aboutsummaryrefslogtreecommitdiff
path: root/fvc/n2.lyx
diff options
context:
space:
mode:
Diffstat (limited to 'fvc/n2.lyx')
-rw-r--r--fvc/n2.lyx44
1 files changed, 22 insertions, 22 deletions
diff --git a/fvc/n2.lyx b/fvc/n2.lyx
index 61c71c9..55f969a 100644
--- a/fvc/n2.lyx
+++ b/fvc/n2.lyx
@@ -91,7 +91,7 @@ Teorema de Cauchy-Goursat:
\end_inset
y
-\begin_inset Formula $\Delta(a,b,c):=\{\mu a+\lambda b+\gamma c\mid \mu+\lambda+\gamma=1;\mu,\lambda,\gamma\geq0\}\subseteq\Omega$
+\begin_inset Formula $\Delta(a,b,c)\coloneqq \{\mu a+\lambda b+\gamma c\mid \mu+\lambda+\gamma=1;\mu,\lambda,\gamma\geq0\}\subseteq\Omega$
\end_inset
, entonces
@@ -111,23 +111,23 @@ Teorema de Cauchy-Goursat:
Demostración:
\series default
Sean
-\begin_inset Formula $\gamma:=[a,b,c,a]$
+\begin_inset Formula $\gamma\coloneqq [a,b,c,a]$
\end_inset
,
-\begin_inset Formula $\Delta:=\Delta(a,b,c)$
+\begin_inset Formula $\Delta\coloneqq \Delta(a,b,c)$
\end_inset
,
-\begin_inset Formula $a':=\frac{b+c}{2}$
+\begin_inset Formula $a'\coloneqq \frac{b+c}{2}$
\end_inset
,
-\begin_inset Formula $b':=\frac{a+c}{2}$
+\begin_inset Formula $b'\coloneqq \frac{a+c}{2}$
\end_inset
,
-\begin_inset Formula $c':=\frac{a+b}{2}$
+\begin_inset Formula $c'\coloneqq \frac{a+b}{2}$
\end_inset
e
@@ -156,7 +156,7 @@ Sean
\begin_layout Itemize
Si
-\begin_inset Formula $|J_{k}|:=\max_{i}|J_{i}|$
+\begin_inset Formula $|J_{k}|\coloneqq \max_{i}|J_{i}|$
\end_inset
,
@@ -206,7 +206,7 @@ Para
\end_inset
,
-\begin_inset Formula $F(x):=\frac{x+a}{2}$
+\begin_inset Formula $F(x)\coloneqq \frac{x+a}{2}$
\end_inset
es una biyección de
@@ -218,11 +218,11 @@ Para
\end_inset
, pues si
-\begin_inset Formula $x:=ra+sb+tc$
+\begin_inset Formula $x\coloneqq ra+sb+tc$
\end_inset
,
-\begin_inset Formula $F(x):=\frac{ra+sb+tc+a}{2}=\frac{ra+sb+tc+(r+s+t)a}{2}=ra+s\frac{a+b}{2}+t\frac{a+c}{2}=ra+sc'+tb'$
+\begin_inset Formula $F(x)\coloneqq \frac{ra+sb+tc+a}{2}=\frac{ra+sb+tc+(r+s+t)a}{2}=ra+s\frac{a+b}{2}+t\frac{a+c}{2}=ra+sc'+tb'$
\end_inset
.
@@ -236,7 +236,7 @@ Para
\end_inset
la biyección
-\begin_inset Formula $F(x):=\frac{a+b+c-x}{2}$
+\begin_inset Formula $F(x)\coloneqq \frac{a+b+c-x}{2}$
\end_inset
.
@@ -245,11 +245,11 @@ Para
\end_deeper
\begin_layout Standard
Sean entonces
-\begin_inset Formula $I_{1}:=\max_{i}|J_{i}|$
+\begin_inset Formula $I_{1}\coloneqq \max_{i}|J_{i}|$
\end_inset
,
-\begin_inset Formula $\gamma_{1}:=[a_{1},b_{1},c_{1},a_{1}]$
+\begin_inset Formula $\gamma_{1}\coloneqq [a_{1},b_{1},c_{1},a_{1}]$
\end_inset
la curva correspondiente a
@@ -257,7 +257,7 @@ Sean entonces
\end_inset
y
-\begin_inset Formula $\Delta_{1}:=\Delta(a_{1},b_{1},c_{1})$
+\begin_inset Formula $\Delta_{1}\coloneqq \Delta(a_{1},b_{1},c_{1})$
\end_inset
, con lo que
@@ -297,7 +297,7 @@ Sean entonces
.
Sea
-\begin_inset Formula $p(z):=f(\alpha)+f'(\alpha)(z-\alpha)$
+\begin_inset Formula $p(z)\coloneqq f(\alpha)+f'(\alpha)(z-\alpha)$
\end_inset
una función polinómica y por tanto con primitiva, entonces
@@ -539,11 +539,11 @@ Si
\end_inset
, sean
-\begin_inset Formula $c_{\rho}:=(1-\rho)a+\rho b$
+\begin_inset Formula $c_{\rho}\coloneqq (1-\rho)a+\rho b$
\end_inset
y
-\begin_inset Formula $b_{\rho}:=(1-\rho)a+\rho c$
+\begin_inset Formula $b_{\rho}\coloneqq (1-\rho)a+\rho c$
\end_inset
para
@@ -1221,7 +1221,7 @@ Demostración:
.
Sea
-\begin_inset Formula $f(z):=\frac{1}{p(z)}$
+\begin_inset Formula $f(z)\coloneqq \frac{1}{p(z)}$
\end_inset
,
@@ -1279,7 +1279,7 @@ Demostración:
.
Sea entonces
-\begin_inset Formula $g(z):=\frac{1}{f(z)-\alpha}$
+\begin_inset Formula $g(z)\coloneqq \frac{1}{f(z)-\alpha}$
\end_inset
una función entera, como
@@ -1393,7 +1393,7 @@ luego
\end_inset
, por el teorema de Taylor, sea
-\begin_inset Formula $c_{n}:=\frac{F^{(n)}(\alpha)}{n!}$
+\begin_inset Formula $c_{n}\coloneqq \frac{F^{(n)}(\alpha)}{n!}$
\end_inset
, como
@@ -1473,7 +1473,7 @@ Teorema de convergencia de Weierstrass:
\end_inset
y
-\begin_inset Formula $f(z):=\lim_{n}f_{n}(z)$
+\begin_inset Formula $f(z)\coloneqq \lim_{n}f_{n}(z)$
\end_inset
para
@@ -1583,7 +1583,7 @@ Sean
\end_inset
y
-\begin_inset Formula $H:=\{z\in\mathbb{C}\mid d(z,K)\leq\rho\}$
+\begin_inset Formula $H\coloneqq \{z\in\mathbb{C}\mid d(z,K)\leq\rho\}$
\end_inset
, con lo que