aboutsummaryrefslogtreecommitdiff
path: root/fvv1/n4.lyx
diff options
context:
space:
mode:
Diffstat (limited to 'fvv1/n4.lyx')
-rw-r--r--fvv1/n4.lyx592
1 files changed, 592 insertions, 0 deletions
diff --git a/fvv1/n4.lyx b/fvv1/n4.lyx
new file mode 100644
index 0000000..07fa28a
--- /dev/null
+++ b/fvv1/n4.lyx
@@ -0,0 +1,592 @@
+#LyX 2.3 created this file. For more info see http://www.lyx.org/
+\lyxformat 544
+\begin_document
+\begin_header
+\save_transient_properties true
+\origin unavailable
+\textclass book
+\use_default_options true
+\maintain_unincluded_children false
+\language spanish
+\language_package default
+\inputencoding auto
+\fontencoding global
+\font_roman "default" "default"
+\font_sans "default" "default"
+\font_typewriter "default" "default"
+\font_math "auto" "auto"
+\font_default_family default
+\use_non_tex_fonts false
+\font_sc false
+\font_osf false
+\font_sf_scale 100 100
+\font_tt_scale 100 100
+\use_microtype false
+\use_dash_ligatures true
+\graphics default
+\default_output_format default
+\output_sync 0
+\bibtex_command default
+\index_command default
+\paperfontsize default
+\spacing single
+\use_hyperref false
+\papersize default
+\use_geometry false
+\use_package amsmath 1
+\use_package amssymb 1
+\use_package cancel 1
+\use_package esint 1
+\use_package mathdots 1
+\use_package mathtools 1
+\use_package mhchem 1
+\use_package stackrel 1
+\use_package stmaryrd 1
+\use_package undertilde 1
+\cite_engine basic
+\cite_engine_type default
+\biblio_style plain
+\use_bibtopic false
+\use_indices false
+\paperorientation portrait
+\suppress_date false
+\justification true
+\use_refstyle 1
+\use_minted 0
+\index Index
+\shortcut idx
+\color #008000
+\end_index
+\secnumdepth 3
+\tocdepth 3
+\paragraph_separation indent
+\paragraph_indentation default
+\is_math_indent 0
+\math_numbering_side default
+\quotes_style french
+\dynamic_quotes 0
+\papercolumns 1
+\papersides 1
+\paperpagestyle default
+\tracking_changes false
+\output_changes false
+\html_math_output 0
+\html_css_as_file 0
+\html_be_strict false
+\end_header
+
+\begin_body
+
+\begin_layout Standard
+Podemos describir una región de
+\begin_inset Formula $\mathbb{R}^{n}$
+\end_inset
+
+:
+\end_layout
+
+\begin_layout Enumerate
+De forma
+\series bold
+implícita
+\series default
+, como el conjunto de puntos que cumplen
+\begin_inset Formula $f(x)=0$
+\end_inset
+
+ para cierta función
+\begin_inset Formula $f:{\cal U}\rightarrow\mathbb{R}^{k}$
+\end_inset
+
+, siendo
+\begin_inset Formula ${\cal U}\subseteq\mathbb{R}^{n}$
+\end_inset
+
+ un abierto.
+ La región
+\begin_inset Formula $A=\{(x_{1},\dots,x_{n})\in{\cal U}:f(x_{1},\dots,x_{n})=0\}$
+\end_inset
+
+ está
+\series bold
+descrita implícitamente de forma
+\begin_inset Formula ${\cal C}^{1}$
+\end_inset
+
+-regular
+\series default
+ si
+\begin_inset Formula $f$
+\end_inset
+
+ es de clase
+\begin_inset Formula ${\cal C}^{1}$
+\end_inset
+
+ y
+\begin_inset Formula $\forall p\in A,\text{rg}(df(p))=k$
+\end_inset
+
+ (el rango de la diferencial es
+\begin_inset Formula $k$
+\end_inset
+
+).
+\end_layout
+
+\begin_layout Enumerate
+De forma
+\series bold
+paramétrica
+\series default
+, como la imagen de una función
+\begin_inset Formula $\varphi:{\cal U}\rightarrow\mathbb{R}^{n}$
+\end_inset
+
+, siendo
+\begin_inset Formula ${\cal U}\subseteq\mathbb{R}^{m}$
+\end_inset
+
+ un abierto.
+ La
+\series bold
+parametrización
+\series default
+ es
+\series bold
+
+\begin_inset Formula ${\cal C}^{1}$
+\end_inset
+
+-regular
+\series default
+ si
+\begin_inset Formula $\varphi$
+\end_inset
+
+ es de clase
+\begin_inset Formula ${\cal C}^{1}$
+\end_inset
+
+ y
+\begin_inset Formula $\forall p\in{\cal U},\text{rg}(d\varphi(p))=m$
+\end_inset
+
+.
+\end_layout
+
+\begin_layout Standard
+El
+\series bold
+teorema de la función implícita
+\series default
+
+\begin_inset Foot
+status open
+
+\begin_layout Plain Layout
+Esto corresponde a FVV3, pero lo estudiamos por su utilidad práctica.
+\end_layout
+
+\end_inset
+
+ afirma que, para
+\begin_inset Formula $A\subseteq\mathbb{R}^{n}$
+\end_inset
+
+ y
+\begin_inset Formula $p\in A$
+\end_inset
+
+, existe un
+\begin_inset Formula ${\cal U}\in{\cal E}(p)$
+\end_inset
+
+ tal que
+\begin_inset Formula ${\cal U}\cap A$
+\end_inset
+
+ admite una presentación implícita
+\begin_inset Formula ${\cal C}^{1}$
+\end_inset
+
+-regular si y sólo si existe
+\begin_inset Formula ${\cal U}'\in{\cal E}(p)$
+\end_inset
+
+ tal que
+\begin_inset Formula ${\cal U}\cap A$
+\end_inset
+
+ admite una parametrización
+\begin_inset Formula ${\cal C}^{1}$
+\end_inset
+
+-regular.
+\end_layout
+
+\begin_layout Standard
+Sean pues
+\begin_inset Formula ${\cal U}\subseteq\mathbb{R}^{m}\overset{\varphi}{\longrightarrow}{\cal V}\subseteq\mathbb{R}^{n}\overset{f}{\longrightarrow}{\cal W}\subseteq\mathbb{R}^{k}$
+\end_inset
+
+ la parametrización y la forma implícita de
+\begin_inset Formula $A$
+\end_inset
+
+ y
+\begin_inset Formula $q\in{\cal U}$
+\end_inset
+
+ tal que
+\begin_inset Formula $\varphi(q)=p\in{\cal V}$
+\end_inset
+
+, se tiene que
+\begin_inset Formula $\text{Im}(d\varphi(q))=\ker(df(p))$
+\end_inset
+
+.
+ En efecto, como
+\begin_inset Formula $f$
+\end_inset
+
+ es constante en
+\begin_inset Formula $A$
+\end_inset
+
+ por ser
+\begin_inset Formula $f(A)=\{0\}$
+\end_inset
+
+,
+\begin_inset Formula $f\circ\varphi$
+\end_inset
+
+ también lo es, luego
+\begin_inset Formula $0=d(f\circ\varphi)(q)=df(p)\circ d\varphi(q)$
+\end_inset
+
+ y entonces
+\begin_inset Formula $\text{Im}(d\varphi(q))\subseteq\ker(df(p))$
+\end_inset
+
+, pero como ambos subespacios tienen la misma dirección
+\begin_inset Note Note
+status open
+
+\begin_layout Plain Layout
+(¿por qué?)
+\end_layout
+
+\end_inset
+
+, se tiene la igualdad.
+ Esto significa además que este espacio no depende de
+\begin_inset Formula $\varphi$
+\end_inset
+
+ o
+\begin_inset Formula $f$
+\end_inset
+
+, y en esta situación llamamos
+\series bold
+espacio tangente
+\series default
+ al compacto
+\begin_inset Note Note
+status open
+
+\begin_layout Plain Layout
+¿por qué compacto?
+\end_layout
+
+\end_inset
+
+
+\begin_inset Formula $A$
+\end_inset
+
+ en el punto
+\begin_inset Formula $p$
+\end_inset
+
+ al espacio afín que pasa por
+\begin_inset Formula $p$
+\end_inset
+
+ y tiene por dirección
+\begin_inset Formula $\text{Im}(d\varphi(q))=\ker(df(p))$
+\end_inset
+
+.
+\end_layout
+
+\begin_layout Standard
+Llamamos
+\series bold
+gradiente
+\series default
+ en
+\begin_inset Formula $a\in{\cal U}$
+\end_inset
+
+ de una función
+\begin_inset Formula $f:D\subseteq\mathbb{R}^{n}\rightarrow\mathbb{R}$
+\end_inset
+
+ diferenciable en
+\begin_inset Formula $a$
+\end_inset
+
+ al vector
+\begin_inset Formula $\nabla f(a):=\left(\frac{\partial f}{\partial x_{1}},\dots,\frac{\partial f}{\partial x_{n}}\right)\in\mathbb{R}^{n}$
+\end_inset
+
+, la matriz de la diferencial de
+\begin_inset Formula $f$
+\end_inset
+
+ en
+\begin_inset Formula $a$
+\end_inset
+
+ expresada como vector.
+ Para encontrar los extremos relativos de una función
+\begin_inset Formula $f:D\rightarrow\mathbb{R}^{n}$
+\end_inset
+
+ sobre un subconjunto
+\begin_inset Formula $D\subseteq\mathbb{R}^{n}$
+\end_inset
+
+ no abierto:
+\end_layout
+
+\begin_layout Itemize
+Si
+\begin_inset Formula $D$
+\end_inset
+
+ está dado en forma paramétrica como
+\begin_inset Formula $\varphi({\cal U})$
+\end_inset
+
+, donde
+\begin_inset Formula ${\cal U}$
+\end_inset
+
+ es un abierto de
+\begin_inset Formula $\mathbb{R}^{m}$
+\end_inset
+
+ y
+\begin_inset Formula $\varphi:{\cal {\cal U}}\rightarrow\mathbb{R}^{n}$
+\end_inset
+
+ es diferenciable, buscamos los extremos relativos de
+\begin_inset Formula $f\circ\varphi$
+\end_inset
+
+ en
+\begin_inset Formula ${\cal U}$
+\end_inset
+
+, teniendo en cuenta que
+\begin_inset Formula $f\circ\varphi$
+\end_inset
+
+ tiene máximo absoluto en
+\begin_inset Formula $a$
+\end_inset
+
+ si y sólo si
+\begin_inset Formula $f$
+\end_inset
+
+ tiene un máximo absoluto en
+\begin_inset Formula $\varphi(a)$
+\end_inset
+
+.
+ Si además
+\begin_inset Formula $\varphi$
+\end_inset
+
+ es continua, un máximo relativo de
+\begin_inset Formula $f$
+\end_inset
+
+ en
+\begin_inset Formula $\varphi(a)$
+\end_inset
+
+ implica uno de
+\begin_inset Formula $f\circ\varphi$
+\end_inset
+
+ en
+\begin_inset Formula $a$
+\end_inset
+
+, y si
+\begin_inset Formula $\varphi:({\cal U},{\cal T}_{u}|_{{\cal U}})\rightarrow(\varphi({\cal U}),{\cal T}_{u}|_{\varphi({\cal U})})$
+\end_inset
+
+ es abierta, un máximo relativo de
+\begin_inset Formula $f\circ\varphi$
+\end_inset
+
+ en
+\begin_inset Formula $a$
+\end_inset
+
+ es uno de
+\begin_inset Formula $f$
+\end_inset
+
+ en
+\begin_inset Formula $\varphi(a)$
+\end_inset
+
+.
+\end_layout
+
+\begin_layout Itemize
+Si
+\begin_inset Formula $D$
+\end_inset
+
+ está dado en forma implícita como
+\begin_inset Formula $\{x\in{\cal U}:g(x)=0\}$
+\end_inset
+
+, donde
+\begin_inset Formula ${\cal U}$
+\end_inset
+
+ es un abierto de
+\begin_inset Formula $\mathbb{R}^{n}$
+\end_inset
+
+ y
+\begin_inset Formula $g:{\cal U}\rightarrow\mathbb{R}^{k}$
+\end_inset
+
+ es de clase
+\begin_inset Formula ${\cal C}^{1}$
+\end_inset
+
+, aplicamos el
+\series bold
+teorema de los multiplicadores de Lagrange
+\series default
+, que afirma que si
+\begin_inset Formula $f:{\cal U}\rightarrow\mathbb{R}$
+\end_inset
+
+ es diferenciable, alcanza en un punto
+\begin_inset Formula $a\in{\cal U}$
+\end_inset
+
+ un extremo relativo y
+\begin_inset Formula $\text{rg}(dg(a))=k$
+\end_inset
+
+, entonces
+\begin_inset Formula $\nabla f(a)\in\text{span}(\nabla g_{1}(a),\dots,\nabla g_{k}(a)):=<\nabla g_{1}(a),\dots,\nabla g_{k}(a)>$
+\end_inset
+
+ (el espacio generado por los vectores).
+
+\series bold
+Demostración:
+\series default
+ Por el teorema de la función implícita, existen
+\begin_inset Formula ${\cal V}\subseteq\mathbb{R}^{n-k}$
+\end_inset
+
+ abierto,
+\begin_inset Formula ${\cal W}\in{\cal E}(a)$
+\end_inset
+
+ y
+\begin_inset Formula $\varphi:{\cal V}\rightarrow{\cal W}$
+\end_inset
+
+ de clase
+\begin_inset Formula ${\cal C}^{1}$
+\end_inset
+
+ con
+\begin_inset Formula $\text{rg}(d\varphi(a))=n-k$
+\end_inset
+
+ tales que
+\begin_inset Formula $D\cap{\cal W}=\varphi({\cal V})$
+\end_inset
+
+, y si
+\begin_inset Formula $a$
+\end_inset
+
+ es extremo relativo de
+\begin_inset Formula $f$
+\end_inset
+
+ en
+\begin_inset Formula $D$
+\end_inset
+
+, por la continuidad de
+\begin_inset Formula $\varphi$
+\end_inset
+
+, el punto
+\begin_inset Formula $b\in{\cal V}$
+\end_inset
+
+ con
+\begin_inset Formula $\varphi(b)=a$
+\end_inset
+
+ es extremo relativo de
+\begin_inset Formula $f\circ\varphi$
+\end_inset
+
+ en
+\begin_inset Formula ${\cal V}$
+\end_inset
+
+, luego
+\begin_inset Formula $d(f\circ\varphi)(b)=0=df(a)\circ\varphi(b)$
+\end_inset
+
+ y entonces
+\begin_inset Formula $\text{Im}(d\varphi(b))=\ker(dg(a))=\ker(dg_{1}(a),\dots,dg_{k}(a))\subseteq\ker(df(a))$
+\end_inset
+
+ y por tanto
+\begin_inset Formula $\bigcap_{i=1}^{k}\ker(dg_{i}(a))\subseteq\ker(df(a))$
+\end_inset
+
+, que por un misterioso lema de álgebra equivale a que
+\begin_inset Formula $df(a)\in\text{span}(dg_{1}(a),\dots,dg_{k}(a))$
+\end_inset
+
+.
+\begin_inset Note Note
+status open
+
+\begin_layout Plain Layout
+¿Ñandé?
+\end_layout
+
+\end_inset
+
+
+\end_layout
+
+\end_body
+\end_document