diff options
Diffstat (limited to 'fvc/n3.lyx')
| -rw-r--r-- | fvc/n3.lyx | 684 |
1 files changed, 684 insertions, 0 deletions
diff --git a/fvc/n3.lyx b/fvc/n3.lyx new file mode 100644 index 0000000..58662d2 --- /dev/null +++ b/fvc/n3.lyx @@ -0,0 +1,684 @@ +#LyX 2.3 created this file. For more info see http://www.lyx.org/ +\lyxformat 544 +\begin_document +\begin_header +\save_transient_properties true +\origin unavailable +\textclass book +\use_default_options true +\maintain_unincluded_children false +\language spanish +\language_package default +\inputencoding auto +\fontencoding global +\font_roman "default" "default" +\font_sans "default" "default" +\font_typewriter "default" "default" +\font_math "auto" "auto" +\font_default_family default +\use_non_tex_fonts false +\font_sc false +\font_osf false +\font_sf_scale 100 100 +\font_tt_scale 100 100 +\use_microtype false +\use_dash_ligatures true +\graphics default +\default_output_format default +\output_sync 0 +\bibtex_command default +\index_command default +\paperfontsize default +\spacing single +\use_hyperref false +\papersize default +\use_geometry false +\use_package amsmath 1 +\use_package amssymb 1 +\use_package cancel 1 +\use_package esint 1 +\use_package mathdots 1 +\use_package mathtools 1 +\use_package mhchem 1 +\use_package stackrel 1 +\use_package stmaryrd 1 +\use_package undertilde 1 +\cite_engine basic +\cite_engine_type default +\biblio_style plain +\use_bibtopic false +\use_indices false +\paperorientation portrait +\suppress_date false +\justification true +\use_refstyle 1 +\use_minted 0 +\index Index +\shortcut idx +\color #008000 +\end_index +\secnumdepth 3 +\tocdepth 3 +\paragraph_separation indent +\paragraph_indentation default +\is_math_indent 0 +\math_numbering_side default +\quotes_style french +\dynamic_quotes 0 +\papercolumns 1 +\papersides 1 +\paperpagestyle default +\tracking_changes false +\output_changes false +\html_math_output 0 +\html_css_as_file 0 +\html_be_strict false +\end_header + +\begin_body + +\begin_layout Standard +Sean +\begin_inset Formula $\Omega$ +\end_inset + + un dominio, +\begin_inset Formula $f\in{\cal H}(\Omega)$ +\end_inset + + y +\begin_inset Formula $Z(f):=\{z\in\Omega:f(z)=0\}$ +\end_inset + +, +\begin_inset Formula $Z(f)$ +\end_inset + + tiene un punto de acumulación en +\begin_inset Formula $\Omega$ +\end_inset + + si y sólo si +\begin_inset Formula $\exists a\in\Omega:\forall k\in\mathbb{N},f^{(k)}(a)=0$ +\end_inset + +, si y sólo si +\begin_inset Formula $f$ +\end_inset + + es idénticamente nula. +\end_layout + +\begin_layout Description +\begin_inset Formula $1\implies2]$ +\end_inset + + Sean +\begin_inset Formula $a\in Z(f)'\cap\Omega$ +\end_inset + + y +\begin_inset Formula $D(a,\rho)\subseteq\Omega$ +\end_inset + +, existe +\begin_inset Formula $\{a_{n}\}_{n}\subseteq D(a,\rho)\setminus\{a\}$ +\end_inset + + con +\begin_inset Formula $a_{n}\to a$ +\end_inset + +. + Por el teorema de Taylor, +\begin_inset Formula +\[ +f(z)=\sum_{n=0}^{\infty}c_{n}(z-a)^{n} +\] + +\end_inset + +para +\begin_inset Formula $c_{n}:=\frac{f^{(n)}(a)}{n!}$ +\end_inset + +, y queremos ver que todos los +\begin_inset Formula $c_{n}$ +\end_inset + + son nulos por inducción. + Para +\begin_inset Formula $n=0$ +\end_inset + +, +\begin_inset Formula $c_{0}=f(a)=\lim_{n}f(a_{n})=0$ +\end_inset + +. + Si +\begin_inset Formula $c_{0}=\dots=c_{k-1}=0$ +\end_inset + +, tenemos +\begin_inset Formula +\[ +\frac{f(z)}{(z-a)^{k}}=c_{k}+\sum_{n=k+1}^{\infty}c_{n}(z-a)^{n-k}. +\] + +\end_inset + +Sea +\begin_inset Formula $g_{k}(z):=\sum_{n=k+1}^{\infty}c_{n}(z-a)^{n-k}$ +\end_inset + + una función holomorfa en +\begin_inset Formula $D(a,\rho)$ +\end_inset + + con +\begin_inset Formula $g_{k}(a)=0$ +\end_inset + +, entonces +\begin_inset Formula $\frac{f(z)}{(z-a)^{k}}=c_{k}+g_{k}(z)$ +\end_inset + +, pero +\begin_inset Formula $c_{k}+g_{k}(a_{n})=0$ +\end_inset + + +\begin_inset Note Note +status open + +\begin_layout Plain Layout +¿por qué? +\end_layout + +\end_inset + + y, tomando límites, +\begin_inset Formula $0=c_{k}+\lim_{n}g_{k}(a_{n})=c_{k}+g_{k}(a)=c_{k}$ +\end_inset + +. +\end_layout + +\begin_layout Description +\begin_inset Formula $2\implies3]$ +\end_inset + + Sea +\begin_inset Formula $A:=\{z\in\Omega:\forall k\in\mathbb{N},f^{(k)}(z)=0\}\neq\emptyset$ +\end_inset + +, pues +\begin_inset Formula $a\in A$ +\end_inset + +. + Como +\begin_inset Formula +\[ +A=\bigcap_{k=0}^{\infty}\{z\in\Omega:f^{(k)}(z)=0\}, +\] + +\end_inset + + +\begin_inset Formula $A$ +\end_inset + + es intersección de cerrados y por tanto cerrado, ahora bien, sean +\begin_inset Formula $z\in A$ +\end_inset + + y +\begin_inset Formula $D(z,\rho)\subseteq\Omega$ +\end_inset + +, por el teorema de Taylor, para +\begin_inset Formula $w\in D(z,\rho)$ +\end_inset + +, +\begin_inset Formula +\[ +f(w)=\sum_{n=0}^{\infty}\frac{f^{(k)}(z)}{n!}(w-z)^{n}=0, +\] + +\end_inset + +luego +\begin_inset Formula $f^{(k)}(w)=0$ +\end_inset + + y +\begin_inset Formula $D(z,\rho)\subseteq A$ +\end_inset + +, con lo que +\begin_inset Formula $A$ +\end_inset + + es abierto. + Por conexión, +\begin_inset Formula $A=\Omega$ +\end_inset + +. +\end_layout + +\begin_layout Description +\begin_inset Formula $3\implies1]$ +\end_inset + + Trivial. +\end_layout + +\begin_layout Standard +El +\series bold +principio de identidad para funciones holomorfas +\series default + afirma que si dos funciones holomorfas en un dominio +\begin_inset Formula $\Omega$ +\end_inset + + coinciden en un subconjunto de +\begin_inset Formula $\Omega$ +\end_inset + + con algún punto de acumulación en +\begin_inset Formula $\Omega$ +\end_inset + +, entonces coinciden en todo +\begin_inset Formula $\Omega$ +\end_inset + +. + En efecto, sean +\begin_inset Formula $f,g\in{\cal H}(\Omega)$ +\end_inset + + y +\begin_inset Formula $h=f-g$ +\end_inset + +, si +\begin_inset Formula $f$ +\end_inset + + y +\begin_inset Formula $g$ +\end_inset + + coinciden en un subconjunto de este tipo, entonces +\begin_inset Formula $Z(h)'\cap\Omega\neq\emptyset$ +\end_inset + + y por tanto +\begin_inset Formula $h$ +\end_inset + + es idénticamente nula, luego +\begin_inset Formula $f=g$ +\end_inset + +. + También, si +\begin_inset Formula $\Omega$ +\end_inset + + es un dominio y +\begin_inset Formula $f\in{\cal H}(\Omega)$ +\end_inset + + no es idénticamente nula, entonces todo punto de +\begin_inset Formula $Z(f):=\{z\in\Omega:f(z)=0\}$ +\end_inset + + es aislado y +\begin_inset Formula $Z(f)$ +\end_inset + + es numerable. +\end_layout + +\begin_layout Standard +Sean +\begin_inset Formula $f\in{\cal H}(\Omega)$ +\end_inset + + y +\begin_inset Formula $a\in\Omega$ +\end_inset + + con +\begin_inset Formula $f(a)=0$ +\end_inset + +, decimos que +\begin_inset Formula $f$ +\end_inset + + tiene en +\begin_inset Formula $a$ +\end_inset + + un +\series bold +cero +\series default + de +\series bold +orden +\series default + +\begin_inset Formula $\min\{n\in\mathbb{N}:f^{(n)}(a)\neq0\}$ +\end_inset + +. + Una función +\begin_inset Formula $f$ +\end_inset + + holomorfa no idénticamente nula en en un dominio +\begin_inset Formula $\Omega$ +\end_inset + + tiene un cero de orden +\begin_inset Formula $k\geq1$ +\end_inset + + en +\begin_inset Formula $a\in\Omega$ +\end_inset + + si y sólo si +\begin_inset Formula $\exists g\in{\cal H}(\Omega):(g(a)\neq0\land\forall z\in\Omega,f(z)=(z-a)^{k}g(z))$ +\end_inset + +. +\end_layout + +\begin_layout Itemize +\begin_inset Argument item:1 +status open + +\begin_layout Plain Layout +\begin_inset Formula $\implies]$ +\end_inset + + +\end_layout + +\end_inset + +Sea +\begin_inset Formula $D(a,\rho)\subseteq\Omega$ +\end_inset + +, existe +\begin_inset Formula $(c_{n})_{n\geq k}$ +\end_inset + + con +\begin_inset Formula $c_{k}\neq0$ +\end_inset + + y +\begin_inset Formula $f(z)=\sum_{n=k}^{\infty}c_{n}(z-a)^{n}$ +\end_inset + + para cada +\begin_inset Formula $z\in D(a,\rho)$ +\end_inset + +. + Entonces +\begin_inset Formula +\[ +g(z):=\begin{cases} +\frac{f(z)}{(z-a)^{k}} & \text{si }z\neq a,\\ +c_{k} & \text{si }z=a +\end{cases} +\] + +\end_inset + +es holomorfa en +\begin_inset Formula $\Omega\setminus\{a\}$ +\end_inset + + y cumple +\begin_inset Formula $g(z)=\sum_{n=k}^{\infty}c_{n}(z-a)^{n-k}$ +\end_inset + + para todo +\begin_inset Formula $z\in D(a,\rho)$ +\end_inset + +, luego es holomorfa en +\begin_inset Formula $D(a,\rho)$ +\end_inset + + y, por tanto en +\begin_inset Formula $a$ +\end_inset + +. + Así, +\begin_inset Formula $g\in{\cal H}(\Omega)$ +\end_inset + +, +\begin_inset Formula $g(a)\neq0$ +\end_inset + + y +\begin_inset Formula $f(z)=(z-a)^{k}g(z)$ +\end_inset + + para +\begin_inset Formula $z\in\Omega$ +\end_inset + +. +\end_layout + +\begin_layout Itemize +\begin_inset Argument item:1 +status open + +\begin_layout Plain Layout +\begin_inset Formula $\impliedby]$ +\end_inset + + +\end_layout + +\end_inset + +Sea +\begin_inset Formula $D(a,\rho)\subseteq\Omega$ +\end_inset + +, por el teorema de Taylor existe +\begin_inset Formula $(\alpha_{n})_{n}$ +\end_inset + + tal que +\begin_inset Formula $g(z)=\sum_{n}\alpha_{n}(z-a)^{n}$ +\end_inset + + para +\begin_inset Formula $z\in D(a,\rho)$ +\end_inset + +, con +\begin_inset Formula $\alpha_{0}=g(a)\neq0$ +\end_inset + + y entonces +\begin_inset Formula $f(z)=\sum_{n}\alpha_{n}(z-a)^{n+k}$ +\end_inset + + y por tanto +\begin_inset Formula $f^{(q)}(a)=0$ +\end_inset + + para +\begin_inset Formula $q\in\{0,\dots,k-1\}$ +\end_inset + + y +\begin_inset Formula $f^{(k)}(a)=k!\alpha_{0}\neq0$ +\end_inset + +. +\end_layout + +\begin_layout Standard + +\series bold +Regla de L'Hôpital: +\series default + Sean +\begin_inset Formula $\Omega$ +\end_inset + + un dominio, +\begin_inset Formula $f,g\in{\cal H}(\Omega)$ +\end_inset + + no idénticamente nulas y +\begin_inset Formula $a\in\Omega$ +\end_inset + + con +\begin_inset Formula $f(a)=g(a)=0$ +\end_inset + +, entonces +\begin_inset Formula +\[ +\lim_{z\to a}\frac{f(z)}{g(z)}=\lim_{z\to a}\frac{f'(z)}{g'(z)}. +\] + +\end_inset + + +\series bold +Demostración: +\series default + Por lo anterior, existen +\begin_inset Formula $m,n\in\mathbb{N}$ +\end_inset + + y +\begin_inset Formula $F,G\in{\cal H}(\Omega)$ +\end_inset + + con +\begin_inset Formula $f(z)=(z-a)^{m}F(z)$ +\end_inset + +, +\begin_inset Formula $g(z)=(z-a)^{n}G(z)$ +\end_inset + + y +\begin_inset Formula $F(a),G(a)\neq0$ +\end_inset + +. + Como el conjunto de puntos donde +\begin_inset Formula $g$ +\end_inset + + se anula está formado por puntos aislados y +\begin_inset Formula $g(a)=0$ +\end_inset + +, debe haber un disco perforado alrededor de +\begin_inset Formula $a$ +\end_inset + + donde +\begin_inset Formula $g$ +\end_inset + + no se anula. + También hay un disco perforado alrededor de +\begin_inset Formula $a$ +\end_inset + + donde +\begin_inset Formula $g'$ +\end_inset + + no se anula, por el mismo motivo si +\begin_inset Formula $g'(a)=0$ +\end_inset + + o por continuidad si +\begin_inset Formula $g'(a)\neq0$ +\end_inset + +. + Sea entonces +\begin_inset Formula $D(a,\rho)\subseteq\Omega$ +\end_inset + + con +\begin_inset Formula $g(z)\neq0$ +\end_inset + + y +\begin_inset Formula $g'(z)\neq0$ +\end_inset + + para +\begin_inset Formula $z\in D(a,\rho)\setminus\{a\}$ +\end_inset + +, para estos puntos, +\begin_inset Formula +\begin{align*} +\frac{f(z)}{g(z)} & =\frac{(z-a)^{m}F(z)}{(z-a)^{n}G(z)}, & \frac{f'(z)}{g'(z)} & =(z-a)^{m-n}\frac{mF(z)+(z-a)F'(z)}{nG(z)+(z-a)G'(z)}. +\end{align*} + +\end_inset + +Tomando límites cuando +\begin_inset Formula $z\to a$ +\end_inset + +, si +\begin_inset Formula $m=n$ +\end_inset + +, ambos límites valen +\begin_inset Formula $\frac{F(a)}{G(a)}$ +\end_inset + +; si +\begin_inset Formula $m>n$ +\end_inset + +, ambos son nulos, y si +\begin_inset Formula $m<n$ +\end_inset + +, ambos son +\begin_inset Formula $\infty$ +\end_inset + +. +\end_layout + +\end_body +\end_document |
