset Formula $f$ +\end_inset + + es, respectivamente, creciente, estrictamente creciente, decreciente o + estrictamente decreciente. +\end_layout + +\begin_layout Standard +Sea +\begin_inset Formula $f:(a,b)\rightarrow\mathbb{R}$ +\end_inset + + derivable y +\begin_inset Formula $c\in(a,b)$ +\end_inset + + con +\begin_inset Formula $f'(c)=0$ +\end_inset + +. + Si +\begin_inset Formula $\exists\delta>0:(\forall x\in(c-\delta,c)\subseteq(a,b),f'(x)\leq0\land\forall x\in(c,c+\delta)\subseteq(a,b),f'(x)\geq0)$ +\end_inset + + entonces +\begin_inset Formula $f$ +\end_inset + + posee un mínimo relativo en +\begin_inset Formula $c$ +\end_inset + +. + Análogamente, si +\begin_inset Formula $\exists\delta>0:(\forall x\in(c-\delta,c)\subseteq(a,b),f'(x)\geq0\land\forall x\in(c,c+\delta)\subseteq(a,b),f'(x)\leq0)$ +\end_inset + + entonces +\begin_inset Formula $f$ +\end_inset + + posee un máximo relativo en +\begin_inset Formula $c$ +\end_inset + +. + +\series bold +Demostración: +\series default + Para el primer caso, si +\begin_inset Formula $y\in(c-\delta,c)$ +\end_inset + +, existe +\begin_inset Formula $\eta\in(y,c)$ +\end_inset + + tal que +\begin_inset Formula $f(c)-f(y)=f'(\eta)(c-y)\leq0$ +\end_inset + + y entonces +\begin_inset Formula $f(c)\leq f(y)$ +\end_inset + +, mientras que si +\begin_inset Formula $y\in(c,c+\delta)$ +\end_inset + +, existe +\begin_inset Formula $\beta\in(c,y)$ +\end_inset + + tal que +\begin_inset Formula $f(y)-f(c)=f'(\beta)(y-c)\geq0$ +\end_inset + + y entonces +\begin_inset Formula $f(c)\leq f(y)$ +\end_inset + +; luego si +\begin_inset Formula $y\in(c-\delta,c+\delta)$ +\end_inset + + entonces +\begin_inset Formula $f(y)\geq f(c)$ +\end_inset + +, por lo que +\begin_inset Formula $f$ +\end_inset + + tiene un mínimo relativo en +\begin_inset Formula $c$ +\end_inset + +. + El segundo caso se prueba de forma análoga. +\end_layout + +\begin_layout Standard +Con esto podemos probar la +\series bold +desigualdad de Bernouilli +\series default + de forma más general: dados +\begin_inset Formula $x>0$ +\end_inset + + y +\begin_inset Formula $\alpha>1$ +\end_inset + +, +\begin_inset Formula $(1+x)^{\alpha}>1+\alpha x$ +\end_inset + +. + +\series bold +Demostración: +\series default + Sea +\begin_inset Formula $f:(0,+\infty)\rightarrow\mathbb{R}$ +\end_inset + + definida por +\begin_inset Formula $f(x)=(1+x)^{\alpha}-1-\alpha x$ +\end_inset + + para un cierto +\begin_inset Formula $\alpha>1$ +\end_inset + +, como +\begin_inset Formula $f(0)=0$ +\end_inset + +, basta probar que +\begin_inset Formula $f$ +\end_inset + + es estrictamente creciente si +\begin_inset Formula $\alpha>1$ +\end_inset + +, pero +\begin_inset Formula $f'(x)=\alpha((1+x)^{\alpha-1}-1)>0$ +\end_inset + +, probando la desigualdad. +\end_layout + +\begin_layout Subsection +Teorema de la función inversa +\end_layout + +\begin_layout Standard +La +\series bold +propiedad de los valores intermedios +\series default + afirma que, sea +\begin_inset Formula $f:(a,b)\rightarrow\mathbb{R}$ +\end_inset + + derivable y +\begin_inset Formula $x,y\in(a,b)$ +\end_inset + + con +\begin_inset Formula $x<y$ +\end_inset + + y +\begin_inset Formula $f'(x)<\eta<f'(y)$ +\end_inset + +, entonces +\begin_inset Formula $\exists z\in(x,y):f'(z)=\eta$ +\end_inset + +. + +\series bold +Demostración: +\series default + Sea +\begin_inset Formula $g:[x,y]\rightarrow\mathbb{R}$ +\end_inset + + con +\begin_inset Formula $g(t)=f(t)-\eta t$ +\end_inset + + continua y derivable, que por el teorema de Weierstrass (que usamos en + lugar del de Bolzano porque +\begin_inset Formula $g'$ +\end_inset + + no tiene por qué ser continua), tiene un mínimo absoluto en un +\begin_inset Formula $z\in[x,y]$ +\end_inset + +. + Pero como +\begin_inset Formula $g'(x)<0$ +\end_inset + + y +\begin_inset Formula $g'(y)>0$ +\end_inset + +, +\begin_inset Formula $z$ +\end_inset + + no puede ser +\begin_inset Formula $x$ +\end_inset + + ni +\begin_inset Formula $y$ +\end_inset + +, luego +\begin_inset Formula $z\in(x,y)$ +\end_inset + + y por tanto +\begin_inset Formula $g'(z)=0$ +\end_inset + +, o dicho de otra forma, +\begin_inset Formula $f'(z)=\eta$ +\end_inset + +. +\end_layout + +\begin_layout Standard +De aquí deducimos el +\series bold +teorema de la función inversa: +\series default + Sea +\begin_inset Formula $f:I\rightarrow\mathbb{R}$ +\end_inset + + continua en el intervalo +\begin_inset Formula $I$ +\end_inset + + y derivable en su interior con derivada no nula, entonces +\begin_inset Formula $f$ +\end_inset + + es una biyección de +\begin_inset Formula $I$ +\end_inset + + sobre un intervalo +\begin_inset Formula $J$ +\end_inset + + y +\begin_inset Formula $f^{-1}:J\rightarrow\mathbb{R}$ +\end_inset + + es continua y derivable en el interior de +\begin_inset Formula $J$ +\end_inset + + con +\begin_inset Formula +\[ +(f^{-1})'(y)=\frac{1}{f'(f^{-1}(y))} +\] + +\end_inset + + +\end_layout + +\begin_layout Standard + +\series bold +Demostración: +\series default + Por la propiedad anterior, bien +\begin_inset Formula $f'(x)>0$ +\end_inset + + para todo +\begin_inset Formula $x$ +\end_inset + + o +\begin_inset Formula $f'(x)<0$ +\end_inset + + para todo +\begin_inset Formula $x$ +\end_inset + +, por lo que +\begin_inset Formula $f$ +\end_inset + + es estrictamente monótona, de modo que es biyectiva de +\begin_inset Formula $I$ +\end_inset + + sobre un intervalo +\begin_inset Formula $J$ +\end_inset + + siendo +\begin_inset Formula $f^{-1}$ +\end_inset + + estrictamente monótona y continua. + Sean entonces +\begin_inset Formula $y,y_{0}\in J,x=f^{-1}(y),x_{0}=f^{-1}(y_{0})$ +\end_inset + +: +\begin_inset Formula +\[ +\lim_{y\rightarrow y_{0}}\frac{f^{-1}(y)-f^{-1}(y_{0})}{y-y_{0}}=\lim_{y\rightarrow y_{0}}\frac{1}{\frac{y-y_{0}}{f^{-1}(y)-f^{-1}(y_{0})}}=\lim_{x\rightarrow x_{0}}\frac{1}{\frac{f(x)-f(x_{0})}{x-x_{0}}}=\frac{1}{f'(f^{-1}(y_{0}))} +\] + +\end_inset + + +\end_layout + +\begin_layout Subsection +Regla de L'Hospital +\end_layout + +\begin_layout Standard +Sean +\begin_inset Formula $f$ +\end_inset + + y +\begin_inset Formula $g$ +\end_inset + + derivables en +\begin_inset Formula $I=(a,b)$ +\end_inset + + con +\begin_inset Formula $-\infty\leq a<b\leq+\infty$ +\end_inset + +, si +\begin_inset Formula $g$ +\end_inset + + y +\begin_inset Formula $g'$ +\end_inset + + no tienen ceros en +\begin_inset Formula $I$ +\end_inset + + y se cumple que o bien +\begin_inset Formula $\lim_{x\rightarrow b^{-}}f(x)=\lim_{x\rightarrow b^{-}}g(x)=0$ +\end_inset + + o +\begin_inset Formula $\lim_{x\rightarrow b^{-}}g(x)=\pm\infty$ +\end_inset + +, entonces, si existe +\begin_inset Formula $L:=\lim_{x\rightarrow b^{-}}\frac{f'(x)}{g'(x)}\in\overline{\mathbb{R}}$ +\end_inset + +, es también +\begin_inset Formula $L=\lim_{x\rightarrow b^{-}}\frac{f(x)}{g(x)}$ +\end_inset + +. + Por supuesto, esto también se cumple para límites por la derecha y por + tanto también para límites ordinarios. +\end_layout + +\begin_layout Section +Desarrollos de Taylor +\end_layout + +\begin_layout Standard +Si +\begin_inset Formula $f$ +\end_inset + + es derivable en el intervalo abierto +\begin_inset Formula $\Omega$ +\end_inset + + y +\begin_inset Formula $f'$ +\end_inset + + también lo es, se dice que +\begin_inset Formula $f$ +\end_inset + + es dos veces derivable en +\begin_inset Formula $\Omega$ +\end_inset + + y la derivada de +\begin_inset Formula $f'$ +\end_inset + + se denota por +\begin_inset Formula $f^{(2)}:=f''$ +\end_inset + +, y por inducción, si +\begin_inset Formula $f$ +\end_inset + + es +\begin_inset Formula $n-1$ +\end_inset + + veces derivable y +\begin_inset Formula $f^{(n-1)}$ +\end_inset + + es derivable, se dice que +\begin_inset Formula $f$ +\end_inset + + es +\begin_inset Formula $n$ +\end_inset + + veces derivable y llamamos +\begin_inset Formula $f^{(n)}:=(f^{(n-1)})'$ +\end_inset + +. + +\begin_inset Formula $f$ +\end_inset + + es de clase +\begin_inset Formula ${\cal C}^{n}$ +\end_inset + + en +\begin_inset Formula $\Omega$ +\end_inset + + si existe +\begin_inset Formula $f^{(n)}$ +\end_inset + + y es continua, y es de clase +\begin_inset Formula ${\cal C}^{\infty}$ +\end_inset + + en +\begin_inset Formula $\Omega$ +\end_inset + + si es de clase +\begin_inset Formula ${\cal C}^{n}$ +\end_inset + + para todo +\begin_inset Formula $n$ +\end_inset + +. + Por ejemplo, los polinomios son funciones de clase +\begin_inset Formula ${\cal C}^{\infty}$ +\end_inset + + en +\begin_inset Formula $\mathbb{R}$ +\end_inset + +, de modo que conociendo el valor de +\begin_inset Formula $P$ +\end_inset + + y sus derivadas en un cierto punto es posible reconstruir el polinomio. + +\series bold +Demostración: +\series default + Dividiendo +\begin_inset Formula $P(x)=a_{n}x^{n}+\dots+a_{0}$ +\end_inset + + por +\begin_inset Formula $(x-x_{0})^{n}$ +\end_inset + +, se tiene que +\begin_inset Formula $P(x)=b_{n}(x-x_{0})^{n}+Q_{n-1}(x)$ +\end_inset + +, donde +\begin_inset Formula $Q_{n-1}(x)$ +\end_inset + + es de grado +\begin_inset Formula $n-1$ +\end_inset + +. + Por inducción se obtiene +\begin_inset Formula $P(x)=b_{n}(x-x_{0})^{n}+\dots+b_{0}$ +\end_inset + +, pero entonces +\begin_inset Formula $b_{0}=P(x_{0})$ +\end_inset + +, y derivando sucesivamente: +\begin_inset Formula +\[ +\begin{array}{ccccc} +P(x)=b_{n}(x-x_{0})^{n}+\dots+b_{0} & & P(x_{0})=b_{0}\\ +P'(x)=nb_{n}(x-x_{0})^{n-1}+\dots+b_{1} & & P'(x_{0})=b_{1} & & b_{1}=\frac{P'(x_{0})}{1!}\\ +P''(x)=n(n-1)(x-x_{0})^{n-2}+\dots+2b_{2} & & P''(x_{0})=2b_{2} & & b_{2}=\frac{P''(x_{0})}{2!}\\ +P'''(x)=n(n-1)(n-2)(x-x_{0})^{n-3}+\dots+6b_{3} & & P'''(x_{0})=6b_{3} & & b_{3}=\frac{P'''(x_{0})}{3!}\\ +\vdots & & \vdots & & \vdots\\ +P^{(n)}(x)=n!b_{n} & & P^{(n)}(x_{0})=n!b_{n} & & b_{n}=\frac{P^{(n)}(x_{0})}{n!} +\end{array} +\] + +\end_inset + +Con lo que +\begin_inset Formula $P(x)=P(x_{0})+\frac{P'(x_{0})}{1!}(x-x_{0})+\dots+\frac{P^{(n)}(x_{0})}{n!}(x-x_{0})^{n}$ +\end_inset + +. +\end_layout + +\begin_layout Standard +Llamamos +\series bold +polinomio de Taylor +\series default + de +\begin_inset Formula $f$ +\end_inset + + de grado +\begin_inset Formula $n$ +\end_inset + + en +\begin_inset Formula $x_{0}$ +\end_inset + + a la siguiente expresión: +\begin_inset Formula +\[ +P_{n}(f,x;x_{0})=f(x_{0})+\frac{f'(x_{0})}{1!}(x-x_{0})+\dots+\frac{f^{(n)}(x_{0})}{n!}(x-x_{0})^{n} +\] + +\end_inset + +El +\series bold +resto del polinomio +\series default + es la diferencia entre la función y su polinomio de Taylor: +\begin_inset Formula $R_{n}(x;x_{0}):=f(x)-P_{n}(f,x;x_{0})$ +\end_inset + +. + Una función +\begin_inset Formula $g:(x_{0}-\delta,x_{0}+\delta)\backslash\{0\}\rightarrow\mathbb{R}$ +\end_inset + + definida en un entorno reducido de +\begin_inset Formula $x_{0}$ +\end_inset + + es una +\series bold + +\begin_inset Quotes cld +\end_inset + +o +\begin_inset Quotes crd +\end_inset + + pequeña +\series default + de +\begin_inset Formula $|x-x_{0}|^{n}$ +\end_inset + +, escrito +\begin_inset Formula $g(x)=o(|x-x_{0}|^{n})$ +\end_inset + + o informalmente +\begin_inset Formula $o(x-x_{0})^{n}$ +\end_inset + +, si +\begin_inset Formula $\lim_{x\rightarrow x_{0}}\frac{|g(x)|}{|x-x_{0}|^{n}}=0$ +\end_inset + +. + Así, si +\begin_inset Formula $g(x)=o(|x-x_{0}|^{n})$ +\end_inset + + entonces +\begin_inset Formula $g(x)=o(|x-x_{0}|^{k})$ +\end_inset + + para +\begin_inset Formula $1\leq k\leq n$ +\end_inset + +. + +\series bold +Demostración: +\series default + +\begin_inset Formula $\lim_{x\rightarrow x_{0}}\frac{|g(x)|}{|x-x_{0}|^{k}}=\lim_{x\rightarrow x_{0}}\frac{|g(x)|}{|x-x_{0}|^{n}}|x-x_{0}|^{n-k}=0\cdot0=0$ +\end_inset + +. +\end_layout + +\begin_layout Subsection +Resto de Landau y desarrollos limitados +\end_layout + +\begin_layout Standard +Si +\begin_inset Formula $f:(a,b)\rightarrow\mathbb{R}$ +\end_inset + + es +\begin_inset Formula $n-1$ +\end_inset + + veces derivable en +\begin_inset Formula $(a,b)$ +\end_inset + + y existe la derivada +\begin_inset Formula $n$ +\end_inset + +-ésima en +\begin_inset Formula $x_{0}\in(a,b)$ +\end_inset + + entonces +\begin_inset Formula $f(x)=P_{n}(f,x;x_{0})+o(|x-x_{0}|^{n})$ +\end_inset + +. + +\series bold +Demostración: +\series default + Aplicando la regla de L'Hospital +\begin_inset Formula $n-1$ +\end_inset + + veces y la definición de derivada +\begin_inset Formula $n$ +\end_inset + +-ésima de +\begin_inset Formula $f$ +\end_inset + + en +\begin_inset Formula $x_{0}$ +\end_inset + +, +\begin_inset Formula +\[ +\lim_{x\rightarrow x_{0}}\frac{f(x)-P_{n}(x)}{(x-x_{0})^{n}}=\dots=\lim_{x\rightarrow x_{0}}\frac{f^{(n-1)}(x)-P_{n}^{(n-1)}(x)}{n(n-1)\cdots2(x-x_{0})} +\] + +\end_inset + +pero, al derivar +\begin_inset Formula $n-1$ +\end_inset + + veces +\begin_inset Formula $P_{n}(x)$ +\end_inset + +, desaparecen todos los términos salvo los de grado +\begin_inset Formula $n$ +\end_inset + + y +\begin_inset Formula $n-1$ +\end_inset + +, por lo que +\begin_inset Formula $P_{n}^{(n-1)}(x)=(n-1)!\frac{f^{(n-1)}(x_{0})}{(n-1)!}+n!\frac{f^{(n)}(x_{0})}{n!}(x-x_{0})=f^{(n-1)}(x_{0})+f^{(n)}(x_{0})(x-x_{0})$ +\end_inset + +. + Por tanto +\begin_inset Formula +\begin{eqnarray*} +\lim_{x\rightarrow x_{0}}\frac{f(x)-P_{n}(x)}{(x-x_{0})^{n}} & = & \lim_{x\rightarrow x_{0}}\frac{f^{(n-1)}(x)-f^{(n-1)}(x_{0})-f^{(n)}(x_{0})(x-x_{0})}{n!(x-x_{0})}\\ + & = & \frac{1}{n!}\left(\lim_{x\rightarrow x_{0}}\frac{f^{(n-1)}(x)-f^{(n-1)}(x_{0})}{(x-x_{0})}-f^{(n)}(x_{0})\right)\\ + & = & 0 +\end{eqnarray*} + +\end_inset + + +\end_layout + +\begin_layout Standard +A una expresión como la de arriba la llamamos +\series bold +desarrollo limitado +\series default + de +\begin_inset Formula $f$ +\end_inset + + de grado +\begin_inset Formula $n$ +\end_inset + + en +\begin_inset Formula $x_{0}$ +\end_inset + +, y cuando existe es única. + +\series bold +Demostración: +\series default + Supongamos que una expresión admite dos desarrollos limitados de orden + +\begin_inset Formula $n$ +\end_inset + + en +\begin_inset Formula $x_{0}$ +\end_inset + +: +\begin_inset Formula $f(x)=a_{0}+a_{1}(x-x_{0})+\dots+a_{n}(x-x_{0})^{n}+o(|x-x_{0}|^{n})=b_{0}+b_{1}(x-x_{0})+\dots+b_{n}(x-x_{0})^{n}+o(|x-x_{0}|^{n})$ +\end_inset + +. + Igualando, +\begin_inset Formula $(b_{0}-a_{0})+(b_{1}-a_{1})(x-x_{0})+\dots+(b_{n}-a_{n})(x-x_{0})^{n}=o(|x-x_{0}|^{n})$ +\end_inset + +. + Tomando límites cuando +\begin_inset Formula $x$ +\end_inset + + tiende a +\begin_inset Formula $x_{0}$ +\end_inset + +, +\begin_inset Formula $a_{0}=b_{0}$ +\end_inset + +. + Eliminando este sumando, dividiendo por +\begin_inset Formula $(x-x_{0})$ +\end_inset + + y tomando límites de nuevo, queda +\begin_inset Formula $a_{1}=b_{1}$ +\end_inset + +, y así sucesivamente. +\end_layout + +\begin_layout Standard +Para calcular desarrollos limitados, muy útiles en el cálculo de límites + de cocientes sustituyendo a la regla de L'Hospital, sean +\begin_inset Formula $f$ +\end_inset + + y +\begin_inset Formula $g$ +\end_inset + + funciones de clase +\begin_inset Formula ${\cal C}^{n}$ +\end_inset + + definidas en entornos de +\begin_inset Formula $x_{0}$ +\end_inset + + e +\begin_inset Formula $y_{0}$ +\end_inset + +, respectivamente, y derivables +\begin_inset Formula $n$ +\end_inset + + veces en dichos puntos: +\end_layout + +\begin_layout Enumerate +Si +\begin_inset Formula $x_{0}=y_{0}$ +\end_inset + +, +\begin_inset Formula $(f+g)(x)=P_{n}(f,x;x_{0})+P_{n}(g,x;x_{0})+o(|x-x_{0}|^{n})$ +\end_inset + +. +\end_layout + +\begin_layout Enumerate +Si +\begin_inset Formula $x_{0}=y_{0}$ +\end_inset + +, +\begin_inset Formula $(fg)(x)=P_{n}(f,x;x_{0})P_{n}(g,x;x_{0})+o(|x-x_{0}|^{n})$ +\end_inset + +. + Aquí hay que agrupar los términos convenientemente teniendo en cuenta que + los términos de grado mayor a +\begin_inset Formula $n$ +\end_inset + + son +\begin_inset Formula $o(|x-x_{0}|^{n})$ +\end_inset + +. +\end_layout + +\begin_layout Enumerate +Si +\begin_inset Formula $x_{0}=y_{0}$ +\end_inset + +, +\begin_inset Formula $\left(\frac{f}{g}\right)(x)=\frac{P_{n}(f,x;x_{0})}{P_{n}(g,x;x_{0})}+o(|x-x_{0}|^{n})$ +\end_inset + +. + Aquí hay que considerar la +\emph on +fracción continua +\emph default + de polinomios, que es igual que la división normal de polinomios pero tomando + los términos de menor grado del divisor y el dividendo en vez de los de + mayor grado, y terminando cuando el grado del término resultante del cociente + sea mayor que +\begin_inset Formula $n$ +\end_inset + +, pues a partir de ahí el resto de términos son +\begin_inset Formula $o(|x-x_{0}|^{n})$ +\end_inset + +. +\end_layout + +\begin_layout Enumerate +Si +\begin_inset Formula $f(x)=P_{n}(f,x;x_{0})+o(|x-x_{0}|^{n})$ +\end_inset + +, el desarrollo limitado de orden +\begin_inset Formula $n-1$ +\end_inset + + de +\begin_inset Formula $f'$ +\end_inset + + es +\begin_inset Formula $f'(x)=(P_{n}(f,x;x_{0}))'+o(|x-x_{0}|^{n-1})$ +\end_inset + +. +\end_layout + +\begin_layout Enumerate +Si +\begin_inset Formula $f(x_{0})=y_{0}$ +\end_inset + + y la función +\begin_inset Formula $g\circ f$ +\end_inset + + está definida en un entorno de +\begin_inset Formula $x_{0}$ +\end_inset + + en el que admite un desarrollo limitado en +\begin_inset Formula $x_{0}$ +\end_inset + +, este se obtiene sustituyendo el desarrollo de +\begin_inset Formula $f$ +\end_inset + + en el de +\begin_inset Formula $g$ +\end_inset + + y agrupando los términos convenientemente tanto en la parte polinómica + de grado menor o igual a +\begin_inset Formula $n$ +\end_inset + + como en la del resto de Landau. +\end_layout + +\begin_layout Standard +Si +\begin_inset Formula $f:(a,b)\rightarrow\mathbb{R}$ +\end_inset + + es +\begin_inset Formula $n$ +\end_inset + + veces derivable en +\begin_inset Formula $(a,b)$ +\end_inset + +, siendo +\begin_inset Formula $f'(x_{0})=\dots=f^{(n-1)}(x_{0})=0$ +\end_inset + + y +\begin_inset Formula $f^{(n)}(x_{0})\neq0$ +\end_inset + +: +\end_layout + +\begin_layout Enumerate +Si +\begin_inset Formula $n$ +\end_inset + + es par, +\begin_inset Formula $f$ +\end_inset + + presenta un máximo relativo en +\begin_inset Formula $x_{0}$ +\end_inset + + si +\begin_inset Formula $f^{(n)}(x_{0})<0$ +\end_inset + + o un mínimo relativo si +\begin_inset Formula $f^{(n)}(x_{0})>0$ +\end_inset + +. +\begin_inset Newline newline +\end_inset + +Como todas las derivadas en +\begin_inset Formula $x_{0}$ +\end_inset + + hasta +\begin_inset Formula $n-1$ +\end_inset + + son 0, +\begin_inset Formula +\[ +\begin{array}{c} +f(x)=f(x_{0})+\frac{1}{n!}f^{(n)}(x_{0})(x-x_{0})^{n}+o((x-x_{0})^{n})\implies\\ +\implies\frac{f(x)-f(x_{0})}{(x-x_{0})^{n}}=\frac{1}{n!}f^{(n)}(x_{0})+\frac{o((x-x_{0})^{n})}{(x-x_{0})^{n}} +\end{array} +\] + +\end_inset + +Si +\begin_inset Formula $f^{(n)}(x_{0})<0$ +\end_inset + +, existe un entorno de +\begin_inset Formula $x_{0}$ +\end_inset + + en el que el segundo miembro de la igualdad es estrictamente negativo y + por tanto también el primero, pero como +\begin_inset Formula $n$ +\end_inset + + es par, esto significa que +\begin_inset Formula $f(x)-f(x_{0})<0$ +\end_inset + +, de modo que +\begin_inset Formula $f(x)<f(x_{0})$ +\end_inset + + y hay un máximo relativo. + El caso en que +\begin_inset Formula $f^{(n)}(x_{0})>0$ +\end_inset + + es análogo. +\end_layout + +\begin_layout Enumerate +Si +\begin_inset Formula $n$ +\end_inset + + es impar, +\begin_inset Formula $f$ +\end_inset + + no tiene extremo relativo en +\begin_inset Formula $x_{0}$ +\end_inset + +. +\begin_inset Newline newline +\end_inset + +Llegamos a que existe un entorno de +\begin_inset Formula $x_{0}$ +\end_inset + + en el que el primer miembro de la igualdad es estrictamente positivo o + estrictamente negativo, pero cualquiera de las situaciones significa que + la función es estrictamente creciente a ambos lados o estrictamente decreciente + a ambos lados. +\end_layout + +\begin_layout Subsection +Fórmula de Taylor con resto de Lagrange +\end_layout + +\begin_layout Standard +Si +\begin_inset Formula $f:(a,b)\rightarrow\mathbb{R}$ +\end_inset + + es +\begin_inset Formula $n$ +\end_inset + + veces derivable en +\begin_inset Formula $(a,b)$ +\end_inset + + y sean +\begin_inset Formula $x_{0},x\in(a,b)$ +\end_inset + +, entonces existe +\begin_inset Formula $c$ +\end_inset + + estrictamente entre +\begin_inset Formula $x$ +\end_inset + + y +\begin_inset Formula $x_{0}$ +\end_inset + + tal que +\begin_inset Formula +\[ +R_{n-1}(x;x_{0})=\frac{f^{(n)}(c)}{n!}(x-x_{0})^{n} +\] + +\end_inset + + +\end_layout + +\begin_layout Standard + +\series bold +Demostración: +\series default + Aplicando el teorema del valor medio de Cauchy a +\begin_inset Formula +\[ +F(t):=f(x)-\left(f(t)+\frac{1}{1!}f'(t)(x-t)+\dots+\frac{1}{(n-1)!}f^{(n-1)}(t)(x-t)^{n-1}\right) +\] + +\end_inset + + y +\begin_inset Formula $G(t):=(x-t)^{n}$ +\end_inset + + entre +\begin_inset Formula $x_{0}$ +\end_inset + + y +\begin_inset Formula $x$ +\end_inset + +, existe +\begin_inset Formula $c$ +\end_inset + + estrictamente entre +\begin_inset Formula $x_{0}$ +\end_inset + + y +\begin_inset Formula $x$ +\end_inset + + tal que +\begin_inset Formula $(F(x_{0})-F(x))G'(c)=(G(x_{0})-G(x))F'(c)$ +\end_inset + +, pero +\begin_inset Formula $F(x)=0$ +\end_inset + +, +\begin_inset Formula $F(x_{0})=R_{n-1}(x;x_{0})$ +\end_inset + +, +\begin_inset Formula $G(x)=0$ +\end_inset + + y +\begin_inset Formula $G(x_{0})=(x-x_{0})^{n}$ +\end_inset + +, luego +\begin_inset Formula $R_{n-1}(x;x_{0})G'(c)=(x-x_{0})^{n}F'(c)$ +\end_inset + +. + Ahora calculamos las derivadas de +\begin_inset Formula $G$ +\end_inset + + y +\begin_inset Formula $F$ +\end_inset + +. + Se tiene que +\begin_inset Formula $G'(t)=-n(x-t)^{n-1}$ +\end_inset + +, +\begin_inset Formula $G'(c)=-n(x-c)^{n-1}$ +\end_inset + + y +\begin_inset Formula +\[ +\begin{array}{c} +F'(t)=-\left(f'(t)+\frac{1}{1!}f''(t)(x-t)+\dots+\frac{1}{(n-1)!}f^{(n)}(t)(x-t)^{n-1}\right)+\\ ++\left(\frac{1}{1!}f'(t)+\dots+\frac{n-1}{(n-1)!}f^{(n-1)}(t)(x-t)^{n-2}\right)=-\frac{1}{(n-1)!}f^{(n)}(t)(x-t)^{n-1} +\end{array} +\] + +\end_inset + +luego +\begin_inset Formula $F'(c)=-\frac{f^{(n)}(c)}{(n-1)!}(x-c)^{n-1}$ +\end_inset + +, y sustituyendo, +\begin_inset Formula +\[ +R_{n-1}(x;x_{0})=\frac{F'(c)}{G'(c)}(x-x_{0})^{n}=\frac{-\frac{f^{(n)}(c)}{(n-1)!}(x-c)^{n-1}}{-n(x-c)^{n-1}}(x-x_{0})^{n}=\frac{f^{(n)}(c)}{n!}(x-x_{0})^{n} +\] + +\end_inset + + +\end_layout + +\begin_layout Standard +Esta forma de expresar el resto se llama +\series bold +forma de Lagrange +\series default +, y a veces se escribe +\begin_inset Formula $c=x_{0}+\theta(x-x_{0})$ +\end_inset + + para +\begin_inset Formula $0<\theta<1$ +\end_inset + +, de modo que si +\begin_inset Formula $x_{0}=0$ +\end_inset + + entonces +\begin_inset Formula $c=\theta x$ +\end_inset + +. +\end_layout + +\begin_layout Standard +Las funciones +\series bold +analíticas +\series default + son funciones de clase +\begin_inset Formula ${\cal C}^{\infty}$ +\end_inset + + en las que +\begin_inset Formula $f$ +\end_inset + + coincide con su polinomio de Taylor +\begin_inset Quotes cld +\end_inset + +infinito +\begin_inset Quotes crd +\end_inset + +. + No todas las de clase +\begin_inset Formula ${\cal C}^{\infty}$ +\end_inset + + cumplen esta propiedad, pues, por ejemplo, la función +\begin_inset Formula $g(x)=e^{-\frac{1}{x^{2}}}$ +\end_inset + + si +\begin_inset Formula $x\neq0$ +\end_inset + + y +\begin_inset Formula $g(0)=0$ +\end_inset + + cumple que +\begin_inset Formula $g^{(n)}(0)=0$ +\end_inset + + para todo +\begin_inset Formula $n\in\mathbb{N}$ +\end_inset + + y por tanto su +\series bold +polinomio de Mac-Laurin +\series default + (polinomio de Taylor en +\begin_inset Formula $x_{0}=0$ +\end_inset + +, +\begin_inset Formula $P_{n}(g,x;0)$ +\end_inset + +) es nulo. +\end_layout + +\begin_layout Standard +Desarrollos de Taylor importantes: +\end_layout + +\begin_layout Enumerate +\begin_inset Formula $e^{x}=1+x+\frac{x^{2}}{2!}+\frac{x^{3}}{3!}+\dots+\frac{x^{n-1}}{(n-1)!}+\frac{e^{\theta x}}{n!}=\left(\sum_{k=0}^{n-1}\frac{x^{k}}{k!}\right)+\frac{e^{\theta x}}{n!}x^{n}$ +\end_inset + +. +\begin_inset Newline newline +\end_inset + +Para cualquier +\begin_inset Formula $n\in\mathbb{N}$ +\end_inset + +, +\begin_inset Formula $f^{(n)}(x)=e^{x}$ +\end_inset + +, luego +\begin_inset Formula $f^{(n)}(0)=1$ +\end_inset + +. +\end_layout + +\begin_layout Enumerate +\begin_inset Formula $\sin x=x-\frac{x^{3}}{3!}+\frac{x^{5}}{5!}-\frac{x^{7}}{7!}+\dots+\frac{\sin(\theta x+n\pi/2)}{n!}x^{n}=\left(\sum_{k=0}^{\lfloor(n-2)/2\rfloor}\frac{(-1)^{k}x^{2k+1}}{(2k+1)!}\right)+\frac{\sin(\theta x+n\pi/2)}{n!}x^{n}$ +\end_inset + +. +\begin_inset Formula +\[ +\begin{array}{rccclrcl} +f(x) & = & \sin x & & & f(0) & = & 0\\ +f'(x) & = & \cos x & = & \sin(x+\pi/2) & f'(0) & = & 1\\ +f''(x) & = & -\sin x & = & \sin(x+\pi) & f''(0) & = & 0\\ +f'''(x) & = & -\cos x & = & \sin(x+3\pi/2) & f'''(0) & = & -1\\ +f^{(4)}(x) & = & \sin x & = & \sin(x+2\pi) & f^{(4)}(0) & = & 0\\ +\vdots\\ +f^{(n)}(x) & & & = & \sin(x+n\pi/2) & f^{(n)}(0) & = & \sin(n\pi/2) +\end{array} +\] + +\end_inset + + +\end_layout + +\begin_layout Enumerate +\begin_inset Formula $\cos x=1-\frac{x^{2}}{2!}+\frac{x^{4}}{4!}-\frac{x^{6}}{6!}+\dots+\frac{\cos(\theta x+n\pi/2)}{n!}x^{n}=\left(\sum_{k=0}^{\lfloor(n-1)/2\rfloor}\frac{(-1)^{k}x^{2k}}{(2k)!}\right)+\frac{\cos(\theta x+n\pi/2)}{n!}x^{n}$ +\end_inset + +. +\end_layout + +\begin_layout Enumerate +\begin_inset Formula $\log(1+x)=x-\frac{x^{2}}{2}+\frac{x^{3}}{3}-\frac{x^{4}}{4}+\dots+\frac{(-1)^{n-1}}{n(1+\theta x)^{n}}x^{n}=\left(\sum_{k=1}^{n-1}\frac{(-1)^{k-1}x^{k}}{k}\right)+\frac{(-1)^{n-1}}{n(1+\theta x)^{n}}x^{n}$ +\end_inset + +. +\begin_inset Formula +\[ +\begin{array}{rclrcl} +f(x) & = & \log(1+x) & f(0) & = & 0\\ +f'(x) & = & (1+x)^{-1} & f'(0) & = & 1\\ +f''(x) & = & (-1)(1+x)^{-2} & f''(0) & = & -1=-1!\\ +f'''(x) & = & (-1)(-2)(1+x)^{-3} & f'''(0) & = & (-1)(-2)=2!\\ +\vdots\\ +f^{(n)}(x) & = & (-1)^{n-1}(n-1)!(1+x)^{-n} & f^{(n)} & = & (-1)^{n-1}(n-1)! +\end{array} +\] + +\end_inset + + +\end_layout + +\begin_layout Enumerate +\begin_inset Formula $(1+x)^{\alpha}=1+\binom{\alpha}{1}x+\binom{\alpha}{2}x^{2}+\binom{\alpha}{3}x^{3}+\dots+\binom{\alpha}{n-1}x^{n-1}+\binom{\alpha}{n}\frac{(1+\theta x)^{\alpha}}{(1+\theta x)^{n}}x^{n}=1+\left(\sum_{k=1}^{n-1}\binom{\alpha}{k}x^{k}\right)+\binom{\alpha}{n}\frac{(1+\theta x)^{\alpha}}{(1+\theta x)^{n}}x^{n}$ +\end_inset + +, donde +\begin_inset Formula $\binom{\alpha}{k}:=\frac{\alpha(\alpha-1)\cdots(\alpha-k+1)}{k!}$ +\end_inset + +. +\begin_inset Formula +\[ +\begin{array}{rclrcl} +f(x) & = & (1+x)^{\alpha} & f(0) & = & 1\\ +f'(x) & = & \alpha(1+x)^{\alpha-1} & f'(0) & = & \alpha\\ +f''(x) & = & \alpha(\alpha-1)(1+x)^{\alpha-2} & f''(0) & = & \alpha(\alpha-1)\\ +\vdots\\ +f^{(n)}(x) & = & \alpha\cdots(\alpha-n+1)(1+x)^{\alpha-n} & f^{(n)}(0) & = & \alpha\cdots(\alpha-n+1) +\end{array} +\] + +\end_inset + + +\end_layout + +\begin_layout Section +Funciones convexas +\end_layout + +\begin_layout Standard +Una función +\begin_inset Formula $f:I\rightarrow\mathbb{R}$ +\end_inset + + es +\series bold +convexa +\series default + en el intervalo +\begin_inset Formula $I$ +\end_inset + + si +\begin_inset Formula $\forall x,y\in I,t\in[0,1],f((1-t)x+ty)\leq(1-t)f(x)+tf(y)$ +\end_inset + +, y es +\series bold +cóncava +\series default + en +\begin_inset Formula $I$ +\end_inset + + si +\begin_inset Formula $\forall x,y\in I,t\in[0,1],f((1-t)x+ty)\geq(1-t)f(x)+tf(y)$ +\end_inset + +. + Geométricamente, +\begin_inset Formula $f$ +\end_inset + + es convexa en +\begin_inset Formula $I$ +\end_inset + + si para cualesquiera +\begin_inset Formula $x,y\in I$ +\end_inset + +, la secante que une los puntos +\begin_inset Formula $(x,f(x))$ +\end_inset + + e +\begin_inset Formula $(y,f(y))$ +\end_inset + + está por encima de la gráfica de la función en el intervalo +\begin_inset Formula $[x,y]$ +\end_inset + +, y cóncava si está por debajo. +\end_layout + +\begin_layout Standard +\begin_inset Float figure +wide false +sideways false +status open + +\begin_layout Plain Layout +\align center +\begin_inset Graphics + filename pegado1.png + +\end_inset + + +\end_layout + +\begin_layout Plain Layout +\begin_inset Caption Standard + +\begin_layout Plain Layout +Interpretación geométrica de la convexidad. +\end_layout + +\end_inset + + +\end_layout + +\end_inset + + +\end_layout + +\begin_layout Standard +La pendiente de la recta secante que pasa por +\begin_inset Formula $(x,f(x))$ +\end_inset + + e +\begin_inset Formula $(y,f(y))$ +\end_inset + + se denota +\begin_inset Formula $p_{x}(y):=\frac{f(y)-f(x)}{y-x}$ +\end_inset + +. + Así, +\begin_inset Formula $f$ +\end_inset + + es convexa en +\begin_inset Formula $I$ +\end_inset + + si y sólo si para cualesquiera +\begin_inset Formula $a,x,b\in I$ +\end_inset + + con +\begin_inset Formula $a<x<b$ +\end_inset + + se verifica +\begin_inset Formula $p_{a}(x)\leq p_{b}(x)$ +\end_inset + +. + +\series bold +Demostración: +\series default + Sea +\begin_inset Formula $x=a+t(b-a)=(1-t)a+tb$ +\end_inset + + con +\begin_inset Formula $t\in(0,1)$ +\end_inset + +, entonces +\begin_inset Formula $x-a=t(b-a)$ +\end_inset + + y +\begin_inset Formula $x-b=(1-t)(a-b)$ +\end_inset + +, y se tiene que +\begin_inset Formula +\begin{eqnarray*} +p_{a}(x)\leq p_{b}(x) & \iff & \frac{f(x)-f(a)}{x-a}\leq\frac{f(x)-f(b)}{x-b}\\ + & \iff & (f(x)-f(a))(x-b)\geq(f(x)-f(b))(x-a)\\ + & \iff & f(x)(a-b)\geq f(a)(x-b)-f(b)(x-a)\\ + & \iff & f(x)(a-b)\geq f(a)(1-t)(a-b)-f(b)t(b-a)\\ + & \iff & f(x)\leq f(a)(1-t)+f(b)t +\end{eqnarray*} + +\end_inset + + +\end_layout + +\begin_layout Standard +Si +\begin_inset Formula $f:I\rightarrow\mathbb{R}$ +\end_inset + + es convexa en un intervalo +\begin_inset Formula $I$ +\end_inset + +, entonces: +\end_layout + +\begin_layout Enumerate +Para cada +\begin_inset Formula $a\in I$ +\end_inset + +, +\begin_inset Formula $p_{a}:I\rightarrow\mathbb{R}$ +\end_inset + + es creciente. +\begin_inset Newline newline +\end_inset + +Sean +\begin_inset Formula $a<x<y\in I$ +\end_inset + +, +\begin_inset Formula +\[ +\begin{array}{c} +p_{a}(x)\leq p_{a}(y)\iff\frac{f(x)-f(a)}{x-a}\leq\frac{f(y)-f(a)}{y-a}\iff\\ +\iff f(x)-f(a)\leq\frac{f(y)-f(a)}{y-a}(x-a)\iff f(x)\leq f(a)+\frac{f(y)-f(a)}{y-a}(x-a) +\end{array} +\] + +\end_inset + +lo cual es cierto por ser +\begin_inset Formula $f$ +\end_inset + + convexa. +\end_layout + +\begin_layout Enumerate + +\series bold +Lema de las tres pendientes: +\series default + +\begin_inset Formula $\forall a,x,b\in I,(a<x<b\implies p_{a}(x)\leq p_{a}(b)\leq p_{b}(x)$ +\end_inset + +. +\begin_inset Newline newline +\end_inset + +Como +\begin_inset Formula $p_{a}$ +\end_inset + + y +\begin_inset Formula $p_{b}$ +\end_inset + + son crecientes, +\begin_inset Formula $p_{a}(x)\leq p_{a}(b)=p_{b}(a)\leq p_{b}(x)$ +\end_inset + +. +\end_layout + +\begin_layout Enumerate +\begin_inset Formula $f$ +\end_inset + + es continua en los puntos del interior del intervalo. +\begin_inset Newline newline +\end_inset + +Sea +\begin_inset Formula $x_{0}$ +\end_inset + + un punto interior de +\begin_inset Formula $I$ +\end_inset + + y +\begin_inset Formula $x',x\in I$ +\end_inset + + con +\begin_inset Formula $x'<x_{0}<x$ +\end_inset + +. + Por lo anterior, +\begin_inset Formula $p_{x_{0}}(x')=p_{x'}(x_{0})\leq p_{x}(x_{0})=p_{x_{0}}(x)$ +\end_inset + +, luego +\begin_inset Formula $p_{x_{0}}$ +\end_inset + + es creciente y por tanto existe +\begin_inset Formula $\alpha:=\lim_{x\rightarrow x_{0}^{+}}p_{x_{0}}(x)$ +\end_inset + +. + Por otra parte, +\begin_inset Formula $f(x)=f(x_{0})+\frac{f(x)-f(x_{0})}{x-x_{0}}(x-x_{0})$ +\end_inset + +, y tomando límites, +\begin_inset Formula +\[ +\lim_{x\rightarrow x_{0}^{+}}f(x)=f(x_{0})+\lim_{x\rightarrow x_{0}^{+}}\frac{f(x)-f(x_{0})}{x-x_{0}}\lim_{x\rightarrow x_{0}^{+}}(x-x_{0})=f(x_{0})+\alpha\cdot0=f(x_{0}) +\] + +\end_inset + +lo que prueba la continuidad por la derecha de +\begin_inset Formula $f$ +\end_inset + + en +\begin_inset Formula $x_{0}$ +\end_inset + +. + Podemos probar la continuidad por la izquierda de manera análoga. +\end_layout + +\begin_layout Standard +Como +\series bold +teorema +\series default +, sea +\begin_inset Formula $f:I\rightarrow\mathbb{R}$ +\end_inset + + derivable en el intervalo abierto +\begin_inset Formula $I$ +\end_inset + +, entonces +\begin_inset Formula +\[ +f\text{ es convexa en }I\iff f'\text{ es creciente en }I\iff\forall x_{0},x\in I,f(x)-f(x_{0})\geq f'(x_{0})(x-x_{0}) +\] + +\end_inset + +La última condición significa que para cada punto de +\begin_inset Formula $I$ +\end_inset + +, la gráfica de +\begin_inset Formula $f$ +\end_inset + + está por encima de la tangente en dicho punto. +\begin_inset Note Comment +status open + +\begin_layout Labeling +\labelwidthstring 00.00.0000 +\begin_inset Formula $1\implies2]$ +\end_inset + + Sean +\begin_inset Formula $a,b\in I$ +\end_inset + + arbitrarios con +\begin_inset Formula $a<b$ +\end_inset + +, entonces +\begin_inset Formula +\begin{eqnarray*} +f'(a) & = & \lim_{x\rightarrow a^{+}}\frac{f(x)-f(a)}{x-a}=\lim_{x\rightarrow a^{+}}p_{a}(x)\\ +f'(b) & = & \lim_{x'\rightarrow b^{-}}\frac{f(x')-f(b)}{x'-b}=\lim_{x'\rightarrow b^{-}}p_{b}(x') +\end{eqnarray*} + +\end_inset + + Si +\begin_inset Formula $f$ +\end_inset + + es convexa, +\begin_inset Formula $p_{a}(x)\leq p_{x'}(x)=p_{x}(x')\leq p_{b}(x')$ +\end_inset + + para +\begin_inset Formula $a<x<x'<b$ +\end_inset + +, por lo que +\begin_inset Formula $f'(a)\leq f'(b)$ +\end_inset + + y por tanto +\begin_inset Formula $f'$ +\end_inset + + es creciente. +\end_layout + +\begin_layout Labeling +\labelwidthstring 00.00.0000 +\begin_inset Formula $2\implies3]$ +\end_inset + + Sean +\begin_inset Formula $x_{0},x\in I$ +\end_inset + +, si +\begin_inset Formula $x_{0}<x$ +\end_inset + +, por el teorema del valor medio de Lagrange, +\begin_inset Formula $f(x)-f(x_{0})=f'(c)(x-x_{0})$ +\end_inset + +, pero como +\begin_inset Formula $f'$ +\end_inset + + es creciente y +\begin_inset Formula $c\in(x_{0},x)$ +\end_inset + +, +\begin_inset Formula $f'(c)(x-x_{0})\geq f'(x_{0})(x-x_{0})$ +\end_inset + +. + El caso en que +\begin_inset Formula $x_{0}>x$ +\end_inset + + se hace de forma análoga, y el caso en que +\begin_inset Formula $x_{0}=x$ +\end_inset + + es trivial. +\end_layout + +\begin_layout Labeling +\labelwidthstring 00.00.0000 +\begin_inset Formula $3\implies1]$ +\end_inset + + Si +\begin_inset Formula $f$ +\end_inset + + no fuera convexa existirían +\begin_inset Formula $a,x_{0},b\in I$ +\end_inset + + con +\begin_inset Formula $a<x_{0}<b$ +\end_inset + + tales que +\begin_inset Formula $f(x_{0})$ +\end_inset + + estaría por encima de la secante entre +\begin_inset Formula $(a,f(a))$ +\end_inset + + y +\begin_inset Formula $(b,f(b))$ +\end_inset + +, es decir, +\begin_inset Formula $p_{b}(x_{0})<p_{b}(a)=p_{a}(b)<p_{a}(x_{0})$ +\end_inset + +. + Ahora bien, la tangente de +\begin_inset Formula $f$ +\end_inset + + en +\begin_inset Formula $x_{0}$ +\end_inset + + viene dada por +\begin_inset Formula $g(x)=f(x_{0})+f'(x_{0})(x-x_{0})$ +\end_inset + +, y si suponemos que +\begin_inset Formula $(b,f(b))$ +\end_inset + + está por encima de la recta, entonces +\begin_inset Formula +\[ +\begin{array}{c} +f(b)>g(b)=f(x_{0})+f'(x_{0})(b-x_{0})\iff f(b)-f(x_{0})>f'(x_{0})(b-x_{0})\iff\\ +\iff f'(x_{0})<\frac{f(b)-f(x_{0})}{b-x_{0}}=p_{b}(x_{0})\overset{\text{hip.}}{<}p_{a}(x_{0})=\frac{f(x_{0})-f(a)}{x_{0}-a}\iff\\ +\iff f'(x_{0})(x_{0}-a)<f(x_{0})-f(a)\iff f(a)<f(x_{0})+f'(x_{0})(x_{0}-a) +\end{array} +\] + +\end_inset + +por lo que +\begin_inset Formula $(a,f(a))$ +\end_inset + + queda por debajo de la tangente. +\begin_inset Formula $\#$ +\end_inset + + +\end_layout + +\end_inset + + +\end_layout + +\begin_layout Standard + +\series bold +Convexidad local: +\series default + +\begin_inset Formula $f:I\rightarrow\mathbb{R}$ +\end_inset + + y derivable en +\begin_inset Formula $x_{0}\in I$ +\end_inset + + es +\series bold +convexa +\series default + en +\begin_inset Formula $x_{0}$ +\end_inset + + si +\begin_inset Formula $\exists\delta>0:\forall x\in B(x_{0},\delta)\cap I,f(x)\geq f(x_{0})+f'(x_{0})(x-x_{0})$ +\end_inset + +, y es +\series bold +cóncava +\series default + en +\begin_inset Formula $x_{0}$ +\end_inset + + si +\begin_inset Formula $\exists\delta>0:\forall x\in B(x_{0},\delta)\cap I,f(x)\leq f(x_{0})+f'(x_{0})(x-x_{0})$ +\end_inset + +. + Decimos que +\begin_inset Formula $x_{0}$ +\end_inset + + es un +\series bold +punto de inflexión +\series default + si existe +\begin_inset Formula $\delta>0$ +\end_inset + + tal que si +\begin_inset Formula $x\in B(x_{0},\delta)\cap I$ +\end_inset + + entonces +\begin_inset Formula $x<x_{0}$ +\end_inset + + implica +\begin_inset Formula $f(x)>f(x_{0})+f'(x_{0})(x-x_{0})$ +\end_inset + + mientras que +\begin_inset Formula $x>x_{0}$ +\end_inset + + implica +\begin_inset Formula $f(x)<f(x_{0})+f'(x_{0})(x-x_{0})$ +\end_inset + + (o al revés). + Puede no darse ninguna de las tres situaciones como en el punto +\begin_inset Formula $x_{0}=0$ +\end_inset + + en +\begin_inset Formula $f(x)=x^{2}\sin(1/x)$ +\end_inset + +. + Una función +\begin_inset Formula $f:I\rightarrow\mathbb{R}$ +\end_inset + + derivable en el intervalo abierto +\begin_inset Formula $I$ +\end_inset + + es convexa en +\begin_inset Formula $I$ +\end_inset + + si y sólo si es convexa para cada +\begin_inset Formula $x\in I$ +\end_inset + +. +\begin_inset Note Comment +status open + +\begin_layout Itemize +\begin_inset Argument item:1 +status open + +\begin_layout Plain Layout +\begin_inset Formula $\implies]$ +\end_inset + + +\end_layout + +\end_inset + +Ver teorema anterior. +\end_layout + +\begin_layout Itemize +\begin_inset Argument item:1 +status open + +\begin_layout Plain Layout +\begin_inset Formula $\impliedby]$ +\end_inset + + +\end_layout + +\end_inset + +Supongamos que existen +\begin_inset Formula $a,b,c\in I$ +\end_inset + + con +\begin_inset Formula $a<c<b$ +\end_inset + + tales que +\begin_inset Formula $f(c)>f(a)+\frac{f(b)-f(a)}{b-a}(c-a)$ +\end_inset + +. + Sea +\begin_inset Formula $g(x)=f(x)-\left(f(a)+\frac{f(b)-f(a)}{b-a}(x-a)\right)$ +\end_inset + +. + Como +\begin_inset Formula $0=g(a)=g(b)<g(c)$ +\end_inset + +, existe un máximo absoluto de +\begin_inset Formula $g$ +\end_inset + + en +\begin_inset Formula $(a,b)$ +\end_inset + + y en este +\begin_inset Formula $g'(\xi)=0$ +\end_inset + +, así que +\begin_inset Formula $f'(\xi)=\frac{f(b)-f(a)}{b-a}$ +\end_inset + + y +\begin_inset Formula $g(z)<g(\xi)\forall z\in[a,b]$ +\end_inset + +, luego +\begin_inset Formula +\[ +g(b)=f(b)-\left(f(a)+\frac{f(b)-f(a)}{b-a}(b-a)\right)<f(\xi)-\left(f(a)+\frac{f(b)-f(a)}{b-a}(\xi-a)\right) +\] + +\end_inset + +es decir, +\begin_inset Formula +\[ +f(b)<f(\xi)+\frac{f(b)-f(a)}{b-a}(b-\xi)=f(\xi)+f'(\xi)(b-\xi) +\] + +\end_inset + +lo que contradice la convexidad de +\begin_inset Formula $f$ +\end_inset + + en +\begin_inset Formula $\xi$ +\end_inset + +. +\end_layout + +\end_inset + + +\end_layout + +\begin_layout Standard +Como +\begin_inset Formula $f:I\rightarrow\mathbb{R}$ +\end_inset + + es cóncava si y sólo si +\begin_inset Formula $-f$ +\end_inset + + es convexa, todas las proposiciones sobre funciones convexas se pueden + aplicar a funciones cóncavas adaptándolas convenientemente. +\end_layout + +\begin_layout Section +Representación gráfica de funciones +\end_layout + +\begin_layout Standard +Sea +\begin_inset Formula $y=f(x)$ +\end_inset + +. + La recta +\begin_inset Formula $x=a$ +\end_inset + + es una +\series bold +asíntota vertical +\series default + de +\begin_inset Formula $f(x)$ +\end_inset + + si +\begin_inset Formula $\lim_{x\rightarrow a}f(x)=\pm\infty$ +\end_inset + +, sea el límite por la izquierda o por la derecha. + La recta +\begin_inset Formula $y=b$ +\end_inset + + es una +\series bold +asíntota horizontal +\series default + de +\begin_inset Formula $f(x)$ +\end_inset + + si +\begin_inset Formula $\lim_{x\rightarrow\infty}f(x)=b$ +\end_inset + +, sea cuando +\begin_inset Formula $x$ +\end_inset + + tiende a +\begin_inset Formula $-\infty$ +\end_inset + + o a +\begin_inset Formula $+\infty$ +\end_inset + +. + Finalmente, la recta +\begin_inset Formula $y=mx+b$ +\end_inset + + es una +\series bold +asíntota oblicua +\series default + de +\begin_inset Formula $f(x)$ +\end_inset + + si +\begin_inset Formula $\lim_{x\rightarrow\infty}(f(x)-(mx+b))=0$ +\end_inset + +, y entonces podemos calcular +\begin_inset Formula $m$ +\end_inset + + y +\begin_inset Formula $b$ +\end_inset + + como +\begin_inset Formula $m=\lim_{x\rightarrow\infty}\frac{f(x)}{x}$ +\end_inset + + y +\begin_inset Formula $b=\lim_{x\rightarrow\infty}(f(x)-mx)$ +\end_inset + +. +\end_layout + +\begin_layout Standard +Una función +\begin_inset Formula $f:D\subseteq\mathbb{R}\rightarrow\mathbb{R}$ +\end_inset + + es +\series bold +par +\series default + o +\series bold +simétrica respecto del eje de coordenadas +\series default +si +\begin_inset Formula $f(-x)=f(x)\forall x\in D$ +\end_inset + +, y es +\series bold +impar +\series default + o +\series bold +simétrica respecto del origen de coordenadas +\series default + si +\begin_inset Formula $f(-x)=-f(x)\forall x\in D$ +\end_inset + +. +\end_layout + +\end_body +\end_document |
