diff options
Diffstat (limited to 'fvc/n4.lyx')
| -rw-r--r-- | fvc/n4.lyx | 2076 |
1 files changed, 2076 insertions, 0 deletions
diff --git a/fvc/n4.lyx b/fvc/n4.lyx new file mode 100644 index 0000000..c7ae304 --- /dev/null +++ b/fvc/n4.lyx @@ -0,0 +1,2076 @@ +#LyX 2.3 created this file. For more info see http://www.lyx.org/ +\lyxformat 544 +\begin_document +\begin_header +\save_transient_properties true +\origin unavailable +\textclass book +\use_default_options true +\maintain_unincluded_children false +\language spanish +\language_package default +\inputencoding auto +\fontencoding global +\font_roman "default" "default" +\font_sans "default" "default" +\font_typewriter "default" "default" +\font_math "auto" "auto" +\font_default_family default +\use_non_tex_fonts false +\font_sc false +\font_osf false +\font_sf_scale 100 100 +\font_tt_scale 100 100 +\use_microtype false +\use_dash_ligatures true +\graphics default +\default_output_format default +\output_sync 0 +\bibtex_command default +\index_command default +\paperfontsize default +\spacing single +\use_hyperref false +\papersize default +\use_geometry false +\use_package amsmath 1 +\use_package amssymb 1 +\use_package cancel 1 +\use_package esint 1 +\use_package mathdots 1 +\use_package mathtools 1 +\use_package mhchem 1 +\use_package stackrel 1 +\use_package stmaryrd 1 +\use_package undertilde 1 +\cite_engine basic +\cite_engine_type default +\biblio_style plain +\use_bibtopic false +\use_indices false +\paperorientation portrait +\suppress_date false +\justification true +\use_refstyle 1 +\use_minted 0 +\index Index +\shortcut idx +\color #008000 +\end_index +\secnumdepth 3 +\tocdepth 3 +\paragraph_separation indent +\paragraph_indentation default +\is_math_indent 0 +\math_numbering_side default +\quotes_style french +\dynamic_quotes 0 +\papercolumns 1 +\papersides 1 +\paperpagestyle default +\tracking_changes false +\output_changes false +\html_math_output 0 +\html_css_as_file 0 +\html_be_strict false +\end_header + +\begin_body + +\begin_layout Section +Índice de un punto respecto a una curva +\end_layout + +\begin_layout Standard +Toda curva +\begin_inset Formula $\gamma:[a,b]\to\mathbb{C}^{*}$ +\end_inset + + tiene argumentos continuos, y si +\begin_inset Formula $\theta$ +\end_inset + + y +\begin_inset Formula $\theta'$ +\end_inset + + son argumentos continuos de +\begin_inset Formula $\gamma$ +\end_inset + +, entonces +\begin_inset Formula $\theta(b)-\theta(a)=\theta'(b)-\theta'(a)$ +\end_inset + +. + +\series bold +Demostración: +\series default + Sean +\begin_inset Formula $\rho:=\min_{t\in[a,b]}|\gamma(t)|>0$ +\end_inset + +, +\begin_inset Formula $\delta>0$ +\end_inset + + tal que si +\begin_inset Formula $|s-t|<\delta$ +\end_inset + + entonces +\begin_inset Formula $|\gamma(s)-\gamma(t)|<\rho$ +\end_inset + +, +\begin_inset Formula $a=t_{0}<\dots<t_{n}=b$ +\end_inset + + una partición de +\begin_inset Formula $[a,b]$ +\end_inset + + tal que +\begin_inset Formula $t_{k}-t_{k-1}<\delta$ +\end_inset + + para cada +\begin_inset Formula $k$ +\end_inset + + y +\begin_inset Formula $D_{k}:=D(\gamma(t_{k}),\rho)$ +\end_inset + +. + Entonces +\begin_inset Formula $0\notin D_{k}$ +\end_inset + + para ningún +\begin_inset Formula $k$ +\end_inset + + y +\begin_inset Formula $\gamma(t)\in D_{k}$ +\end_inset + + para +\begin_inset Formula $t\in[t_{k-1},t_{k}]$ +\end_inset + +, luego los discos consecutivos se cortan. + Como cada +\begin_inset Formula $D_{k}$ +\end_inset + + es un dominio estrellado que no contiene al 0, existe un logaritmo holomorfo, + y por tanto un argumento continuo, de la identidad, una función +\begin_inset Formula $A_{k}:D_{k}\to\mathbb{R}$ +\end_inset + + con +\begin_inset Formula $A_{k}(z)\in\text{Arg}z$ +\end_inset + + para cada +\begin_inset Formula $z\in D_{k}$ +\end_inset + +. + Sean ahora +\begin_inset Formula $\theta_{k}(t):=A_{k}(\gamma(t))\in\text{Arg}(\gamma(t))$ +\end_inset + + y +\begin_inset Formula $m_{k}:=\theta_{k}(t_{k})-\theta_{k+1}(t_{k})$ +\end_inset + +, y definimos +\begin_inset Formula $\theta:[a,b]\to\mathbb{R}$ +\end_inset + + como +\begin_inset Formula $\theta(t):=\theta_{k}(t)+\sum_{i=0}^{k-1}m_{k}$ +\end_inset + + para +\begin_inset Formula $t\in[t_{k-1},t_{k}]$ +\end_inset + +. + Entonces +\begin_inset Formula $\theta$ +\end_inset + + está bien definido, pues +\begin_inset Formula $\theta_{k+1}(t_{k})+\sum_{i=0}^{k}m_{k}=\theta_{k+1}(t_{k})+\sum_{i=0}^{k-1}m_{k}+\theta_{k}(t_{k})-\theta_{k+1}(t_{k})=\theta_{k}t_{k}+\sum_{i=0}^{k-1}m_{k}$ +\end_inset + +, y es un argumento continuo de +\begin_inset Formula $\gamma$ +\end_inset + + en +\begin_inset Formula $[a,b]$ +\end_inset + +. + Ahora bien, si +\begin_inset Formula $\theta$ +\end_inset + + y +\begin_inset Formula $\theta'$ +\end_inset + + son argumentos continuos de +\begin_inset Formula $\gamma$ +\end_inset + +, +\begin_inset Formula $\theta-\theta'$ +\end_inset + + es una función continua en +\begin_inset Formula $[a,b]$ +\end_inset + + que toma valores múltiplos de +\begin_inset Formula $2\pi$ +\end_inset + + y por tanto debe ser constate, existiendo +\begin_inset Formula $k\in\mathbb{Z}$ +\end_inset + + tal que +\begin_inset Formula $\theta(t)-\theta'(t)=2k\pi$ +\end_inset + + para todo +\begin_inset Formula $\theta$ +\end_inset + +. +\end_layout + +\begin_layout Standard +Sean +\begin_inset Formula $\gamma:[a,b]\to\mathbb{C}$ +\end_inset + + una curva, +\begin_inset Formula $z\notin\gamma^{*}$ +\end_inset + + y +\begin_inset Formula $\theta$ +\end_inset + + un argumento de +\begin_inset Formula $\gamma-z$ +\end_inset + +, llamamos +\series bold +variación del argumento +\series default + de +\begin_inset Formula $z$ +\end_inset + + a lo largo de +\begin_inset Formula $\gamma$ +\end_inset + + a +\begin_inset Formula $\theta(b)-\theta(a)$ +\end_inset + +, e +\series bold +índice +\series default + de +\begin_inset Formula $\gamma$ +\end_inset + + respecto de +\begin_inset Formula $z$ +\end_inset + + a +\begin_inset Formula +\[ +\text{Ind}_{\gamma}(z):=\frac{\theta(b)-\theta(a)}{2\pi}. +\] + +\end_inset + + +\end_layout + +\begin_layout Standard +Si +\begin_inset Formula $\gamma$ +\end_inset + + es una curva cerrada: +\end_layout + +\begin_layout Enumerate +\begin_inset Formula $\text{Ind}_{\gamma}:\mathbb{C}\setminus\gamma^{*}\to\mathbb{Z}$ +\end_inset + + es continua, y por tanto constante en cada componente conexa del dominio. +\end_layout + +\begin_deeper +\begin_layout Standard +Sean +\begin_inset Formula $z_{0}\notin\gamma^{*}$ +\end_inset + +, +\begin_inset Formula $\rho:=\min_{t\in[a,b]}|\gamma(t)-z_{0}|>0$ +\end_inset + + y +\begin_inset Formula $z\in D(z_{0},\rho)\subseteq\mathbb{C}\setminus\gamma^{*}$ +\end_inset + +, entonces +\begin_inset Formula $\gamma(t)-z=(\gamma(t)-z_{0})\frac{\gamma(t)-z}{\gamma(t)-z_{0}}$ +\end_inset + +, pero +\begin_inset Formula +\[ +\left|1-\frac{\gamma(t)-z}{\gamma(t)-z_{0}}\right|=\left|\frac{z-z_{0}}{\gamma(t)-z_{0}}\right|<1, +\] + +\end_inset + + luego para +\begin_inset Formula $t\in[a,b]$ +\end_inset + +, +\begin_inset Formula $\frac{\gamma(t)-z}{\gamma(t)-z_{0}}\in D(1,1)$ +\end_inset + +, donde el argumento principal es continuo. + Sea +\begin_inset Formula $\theta_{0}$ +\end_inset + + un argumento de +\begin_inset Formula $\gamma-z_{0}$ +\end_inset + +, tenemos que +\begin_inset Formula $\theta(t):=\theta_{0}(t)+\arg\frac{\gamma(t)-z}{\gamma(t)-z_{0}}$ +\end_inset + + es un argumento continuo de +\begin_inset Formula $\gamma(t)-z$ +\end_inset + +, pero como +\begin_inset Formula $\theta(b)-\theta(a)=\theta_{0}(b)-\theta_{0}(a)$ +\end_inset + +, entonces +\begin_inset Formula $\text{Ind}_{\gamma}(z)=\text{Ind}_{\gamma}(z_{0})$ +\end_inset + + para todo +\begin_inset Formula $z\in D(z_{0},\rho)$ +\end_inset + +. + Así, +\begin_inset Formula $\text{Ind}_{\gamma}$ +\end_inset + + es localmente constante y por tanto continua. +\end_layout + +\end_deeper +\begin_layout Enumerate +\begin_inset Formula $\text{Ind}_{\gamma}$ +\end_inset + + se anula en la única componente no acotada de +\begin_inset Formula $\mathbb{C}\setminus\gamma^{*}$ +\end_inset + +. +\end_layout + +\begin_deeper +\begin_layout Standard +La componente existe y es única porque +\begin_inset Formula $\gamma^{*}$ +\end_inset + +, al ser la imagen de un compacto por una función continua, es un compacto + y existe +\begin_inset Formula $R$ +\end_inset + + tal que +\begin_inset Formula $\gamma^{*}\subseteq D(0,R)$ +\end_inset + +, con lo que +\begin_inset Formula $\mathbb{C}\setminus D(0,R)\subseteq\mathbb{C}\setminus\gamma^{*}$ +\end_inset + +, y al ser conexo, está en una componente conexa del conjunto. + Sea ahora +\begin_inset Formula $z_{0}$ +\end_inset + + con +\begin_inset Formula $\text{Re}z_{0}<-R$ +\end_inset + +, es claro que +\begin_inset Formula $z_{0}\notin\gamma^{*}$ +\end_inset + +, luego +\begin_inset Formula $\text{Re}(\gamma(t)-z_{0})>0$ +\end_inset + + y, como +\begin_inset Formula $(\gamma-z_{0})^{*}$ +\end_inset + + está en el semiplano de la derecha, el argumento principal es continuo. + Como +\begin_inset Formula $z_{0}$ +\end_inset + + está en la componente conexa no acotada y el índice es constante en cada + componente, para +\begin_inset Formula $z$ +\end_inset + + en la componente no acotada, +\begin_inset Formula $\text{Ind}_{\gamma}z=\text{Ind}_{\gamma}z_{0}=\frac{\arg(\gamma(b)-z_{0})-\arg(\gamma(a)-z_{0})}{2\pi}=0$ +\end_inset + +. + +\end_layout + +\end_deeper +\begin_layout Standard +Sea +\begin_inset Formula $\gamma$ +\end_inset + + un camino cerrado y +\begin_inset Formula $z\notin\gamma^{*}$ +\end_inset + +, entonces +\begin_inset Formula +\[ +\text{Ind}_{\gamma}(z)=\frac{1}{2\pi i}\int_{\gamma}\frac{1}{w-z}dw. +\] + +\end_inset + + +\series bold +Demostración: +\series default + Sea +\begin_inset Formula $\theta$ +\end_inset + + un argumento continuo de +\begin_inset Formula $\gamma-z$ +\end_inset + +, entonces +\begin_inset Formula $\varphi(t):=\log|\gamma(t)-z|+i\theta(t)$ +\end_inset + + es un logaritmo continuo de +\begin_inset Formula $\gamma(t)-z$ +\end_inset + + . + Sea +\begin_inset Formula $a=t_{0}<\dots<t_{n}=b$ +\end_inset + + una partición del dominio +\begin_inset Formula $[a,b]$ +\end_inset + + de +\begin_inset Formula $\gamma$ +\end_inset + + tal que +\begin_inset Formula $\gamma|_{[t_{k-1},t_{k}]}$ +\end_inset + + es derivable. + Entonces +\begin_inset Formula $\varphi_{k}:=\varphi|_{[t_{k-1},t_{k}]}$ +\end_inset + + también lo es y +\begin_inset Formula $\varphi'_{k}(t)=\frac{\gamma'(t)}{\gamma(t)-z}$ +\end_inset + + para +\begin_inset Formula $t\in(t_{k-1},t_{k})$ +\end_inset + +. + Integrando, +\begin_inset Formula +\begin{multline*} +\int_{\gamma}\frac{1}{w-z}dw=\int_{a}^{b}\frac{\gamma'(t)}{\gamma(t)-z}dt=\sum_{k=1}^{n}\int_{t_{k-1}}^{t_{k}}\frac{\gamma'(t)}{\gamma(t)-z}dt=\sum_{k=1}^{n}(\varphi_{k}(t_{k})-\varphi_{k}(t_{k-1}))=\\ +=\sum_{k=1}^{n}(\varphi(t_{k})-\varphi(t_{k-1}))=\varphi(b)-\varphi(a)=\log|\gamma(b)-z|+i\theta(b)-\log|\gamma(a)-z|-i\theta(a)=\\ +=i(\theta(b)-\theta(a))=2\pi i\text{Ind}_{\gamma}(z). +\end{multline*} + +\end_inset + + +\end_layout + +\begin_layout Section +Cadenas +\end_layout + +\begin_layout Standard +Una +\series bold +cadena +\series default + es una expresión de la forma +\begin_inset Formula $\Gamma:=m_{1}\gamma_{1}+\dots+m_{q}\gamma_{q}$ +\end_inset + + donde los +\begin_inset Formula $m_{i}$ +\end_inset + + son enteros y los +\begin_inset Formula $\gamma_{i}$ +\end_inset + + son caminos. + Llamamos +\series bold +soporte +\series default + de +\begin_inset Formula $\Gamma$ +\end_inset + + a +\begin_inset Formula $\Gamma^{*}:=\bigcup_{k}\gamma_{k}^{*}$ +\end_inset + + y +\series bold +longitud +\series default + de +\begin_inset Formula $\Gamma$ +\end_inset + + a +\begin_inset Formula $\ell(\Gamma):=\sum_{k}|m_{k}|\ell(\gamma_{k})$ +\end_inset + +. + Si +\begin_inset Formula $\Sigma:=n_{1}\sigma_{1}+\dots+n_{p}\sigma_{p}$ +\end_inset + + es otra cadena, llamamos +\begin_inset Formula $\Gamma+\Sigma:=m_{1}\gamma_{1}+\dots+m_{q}\gamma_{q}+k_{1}\sigma_{1}+\dots+k_{p}\sigma_{p}$ +\end_inset + +. + Dada +\begin_inset Formula $f:\Gamma^{*}\to\mathbb{C}$ +\end_inset + +, llamamos +\begin_inset Formula +\[ +\int_{\Gamma}f:=\sum_{k}m_{k}\int_{\gamma_{k}}f, +\] + +\end_inset + +y claramente se cumplen la aditividad de la integral y la acotación básica +\begin_inset Formula +\[ +\left|\int_{\Gamma}f\right|\leq\ell(\Gamma)\max_{z\in\Gamma^{*}}|f(z)|. +\] + +\end_inset + + +\end_layout + +\begin_layout Standard +Un +\series bold +ciclo +\series default + es una cadena formada por caminos cerrados, y llamamos +\series bold +índice +\series default + de +\begin_inset Formula $z\notin\Gamma^{*}$ +\end_inset + + respecto al ciclo +\begin_inset Formula $\Gamma$ +\end_inset + + a +\begin_inset Formula $\text{Ind}_{\Gamma}(z):=\sum_{k}m_{k}\text{Ind}_{\gamma_{k}}(z)$ +\end_inset + +. + Entonces +\begin_inset Formula $\text{Ind}_{\Gamma}:\mathbb{C}\setminus\Gamma^{*}\to\mathbb{Z}$ +\end_inset + + es continua y constante en cada componente conexa del dominio, y se anula + en la componente conexa no acotada. +\end_layout + +\begin_layout Standard +Dos cadenas +\begin_inset Formula $\Gamma$ +\end_inset + + y +\begin_inset Formula $\Sigma$ +\end_inset + + son +\series bold +equivalentes +\series default + si para toda +\begin_inset Formula $f$ +\end_inset + + continua en +\begin_inset Formula $\Gamma^{*}\cup\Sigma^{*}$ +\end_inset + + es +\begin_inset Formula +\[ +\int_{\Gamma}f=\int_{\Sigma}f. +\] + +\end_inset + +Dado un abierto +\begin_inset Formula $\Omega$ +\end_inset + +, un ciclo +\begin_inset Formula $\Gamma$ +\end_inset + + en +\begin_inset Formula $\Omega$ +\end_inset + + es +\series bold +nulhomólogo +\series default + respecto de +\begin_inset Formula $\Omega$ +\end_inset + + si +\begin_inset Formula $\forall z\in\mathbb{C}\setminus\Omega,\text{Ind}_{\Gamma}(z)=0$ +\end_inset + +. +\end_layout + +\begin_layout Section +Forma general del teorema de Cauchy +\end_layout + +\begin_layout Standard + +\series bold +Fórmula integral de Cauchy: +\series default + Sean +\begin_inset Formula $\Gamma$ +\end_inset + + un ciclo en +\begin_inset Formula $\Omega$ +\end_inset + + nulhomólogo respecto de +\begin_inset Formula $\Omega$ +\end_inset + + y +\begin_inset Formula $f\in{\cal H}(\Omega)$ +\end_inset + +, para +\begin_inset Formula $z\in\Omega\setminus\Gamma^{*}$ +\end_inset + +, +\begin_inset Formula +\[ +f(z)\text{Ind}_{\Gamma}(z)=\frac{1}{2\pi i}\int_{\Gamma}\frac{f(w)}{w-z}dw. +\] + +\end_inset + + +\end_layout + +\begin_layout Standard + +\series bold +Demostración: +\series default + Primero vemos que si +\begin_inset Formula $F:\Omega\times\Gamma^{*}\to\mathbb{C}$ +\end_inset + + es continua, entonces +\begin_inset Formula $h:\Omega\to\mathbb{C}$ +\end_inset + + dada por +\begin_inset Formula +\[ +h(z):=\int_{\Gamma}F(z,w)dw +\] + +\end_inset + +es continua en +\begin_inset Formula $\Omega$ +\end_inset + +. + En efecto, sean +\begin_inset Formula $a\in\Omega$ +\end_inset + + y +\begin_inset Formula $(z_{n})_{n}$ +\end_inset + + una sucesión de puntos de +\begin_inset Formula $\Omega$ +\end_inset + + convergente a +\begin_inset Formula $a$ +\end_inset + +, entonces +\begin_inset Formula +\[ +|h(z_{n})-h(a)|=\left|\int_{\Gamma}(F(z_{n},w)-F(a,w))dw\right|\leq\ell(\Gamma)\max_{w\in\Gamma^{*}}|F(z_{n},w)-F(a,w)|. +\] + +\end_inset + +Como +\begin_inset Formula $K:=\{\{z_{n}\}_{n}\cup\{a\}\}\times\Gamma^{*}$ +\end_inset + + es compacto por ser producto de compactos, +\begin_inset Formula $F$ +\end_inset + + es uniformemente continua en +\begin_inset Formula $K$ +\end_inset + +. + Dado +\begin_inset Formula $\varepsilon>0$ +\end_inset + +, existe +\begin_inset Formula $\delta>0$ +\end_inset + + tal que si +\begin_inset Formula $|z-z'|,|w-w'|<\delta$ +\end_inset + + entonces +\begin_inset Formula $|F(z,w)-F(z',w')|<\varepsilon$ +\end_inset + +. + Sea +\begin_inset Formula $n_{0}$ +\end_inset + + tal que, para +\begin_inset Formula $n\geq n_{0}$ +\end_inset + +, +\begin_inset Formula $|z_{n}-z_{0}|<\delta$ +\end_inset + +, entonces +\begin_inset Formula $|F(z_{n},w)-F(a,w)|<\varepsilon$ +\end_inset + +, luego +\begin_inset Formula $|h(z_{n})-h(a)|\leq\ell(\Gamma)\varepsilon$ +\end_inset + + para +\begin_inset Formula $n\geq n_{0}$ +\end_inset + +, con lo que +\begin_inset Formula $h(z_{n})\to h(a)$ +\end_inset + + y, como +\begin_inset Formula $a$ +\end_inset + + es arbitrario, +\begin_inset Formula $h$ +\end_inset + + es continua en +\begin_inset Formula $\Omega$ +\end_inset + +. + +\end_layout + +\begin_layout Standard +Si además, para +\begin_inset Formula $w\in\Gamma^{*}$ +\end_inset + +, +\begin_inset Formula $F_{w}:\Omega\to\mathbb{C}$ +\end_inset + + dada por +\begin_inset Formula $F_{w}(z):=F(z,w)$ +\end_inset + + es holomorfa en +\begin_inset Formula $\Omega$ +\end_inset + +, entonces +\begin_inset Formula $h\in{\cal H}(\Omega)$ +\end_inset + +. + Primero vemos que, dados +\begin_inset Formula $\gamma:[a,b]\to\mathbb{C}$ +\end_inset + + y +\begin_inset Formula $\sigma:[c,d]\to\mathbb{C}$ +\end_inset + +, +\begin_inset Formula +\begin{multline*} +\int_{\sigma}\int_{\gamma}F(z,w)dw\,dz=\int_{c}^{d}\int_{a}^{b}F(\sigma(s),\gamma(t))\gamma'(t)dt\,\sigma'(s)ds=\\ +=\int_{a}^{b}\int_{c}^{d}F(\sigma(s),\gamma(t))\sigma'(s)ds\,\gamma'(t)dt=\int_{\gamma}\int_{\sigma}F(z,w)dz\,dw, +\end{multline*} + +\end_inset + +y por linealidad esto también sirve cuando en vez de curvas tenemos cadenas. + Entonces, para +\begin_inset Formula $\Delta(a,b,c)\subseteq\Omega$ +\end_inset + +, +\begin_inset Formula +\[ +\int_{[a,b,c,a]}h=\int_{[a,b,c,a]}\int_{\Gamma}F(z,w)dw\,dz=\int_{\Gamma}\int_{[a,b,c,a]}F(z,w)dz\,dw=\int_{\Gamma}0\,dw=0, +\] + +\end_inset + +pues +\begin_inset Formula $F_{w}(z)=F(z,w)$ +\end_inset + + es holomorfa en +\begin_inset Formula $\Omega$ +\end_inset + +. + Como el triángulo era arbitrario, el teorema de Morera nos dice que +\begin_inset Formula $h\in{\cal H}(\Omega)$ +\end_inset + +. + +\end_layout + +\begin_layout Standard +Sea ahora +\begin_inset Formula +\[ +F(z,w):=\begin{cases} +\frac{f(w)-f(z)}{w-z} & \text{si }z\neq w,\\ +f'(z) & \text{si }z=w. +\end{cases} +\] + +\end_inset + + +\end_layout + +\begin_layout Standard +\begin_inset Formula $F$ +\end_inset + + es continua en +\begin_inset Formula $\{(z,w)\in\Omega\times\Omega:z\neq w\}$ +\end_inset + +. + Para ver que también lo es en los puntos de la forma +\begin_inset Formula $(a,a)$ +\end_inset + + con +\begin_inset Formula $a\in\Omega$ +\end_inset + +, dado +\begin_inset Formula $\varepsilon>0$ +\end_inset + +, existe +\begin_inset Formula $\delta>0$ +\end_inset + + con +\begin_inset Formula $D(a,\delta)\subseteq\Omega$ +\end_inset + + y +\begin_inset Formula $|f'(z)-f'(a)|<\varepsilon$ +\end_inset + + para +\begin_inset Formula $z\in D(a,\delta)$ +\end_inset + +, y queremos ver que, si +\begin_inset Formula $|z-a|,|w-a|<\delta$ +\end_inset + +, entonces +\begin_inset Formula $|F(z,w)-F(a,a)|=|F(z,w)-f'(a)|<\varepsilon$ +\end_inset + +. + Para +\begin_inset Formula $z=w$ +\end_inset + +, esto equivale a que +\begin_inset Formula $|f'(z)-f'(a)|<\varepsilon$ +\end_inset + +, que se cumple por hipótesis. + Para +\begin_inset Formula $z\neq w$ +\end_inset + +, +\begin_inset Formula +\[ +f(z)-f(w)=\int_{[w,z]}f'(u)du=\int_{0}^{1}f'((1-t)w+tz)(z-w)dt, +\] + +\end_inset + +luego +\begin_inset Formula +\[ +F(z,w)=\int_{0}^{1}f'((1-t)w+tz)dt. +\] + +\end_inset + +Entonces +\begin_inset Formula +\[ +|F(z,w)-f'(a)|=\left|\int_{0}^{1}(f'((1-t)w+tz)-f'(a))dt\right|\leq\int_{0}^{1}|f'((1-t)w+tz)-f'(a)|dt<\varepsilon, +\] + +\end_inset + +pues +\begin_inset Formula $(1-t)w+tz\in[w,z]^{*}\subseteq D(a,\delta)$ +\end_inset + + y podemos usar esta acotación. +\end_layout + +\begin_layout Standard +Ahora bien, fijado +\begin_inset Formula $w\in\Omega$ +\end_inset + +, sea +\begin_inset Formula $F_{w}(z):=F(w,z)$ +\end_inset + +, es claro que +\begin_inset Formula $F_{w}\in{\cal H}(\Omega\setminus\{w\})$ +\end_inset + +, y como +\begin_inset Formula $F_{w}\in{\cal C}(\Omega)$ +\end_inset + +, por el teorema de extensión de Riemann, +\begin_inset Formula $F_{w}\in{\cal H}(\Omega)$ +\end_inset + +, de donde +\begin_inset Formula $h\in{\cal H}(\Omega)$ +\end_inset + + por el resultado de antes. +\end_layout + +\begin_layout Standard +Sea +\begin_inset Formula $\Omega_{0}:=\{z\in\mathbb{C}\setminus\Gamma^{*}:\text{Ind}_{\Gamma}(z)=0\}$ +\end_inset + +, que es abierto por ser unión de componentes conexas de +\begin_inset Formula $\mathbb{C}\setminus\Gamma^{*}$ +\end_inset + + +\begin_inset Note Note +status open + +\begin_layout Plain Layout +¿por qué las componentes son abiertas? +\end_layout + +\end_inset + +. + Como +\begin_inset Formula $\Gamma$ +\end_inset + + es nulhomólogo respecto a +\begin_inset Formula $\Omega$ +\end_inset + +, +\begin_inset Formula $\mathbb{C}\setminus\Omega\subseteq\Omega_{0}$ +\end_inset + + y por tanto +\begin_inset Formula $\Omega\cup\Omega_{0}=\mathbb{C}$ +\end_inset + +. + Sea +\begin_inset Formula $F_{0}:\Omega_{0}\times\Gamma^{*}\to\mathbb{C}$ +\end_inset + + dada por +\begin_inset Formula $F_{0}(z,w):=\frac{f(w)}{w-z}$ +\end_inset + +. + Esta está bien definida por ser +\begin_inset Formula $\Omega_{0}$ +\end_inset + + y +\begin_inset Formula $\Gamma^{*}$ +\end_inset + + disjuntos y por tanto +\begin_inset Formula $z\neq w$ +\end_inset + +, y es continua. + Fijado +\begin_inset Formula $w\in\Omega^{*}$ +\end_inset + +, +\begin_inset Formula $F_{0w}\in{\cal H}(\Omega_{0})$ +\end_inset + + por ser una función racional, con lo que por el resultado del principio, +\begin_inset Formula +\[ +h_{0}(z):=\int_{\Gamma}F_{0}(z,w)dw=\int_{\Gamma}\frac{f(w)}{w-z}dw +\] + +\end_inset + +es holomorfa en +\begin_inset Formula $\Omega$ +\end_inset + +. + Sea ahora +\begin_inset Formula +\[ +\varphi(z):=\begin{cases} +h(z) & \text{si }z\in\Omega,\\ +h_{0}(z) & \text{si }z\in\Omega_{0}, +\end{cases} +\] + +\end_inset + +para ver que +\begin_inset Formula $\varphi$ +\end_inset + + está bien definida debemos ver que para +\begin_inset Formula $z\in\Omega\cap\Omega_{0}$ +\end_inset + +, +\begin_inset Formula $h(z)=h_{0}(z)$ +\end_inset + +, pero como +\begin_inset Formula $z\in\Omega_{0}$ +\end_inset + + y por tanto +\begin_inset Formula $z\notin\Gamma^{*}$ +\end_inset + +, +\begin_inset Formula +\begin{multline*} +h(z)=\int_{\Gamma}\frac{f(w)-f(z)}{w-z}dw=\int_{\Gamma}\frac{f(w)}{w-z}dw-f(z)\int_{\Gamma}\frac{1}{w-z}dw=\\ +=\int_{\Gamma}\frac{f(w)}{w-z}dw-f(z)\text{Ind}_{\Gamma}(z)2\pi i\overset{\text{Ind}_{\gamma}(z)=0}{=}h_{0}(z). +\end{multline*} + +\end_inset + +Como +\begin_inset Formula $\varphi$ +\end_inset + + es holomorfa en +\begin_inset Formula $\Omega$ +\end_inset + + y +\begin_inset Formula $\Omega_{0}$ +\end_inset + +, es entera. + Sea +\begin_inset Formula $R>0$ +\end_inset + + tal que +\begin_inset Formula $\Gamma^{*}\subseteq D(0,R)$ +\end_inset + + y +\begin_inset Formula $|z|>R$ +\end_inset + +, entonces +\begin_inset Formula $z$ +\end_inset + + está en la componente no acotada de +\begin_inset Formula $\mathbb{C}\setminus\Gamma^{*}$ +\end_inset + + y por tanto en +\begin_inset Formula $\Omega_{0}$ +\end_inset + +, luego +\begin_inset Formula $\varphi(z)=h_{0}(z)$ +\end_inset + +, y como +\begin_inset Formula $\forall w\in\Gamma^{*},|w-z|\geq|z|-R$ +\end_inset + +, +\begin_inset Formula +\[ +|\varphi(z)|=\left|\int_{\Gamma}\frac{f(w)}{w-z}dw\right|\leq\ell(\Gamma)\max_{w\in\Gamma^{*}}\left|\frac{f(w)}{w-z}\right|\leq\ell(\Gamma)\frac{\max_{w\in\Gamma^{*}}|f(w)|}{|z|-R}. +\] + +\end_inset + +Tomando límites cuando +\begin_inset Formula $z\to\infty$ +\end_inset + + queda +\begin_inset Formula $\lim_{z\to\infty}\varphi(z)=0$ +\end_inset + +, luego +\begin_inset Formula $\varphi$ +\end_inset + + está acotada y, por el teorema de Liouville, es constante, y como el límite + vale 0, es idénticamente nula. + Entonces, para +\begin_inset Formula $z\in\Omega\setminus\Gamma^{*}$ +\end_inset + +, +\begin_inset Formula +\begin{multline*} +0=\varphi(z)=h(z)=\int_{\Gamma}\frac{f(w)-f(z)}{w-z}dw=\int_{\Gamma}\frac{f(w)}{w-z}dw-f(z)\int_{\Gamma}\frac{1}{w-z}dw=\\ +=\int_{\Gamma}\frac{f(w)}{w-z}dw-f(z)\text{Ind}_{\Gamma}(z)2\pi i, +\end{multline*} + +\end_inset + +y despejando se obtiene la fórmula. +\end_layout + +\begin_layout Standard +En estas condiciones, la +\series bold +forma general del teorema de Cauchy +\series default + afirma que +\begin_inset Formula +\[ +\int_{\Gamma}f=0. +\] + +\end_inset + + En efecto, para +\begin_inset Formula $a\in\Omega\setminus\Gamma^{*}$ +\end_inset + +, aplicando la fórmula integral de Cauchy a +\begin_inset Formula $g(z):=(z-a)f(z)$ +\end_inset + +, como +\begin_inset Formula $g(a)=0$ +\end_inset + +, +\begin_inset Formula +\[ +0=g(a)\text{Ind}_{\Gamma}(a)=\frac{1}{2\pi i}\int_{\Gamma}\frac{(w-a)f(w)}{w-a}dw=\frac{1}{2\pi i}\int_{\Gamma}f. +\] + +\end_inset + + +\end_layout + +\begin_layout Standard +Dos ciclos +\begin_inset Formula $\Gamma$ +\end_inset + + y +\begin_inset Formula $\Sigma$ +\end_inset + + en un abierto +\begin_inset Formula $\Omega$ +\end_inset + + son +\series bold +homológicamente equivalentes +\series default + respecto de +\begin_inset Formula $\Omega$ +\end_inset + + si +\begin_inset Formula $\forall z\in\mathbb{C}\setminus\Omega,\text{Ind}_{\Gamma}(z)=\text{Ind}_{\Sigma}(z)$ +\end_inset + +. + +\begin_inset Formula $\Omega$ +\end_inset + + es +\series bold +homológicamente conexo +\series default + si todo ciclo en +\begin_inset Formula $\Omega$ +\end_inset + + es nulhomólogo respecto de +\begin_inset Formula $\Omega$ +\end_inset + +, si y sólo si es un abierto cuyo complemento no tiene componentes conexas + acotadas. +\end_layout + +\begin_layout Itemize +\begin_inset Argument item:1 +status open + +\begin_layout Plain Layout +\begin_inset Formula $\impliedby]$ +\end_inset + + +\end_layout + +\end_inset + +Sean +\begin_inset Formula $\Omega$ +\end_inset + + un abierto de este tipo, +\begin_inset Formula $\gamma$ +\end_inset + + un camino cerrado en +\begin_inset Formula $\Omega$ +\end_inset + +, +\begin_inset Formula $R>0$ +\end_inset + + con +\begin_inset Formula $\gamma^{*}\subseteq D(0,R)$ +\end_inset + +, +\begin_inset Formula $z\notin\Omega$ +\end_inset + +, +\begin_inset Formula $C$ +\end_inset + + la componente conexa de +\begin_inset Formula $\mathbb{C}\setminus\Omega$ +\end_inset + + que contiene a +\begin_inset Formula $z$ +\end_inset + + y +\begin_inset Formula $U$ +\end_inset + + la componente conexa no acotada de +\begin_inset Formula $\mathbb{C}\setminus\gamma^{*}$ +\end_inset + +. + Claramente +\begin_inset Formula $\mathbb{C}\setminus D(0,R)\subseteq U$ +\end_inset + +, y como por hipótesis, +\begin_inset Formula $C$ +\end_inset + + no está acotada, debe ser +\begin_inset Formula $C\cap U\neq\emptyset$ +\end_inset + +. + Como +\begin_inset Formula $C\subseteq\mathbb{C}\setminus\Omega\subseteq\mathbb{C}\setminus\gamma^{*}$ +\end_inset + +, debe ser +\begin_inset Formula $C\subseteq U$ +\end_inset + + y por tanto +\begin_inset Formula $z\in U$ +\end_inset + +, por lo que +\begin_inset Formula $\text{Ind}_{\gamma}(z)=0$ +\end_inset + +. +\end_layout + +\begin_layout Section +Singularidades aisladas +\end_layout + +\begin_layout Standard +Sean +\begin_inset Formula $\Omega$ +\end_inset + + un abierto, +\begin_inset Formula $a\in\Omega$ +\end_inset + + y +\begin_inset Formula $f\in{\cal H}(\Omega\setminus\{a\})$ +\end_inset + +, +\begin_inset Formula $f$ +\end_inset + + es +\series bold +regular +\series default + en +\begin_inset Formula $a$ +\end_inset + + o +\begin_inset Formula $a$ +\end_inset + + es un +\series bold +punto regular +\series default + de +\begin_inset Formula $f$ +\end_inset + + si podemos definir +\begin_inset Formula $f$ +\end_inset + + en +\begin_inset Formula $a$ +\end_inset + + de forma que sea derivable en +\begin_inset Formula $a$ +\end_inset + +, si y solo si +\begin_inset Formula $\lim_{z\to a}f(z)\in\mathbb{C}$ +\end_inset + + (suponiendo que dicho límite exista) por el teorema de extensión de Riemann, + y de lo contrario decimos que +\begin_inset Formula $a$ +\end_inset + + es un +\series bold +punto singular +\series default + de +\begin_inset Formula $f$ +\end_inset + + o +\begin_inset Formula $f$ +\end_inset + + tiene una +\series bold +singularidad aislada +\series default + en +\begin_inset Formula $a$ +\end_inset + +. +\end_layout + +\begin_layout Standard +Un punto singular +\begin_inset Formula $a$ +\end_inset + + de +\begin_inset Formula $f$ +\end_inset + + es un +\series bold +polo +\series default + de orden +\begin_inset Formula $k$ +\end_inset + + si +\begin_inset Formula $k$ +\end_inset + + es el mínimo natural tal que +\begin_inset Formula $z\mapsto(z-a)^{k}f(z)$ +\end_inset + + es regular, y si no existe tal +\begin_inset Formula $k$ +\end_inset + +, +\begin_inset Formula $a$ +\end_inset + + es una +\series bold +singularidad esencial +\series default +. + La función +\begin_inset Formula $f$ +\end_inset + + tiene un polo en +\begin_inset Formula $a$ +\end_inset + + de orden +\begin_inset Formula $k$ +\end_inset + + si y sólo si +\begin_inset Formula $\lim_{z\to a}(z-a)^{k}f(z)\in\mathbb{C}^{*}$ +\end_inset + + (suponiendo que el límite exista), si y sólo si +\begin_inset Formula $\exists\varphi\in{\cal H}(\Omega):(\varphi(a)\neq0\land\forall z\in\Omega\setminus\{a\},f(z)=\frac{\varphi(z)}{(z-a)^{k}})$ +\end_inset + +. +\end_layout + +\begin_layout Standard +Dados un abierto +\begin_inset Formula $\Omega$ +\end_inset + +, +\begin_inset Formula $a\in\Omega$ +\end_inset + + y +\begin_inset Formula $f\in{\cal H}(\Omega\setminus\{a\})$ +\end_inset + +, llamamos +\series bold +residuo +\series default + de +\begin_inset Formula $f$ +\end_inset + + en +\begin_inset Formula $a$ +\end_inset + + a +\begin_inset Formula +\[ +\text{Res}(f,a):=\frac{1}{2\pi i}\int_{C(a,\rho)}f, +\] + +\end_inset + +donde +\begin_inset Formula $\rho$ +\end_inset + + es cualquier radio tal que +\begin_inset Formula $D(a,\rho)\setminus\{a\}\subseteq\Omega$ +\end_inset + +. + El valor no depende del radio, pues +\begin_inset Formula +\begin{multline*} +\int_{C(a,R)}f-\int_{C(a,\rho)}f=\\ +=\int_{C(a,R)|_{[0,\pi]}\dot{+}[-R,-\rho]\dot{-}C(a,\rho)|_{[0,\pi]}\dot{+}[\rho,R]}f+\int_{C(a,R)|_{[-\pi,0]}\dot{+}[R,\rho]\dot{-}C(a,\rho)|_{[-\pi,0]}\dot{+}[-\rho,-R]}f=0+0=0, +\end{multline*} + +\end_inset + +incluyendo cada curva en un abierto nulhomólogo que contenga al semianillo. +\end_layout + +\begin_layout Itemize +Si +\begin_inset Formula $a$ +\end_inset + + es regular, +\begin_inset Formula $\text{Res}(f,a)=0$ +\end_inset + +. +\end_layout + +\begin_deeper +\begin_layout Standard +Basta extender +\begin_inset Formula $f$ +\end_inset + + a +\begin_inset Formula $a$ +\end_inset + + de forma holomorfa y aplicar el teorema de Cauchy. +\end_layout + +\end_deeper +\begin_layout Itemize +Si +\begin_inset Formula $a$ +\end_inset + + es un polo de orden +\begin_inset Formula $k$ +\end_inset + +, +\begin_inset Formula +\[ +\text{Res}(f,a)=\frac{1}{(k-1)!}\lim_{z\to a}\left((z-a)^{k}f(z)\right)^{(k-1)}. +\] + +\end_inset + +Existe +\begin_inset Formula $g\in{\cal H}(\Omega)$ +\end_inset + + con +\begin_inset Formula $g(z)=(z-a)^{k}f(z)$ +\end_inset + + para +\begin_inset Formula $z\in\Omega\setminus\{a\}$ +\end_inset + +. + Cerca de +\begin_inset Formula $a$ +\end_inset + +, tendrá una serie de Taylor +\begin_inset Formula $\sum_{n}c_{n}(z-a)^{n}$ +\end_inset + +, pero por el teorema de Taylor, +\begin_inset Formula +\[ +\frac{g^{(n)}(a)}{n!}=c_{n}=\frac{1}{2\pi i}\int_{C(a,\rho)}\frac{g(z)}{(z-a)^{n+1}}dz, +\] + +\end_inset + +y en particular +\begin_inset Formula +\[ +\text{Res}(f,a)=\frac{1}{2\pi i}\int_{C(a,\rho)}f=\frac{1}{2\pi i}\int_{C(a,\rho)}\frac{g(z)}{(z-a)^{k}}dz=c_{k-1}=\frac{g^{(k-1)}(a)}{(k-1)!}. +\] + +\end_inset + + +\end_layout + +\begin_layout Itemize +Si +\begin_inset Formula $f=\frac{g}{h}$ +\end_inset + + con +\begin_inset Formula $g,h\in{\cal H}(\Omega)$ +\end_inset + +, las únicas singularidades de +\begin_inset Formula $f$ +\end_inset + + son los ceros de +\begin_inset Formula $h$ +\end_inset + +, y si +\begin_inset Formula $h$ +\end_inset + + tiene un cero de orden +\begin_inset Formula $k$ +\end_inset + + en +\begin_inset Formula $a$ +\end_inset + + y +\begin_inset Formula $g(a)\neq0$ +\end_inset + +, entonces +\begin_inset Formula $f$ +\end_inset + + tiene un polo de orden +\begin_inset Formula $k$ +\end_inset + + en +\begin_inset Formula $a$ +\end_inset + +. + Si el polo es simple, +\begin_inset Formula +\[ +\text{Res}(f,a)=\frac{g(a)}{h'(a)}. +\] + +\end_inset + + +\begin_inset Formula $\text{Res}(f,a)=\lim_{z\to a}(z-a)f(z)=\lim_{z\to a}(z-a)\frac{g(z)}{h(z)}=g(a)\lim_{z\to a}\frac{z-a}{h(z)}=\frac{g(a)}{h'(a)}$ +\end_inset + +. +\end_layout + +\begin_layout Section +Teorema de los residuos +\end_layout + +\begin_layout Standard +Sean +\begin_inset Formula $\Omega\subseteq\mathbb{C}$ +\end_inset + + abierto, +\begin_inset Formula $S\subseteq\Omega$ +\end_inset + + con +\begin_inset Formula $S'\cap\Omega=\emptyset$ +\end_inset + +, +\begin_inset Formula $f\in{\cal H}(\Omega\setminus S)$ +\end_inset + + y +\begin_inset Formula $\Gamma$ +\end_inset + + un ciclo en +\begin_inset Formula $\Omega\setminus S$ +\end_inset + + nulhomólogo respecto de +\begin_inset Formula $\Omega$ +\end_inset + +, entonces +\begin_inset Formula $\{a\in S:\text{Ind}_{\Gamma}(a)\neq0\}$ +\end_inset + + es finito y +\begin_inset Formula +\[ +\int_{\Gamma}f=2\pi i\sum_{a\in S}\text{Res}(f,a)\text{Ind}_{\Gamma}(a). +\] + +\end_inset + + +\end_layout + +\begin_layout Standard + +\series bold +Demostración: +\series default + Sea +\begin_inset Formula $\Omega_{0}=\{z\in\mathbb{C}\setminus\Gamma^{*}:\text{Ind}_{\Gamma}(z)=0\}$ +\end_inset + +, que es abierto por ser unión de componentes conexas de +\begin_inset Formula $\mathbb{C}\setminus\Gamma^{*}$ +\end_inset + + +\begin_inset Note Note +status open + +\begin_layout Plain Layout +¿por qué? +\end_layout + +\end_inset + +. + Como +\begin_inset Formula $\Gamma$ +\end_inset + + es nulhomólogo respecto de +\begin_inset Formula $\Omega$ +\end_inset + +, +\begin_inset Formula $\mathbb{C}\setminus\Omega\subseteq\Omega_{0}$ +\end_inset + +. + Sea +\begin_inset Formula $K:=\mathbb{C}\setminus\Omega_{0}=\Gamma^{*}\cup\{z\in\mathbb{C}\setminus\Gamma^{*}:\text{Ind}_{\Gamma}(z)\neq0\}$ +\end_inset + +, que es cerrado por ser complementario de un abierto y acotado porque no + corta a la componente no acotada de +\begin_inset Formula $\mathbb{C}\setminus\Gamma^{*}$ +\end_inset + +, luego es compacto. + Si +\begin_inset Formula $S\cap K=\{a\in S:\text{Ind}_{\Gamma}(z)\neq0\}$ +\end_inset + + no fuera finito, tendría un punto de acumulación que, por compacidad, debería + quedarse en +\begin_inset Formula $K\subseteq\Omega$ +\end_inset + +, luego no sería +\begin_inset Formula $S'\cap\Omega=\emptyset\#$ +\end_inset + +. + Así, la suma en el enunciado del teorema es finita. +\end_layout + +\begin_layout Standard +Sean +\begin_inset Formula $S\cap K=:\{a_{1},\dots,a_{q}\}$ +\end_inset + +, +\begin_inset Formula $\rho>0$ +\end_inset + + tal que para cada +\begin_inset Formula $k$ +\end_inset + +, +\begin_inset Formula $\overline{D}(a_{k},\rho)\subseteq\Omega$ +\end_inset + + y +\begin_inset Formula $\overline{D}(a_{k},\rho)\cap S=\{a_{k}\}$ +\end_inset + +, +\begin_inset Formula $m_{k}:=\text{Ind}_{\Gamma}(a_{k})$ +\end_inset + +, +\begin_inset Formula $\gamma_{k}:=C(a_{k},\rho)$ +\end_inset + + y +\begin_inset Formula $\Sigma:=\sum_{k=1}^{q}m_{k}\gamma_{k}$ +\end_inset + +. + Veamos que +\begin_inset Formula $\Gamma-\Sigma$ +\end_inset + + es nulhomólogo respecto de +\begin_inset Formula $\Omega\setminus S$ +\end_inset + +. + Para +\begin_inset Formula $z\notin\Omega\setminus S$ +\end_inset + +: +\end_layout + +\begin_layout Itemize +Si +\begin_inset Formula $z\notin\Omega$ +\end_inset + +, +\begin_inset Formula $\text{Ind}_{\Gamma}(z)=0$ +\end_inset + +, y como +\begin_inset Formula $z\notin\overline{D}(a_{k},\rho)$ +\end_inset + + para ningún +\begin_inset Formula $k$ +\end_inset + +, +\begin_inset Formula $\text{Ind}_{\Sigma}(z)=0$ +\end_inset + +. +\end_layout + +\begin_layout Itemize +Si +\begin_inset Formula $z\in S$ +\end_inset + +, +\begin_inset Formula $z\neq a_{1},\dots,a_{q}$ +\end_inset + +, +\begin_inset Formula $\text{Ind}_{\Gamma}(z)=0$ +\end_inset + + y como, por definición, +\begin_inset Formula $z\notin\overline{D}(a_{k},\rho)$ +\end_inset + + para ningún +\begin_inset Formula $k$ +\end_inset + +, +\begin_inset Formula $\text{Ind}_{\Sigma}(z)=0$ +\end_inset + +. + +\end_layout + +\begin_layout Itemize +Si +\begin_inset Formula $z=a_{j}$ +\end_inset + + para algún +\begin_inset Formula $j$ +\end_inset + +, +\begin_inset Formula $\text{Ind}_{\Gamma}(a_{j})=m_{j}$ +\end_inset + +. + +\begin_inset Formula $\text{Ind}_{\gamma_{j}}(a_{j})=1$ +\end_inset + +, y para +\begin_inset Formula $k\neq j$ +\end_inset + +, +\begin_inset Formula $a_{j}\notin\overline{D}(a_{k},\rho)$ +\end_inset + + y por tanto +\begin_inset Formula $\text{Ind}_{\gamma_{k}}(a_{j})=0$ +\end_inset + +, luego +\begin_inset Formula $\text{Ind}_{\Sigma}(a_{j})=m_{j}$ +\end_inset + +. +\end_layout + +\begin_layout Standard +Aplicando ahora el teorema de Cauchy, +\begin_inset Formula +\[ +\int_{\Gamma-\Sigma}f=0, +\] + +\end_inset + +luego +\begin_inset Formula +\[ +\int_{\Gamma}f=\int_{\Sigma}f=\sum_{k=1}^{q}m_{k}\int_{\gamma_{k}}f=\sum_{k=1}^{q}\text{Ind}_{\Gamma}(a_{j})\int_{C(a_{j},\rho)}f=2\pi i\sum_{k=1}^{q}\text{Ind}_{\Gamma}(a_{j})\text{Res}(f,a_{j}). +\] + +\end_inset + + +\end_layout + +\end_body +\end_document |
