diff options
Diffstat (limited to 'fvv1/n4.lyx')
| -rw-r--r-- | fvv1/n4.lyx | 592 |
1 files changed, 592 insertions, 0 deletions
diff --git a/fvv1/n4.lyx b/fvv1/n4.lyx new file mode 100644 index 0000000..07fa28a --- /dev/null +++ b/fvv1/n4.lyx @@ -0,0 +1,592 @@ +#LyX 2.3 created this file. For more info see http://www.lyx.org/ +\lyxformat 544 +\begin_document +\begin_header +\save_transient_properties true +\origin unavailable +\textclass book +\use_default_options true +\maintain_unincluded_children false +\language spanish +\language_package default +\inputencoding auto +\fontencoding global +\font_roman "default" "default" +\font_sans "default" "default" +\font_typewriter "default" "default" +\font_math "auto" "auto" +\font_default_family default +\use_non_tex_fonts false +\font_sc false +\font_osf false +\font_sf_scale 100 100 +\font_tt_scale 100 100 +\use_microtype false +\use_dash_ligatures true +\graphics default +\default_output_format default +\output_sync 0 +\bibtex_command default +\index_command default +\paperfontsize default +\spacing single +\use_hyperref false +\papersize default +\use_geometry false +\use_package amsmath 1 +\use_package amssymb 1 +\use_package cancel 1 +\use_package esint 1 +\use_package mathdots 1 +\use_package mathtools 1 +\use_package mhchem 1 +\use_package stackrel 1 +\use_package stmaryrd 1 +\use_package undertilde 1 +\cite_engine basic +\cite_engine_type default +\biblio_style plain +\use_bibtopic false +\use_indices false +\paperorientation portrait +\suppress_date false +\justification true +\use_refstyle 1 +\use_minted 0 +\index Index +\shortcut idx +\color #008000 +\end_index +\secnumdepth 3 +\tocdepth 3 +\paragraph_separation indent +\paragraph_indentation default +\is_math_indent 0 +\math_numbering_side default +\quotes_style french +\dynamic_quotes 0 +\papercolumns 1 +\papersides 1 +\paperpagestyle default +\tracking_changes false +\output_changes false +\html_math_output 0 +\html_css_as_file 0 +\html_be_strict false +\end_header + +\begin_body + +\begin_layout Standard +Podemos describir una región de +\begin_inset Formula $\mathbb{R}^{n}$ +\end_inset + +: +\end_layout + +\begin_layout Enumerate +De forma +\series bold +implícita +\series default +, como el conjunto de puntos que cumplen +\begin_inset Formula $f(x)=0$ +\end_inset + + para cierta función +\begin_inset Formula $f:{\cal U}\rightarrow\mathbb{R}^{k}$ +\end_inset + +, siendo +\begin_inset Formula ${\cal U}\subseteq\mathbb{R}^{n}$ +\end_inset + + un abierto. + La región +\begin_inset Formula $A=\{(x_{1},\dots,x_{n})\in{\cal U}:f(x_{1},\dots,x_{n})=0\}$ +\end_inset + + está +\series bold +descrita implícitamente de forma +\begin_inset Formula ${\cal C}^{1}$ +\end_inset + +-regular +\series default + si +\begin_inset Formula $f$ +\end_inset + + es de clase +\begin_inset Formula ${\cal C}^{1}$ +\end_inset + + y +\begin_inset Formula $\forall p\in A,\text{rg}(df(p))=k$ +\end_inset + + (el rango de la diferencial es +\begin_inset Formula $k$ +\end_inset + +). +\end_layout + +\begin_layout Enumerate +De forma +\series bold +paramétrica +\series default +, como la imagen de una función +\begin_inset Formula $\varphi:{\cal U}\rightarrow\mathbb{R}^{n}$ +\end_inset + +, siendo +\begin_inset Formula ${\cal U}\subseteq\mathbb{R}^{m}$ +\end_inset + + un abierto. + La +\series bold +parametrización +\series default + es +\series bold + +\begin_inset Formula ${\cal C}^{1}$ +\end_inset + +-regular +\series default + si +\begin_inset Formula $\varphi$ +\end_inset + + es de clase +\begin_inset Formula ${\cal C}^{1}$ +\end_inset + + y +\begin_inset Formula $\forall p\in{\cal U},\text{rg}(d\varphi(p))=m$ +\end_inset + +. +\end_layout + +\begin_layout Standard +El +\series bold +teorema de la función implícita +\series default + +\begin_inset Foot +status open + +\begin_layout Plain Layout +Esto corresponde a FVV3, pero lo estudiamos por su utilidad práctica. +\end_layout + +\end_inset + + afirma que, para +\begin_inset Formula $A\subseteq\mathbb{R}^{n}$ +\end_inset + + y +\begin_inset Formula $p\in A$ +\end_inset + +, existe un +\begin_inset Formula ${\cal U}\in{\cal E}(p)$ +\end_inset + + tal que +\begin_inset Formula ${\cal U}\cap A$ +\end_inset + + admite una presentación implícita +\begin_inset Formula ${\cal C}^{1}$ +\end_inset + +-regular si y sólo si existe +\begin_inset Formula ${\cal U}'\in{\cal E}(p)$ +\end_inset + + tal que +\begin_inset Formula ${\cal U}\cap A$ +\end_inset + + admite una parametrización +\begin_inset Formula ${\cal C}^{1}$ +\end_inset + +-regular. +\end_layout + +\begin_layout Standard +Sean pues +\begin_inset Formula ${\cal U}\subseteq\mathbb{R}^{m}\overset{\varphi}{\longrightarrow}{\cal V}\subseteq\mathbb{R}^{n}\overset{f}{\longrightarrow}{\cal W}\subseteq\mathbb{R}^{k}$ +\end_inset + + la parametrización y la forma implícita de +\begin_inset Formula $A$ +\end_inset + + y +\begin_inset Formula $q\in{\cal U}$ +\end_inset + + tal que +\begin_inset Formula $\varphi(q)=p\in{\cal V}$ +\end_inset + +, se tiene que +\begin_inset Formula $\text{Im}(d\varphi(q))=\ker(df(p))$ +\end_inset + +. + En efecto, como +\begin_inset Formula $f$ +\end_inset + + es constante en +\begin_inset Formula $A$ +\end_inset + + por ser +\begin_inset Formula $f(A)=\{0\}$ +\end_inset + +, +\begin_inset Formula $f\circ\varphi$ +\end_inset + + también lo es, luego +\begin_inset Formula $0=d(f\circ\varphi)(q)=df(p)\circ d\varphi(q)$ +\end_inset + + y entonces +\begin_inset Formula $\text{Im}(d\varphi(q))\subseteq\ker(df(p))$ +\end_inset + +, pero como ambos subespacios tienen la misma dirección +\begin_inset Note Note +status open + +\begin_layout Plain Layout +(¿por qué?) +\end_layout + +\end_inset + +, se tiene la igualdad. + Esto significa además que este espacio no depende de +\begin_inset Formula $\varphi$ +\end_inset + + o +\begin_inset Formula $f$ +\end_inset + +, y en esta situación llamamos +\series bold +espacio tangente +\series default + al compacto +\begin_inset Note Note +status open + +\begin_layout Plain Layout +¿por qué compacto? +\end_layout + +\end_inset + + +\begin_inset Formula $A$ +\end_inset + + en el punto +\begin_inset Formula $p$ +\end_inset + + al espacio afín que pasa por +\begin_inset Formula $p$ +\end_inset + + y tiene por dirección +\begin_inset Formula $\text{Im}(d\varphi(q))=\ker(df(p))$ +\end_inset + +. +\end_layout + +\begin_layout Standard +Llamamos +\series bold +gradiente +\series default + en +\begin_inset Formula $a\in{\cal U}$ +\end_inset + + de una función +\begin_inset Formula $f:D\subseteq\mathbb{R}^{n}\rightarrow\mathbb{R}$ +\end_inset + + diferenciable en +\begin_inset Formula $a$ +\end_inset + + al vector +\begin_inset Formula $\nabla f(a):=\left(\frac{\partial f}{\partial x_{1}},\dots,\frac{\partial f}{\partial x_{n}}\right)\in\mathbb{R}^{n}$ +\end_inset + +, la matriz de la diferencial de +\begin_inset Formula $f$ +\end_inset + + en +\begin_inset Formula $a$ +\end_inset + + expresada como vector. + Para encontrar los extremos relativos de una función +\begin_inset Formula $f:D\rightarrow\mathbb{R}^{n}$ +\end_inset + + sobre un subconjunto +\begin_inset Formula $D\subseteq\mathbb{R}^{n}$ +\end_inset + + no abierto: +\end_layout + +\begin_layout Itemize +Si +\begin_inset Formula $D$ +\end_inset + + está dado en forma paramétrica como +\begin_inset Formula $\varphi({\cal U})$ +\end_inset + +, donde +\begin_inset Formula ${\cal U}$ +\end_inset + + es un abierto de +\begin_inset Formula $\mathbb{R}^{m}$ +\end_inset + + y +\begin_inset Formula $\varphi:{\cal {\cal U}}\rightarrow\mathbb{R}^{n}$ +\end_inset + + es diferenciable, buscamos los extremos relativos de +\begin_inset Formula $f\circ\varphi$ +\end_inset + + en +\begin_inset Formula ${\cal U}$ +\end_inset + +, teniendo en cuenta que +\begin_inset Formula $f\circ\varphi$ +\end_inset + + tiene máximo absoluto en +\begin_inset Formula $a$ +\end_inset + + si y sólo si +\begin_inset Formula $f$ +\end_inset + + tiene un máximo absoluto en +\begin_inset Formula $\varphi(a)$ +\end_inset + +. + Si además +\begin_inset Formula $\varphi$ +\end_inset + + es continua, un máximo relativo de +\begin_inset Formula $f$ +\end_inset + + en +\begin_inset Formula $\varphi(a)$ +\end_inset + + implica uno de +\begin_inset Formula $f\circ\varphi$ +\end_inset + + en +\begin_inset Formula $a$ +\end_inset + +, y si +\begin_inset Formula $\varphi:({\cal U},{\cal T}_{u}|_{{\cal U}})\rightarrow(\varphi({\cal U}),{\cal T}_{u}|_{\varphi({\cal U})})$ +\end_inset + + es abierta, un máximo relativo de +\begin_inset Formula $f\circ\varphi$ +\end_inset + + en +\begin_inset Formula $a$ +\end_inset + + es uno de +\begin_inset Formula $f$ +\end_inset + + en +\begin_inset Formula $\varphi(a)$ +\end_inset + +. +\end_layout + +\begin_layout Itemize +Si +\begin_inset Formula $D$ +\end_inset + + está dado en forma implícita como +\begin_inset Formula $\{x\in{\cal U}:g(x)=0\}$ +\end_inset + +, donde +\begin_inset Formula ${\cal U}$ +\end_inset + + es un abierto de +\begin_inset Formula $\mathbb{R}^{n}$ +\end_inset + + y +\begin_inset Formula $g:{\cal U}\rightarrow\mathbb{R}^{k}$ +\end_inset + + es de clase +\begin_inset Formula ${\cal C}^{1}$ +\end_inset + +, aplicamos el +\series bold +teorema de los multiplicadores de Lagrange +\series default +, que afirma que si +\begin_inset Formula $f:{\cal U}\rightarrow\mathbb{R}$ +\end_inset + + es diferenciable, alcanza en un punto +\begin_inset Formula $a\in{\cal U}$ +\end_inset + + un extremo relativo y +\begin_inset Formula $\text{rg}(dg(a))=k$ +\end_inset + +, entonces +\begin_inset Formula $\nabla f(a)\in\text{span}(\nabla g_{1}(a),\dots,\nabla g_{k}(a)):=<\nabla g_{1}(a),\dots,\nabla g_{k}(a)>$ +\end_inset + + (el espacio generado por los vectores). + +\series bold +Demostración: +\series default + Por el teorema de la función implícita, existen +\begin_inset Formula ${\cal V}\subseteq\mathbb{R}^{n-k}$ +\end_inset + + abierto, +\begin_inset Formula ${\cal W}\in{\cal E}(a)$ +\end_inset + + y +\begin_inset Formula $\varphi:{\cal V}\rightarrow{\cal W}$ +\end_inset + + de clase +\begin_inset Formula ${\cal C}^{1}$ +\end_inset + + con +\begin_inset Formula $\text{rg}(d\varphi(a))=n-k$ +\end_inset + + tales que +\begin_inset Formula $D\cap{\cal W}=\varphi({\cal V})$ +\end_inset + +, y si +\begin_inset Formula $a$ +\end_inset + + es extremo relativo de +\begin_inset Formula $f$ +\end_inset + + en +\begin_inset Formula $D$ +\end_inset + +, por la continuidad de +\begin_inset Formula $\varphi$ +\end_inset + +, el punto +\begin_inset Formula $b\in{\cal V}$ +\end_inset + + con +\begin_inset Formula $\varphi(b)=a$ +\end_inset + + es extremo relativo de +\begin_inset Formula $f\circ\varphi$ +\end_inset + + en +\begin_inset Formula ${\cal V}$ +\end_inset + +, luego +\begin_inset Formula $d(f\circ\varphi)(b)=0=df(a)\circ\varphi(b)$ +\end_inset + + y entonces +\begin_inset Formula $\text{Im}(d\varphi(b))=\ker(dg(a))=\ker(dg_{1}(a),\dots,dg_{k}(a))\subseteq\ker(df(a))$ +\end_inset + + y por tanto +\begin_inset Formula $\bigcap_{i=1}^{k}\ker(dg_{i}(a))\subseteq\ker(df(a))$ +\end_inset + +, que por un misterioso lema de álgebra equivale a que +\begin_inset Formula $df(a)\in\text{span}(dg_{1}(a),\dots,dg_{k}(a))$ +\end_inset + +. +\begin_inset Note Note +status open + +\begin_layout Plain Layout +¿Ñandé? +\end_layout + +\end_inset + + +\end_layout + +\end_body +\end_document |
