diff options
Diffstat (limited to 'fvv2/n4.lyx')
| -rw-r--r-- | fvv2/n4.lyx | 688 |
1 files changed, 688 insertions, 0 deletions
diff --git a/fvv2/n4.lyx b/fvv2/n4.lyx new file mode 100644 index 0000000..6628b45 --- /dev/null +++ b/fvv2/n4.lyx @@ -0,0 +1,688 @@ +#LyX 2.3 created this file. For more info see http://www.lyx.org/ +\lyxformat 544 +\begin_document +\begin_header +\save_transient_properties true +\origin unavailable +\textclass book +\use_default_options true +\maintain_unincluded_children false +\language spanish +\language_package default +\inputencoding auto +\fontencoding global +\font_roman "default" "default" +\font_sans "default" "default" +\font_typewriter "default" "default" +\font_math "auto" "auto" +\font_default_family default +\use_non_tex_fonts false +\font_sc false +\font_osf false +\font_sf_scale 100 100 +\font_tt_scale 100 100 +\use_microtype false +\use_dash_ligatures true +\graphics default +\default_output_format default +\output_sync 0 +\bibtex_command default +\index_command default +\paperfontsize default +\spacing single +\use_hyperref false +\papersize default +\use_geometry false +\use_package amsmath 1 +\use_package amssymb 1 +\use_package cancel 1 +\use_package esint 0 +\use_package mathdots 1 +\use_package mathtools 1 +\use_package mhchem 1 +\use_package stackrel 1 +\use_package stmaryrd 1 +\use_package undertilde 1 +\cite_engine basic +\cite_engine_type default +\biblio_style plain +\use_bibtopic false +\use_indices false +\paperorientation portrait +\suppress_date false +\justification true +\use_refstyle 1 +\use_minted 0 +\index Index +\shortcut idx +\color #008000 +\end_index +\secnumdepth 3 +\tocdepth 3 +\paragraph_separation indent +\paragraph_indentation default +\is_math_indent 0 +\math_numbering_side default +\quotes_style french +\dynamic_quotes 0 +\papercolumns 1 +\papersides 1 +\paperpagestyle default +\tracking_changes false +\output_changes false +\html_math_output 0 +\html_css_as_file 0 +\html_be_strict false +\end_header + +\begin_body + +\begin_layout Standard +\begin_inset Note Note +status open + +\begin_layout Plain Layout +\begin_inset Note Comment +status open + +\begin_layout Section +Espacios producto +\end_layout + +\begin_layout Plain Layout +Dados dos espacios medibles +\begin_inset Formula $(\Omega_{1},\Sigma_{1})$ +\end_inset + + y +\begin_inset Formula $(\Omega_{2},\Sigma_{2})$ +\end_inset + +, llamamos +\series bold +rectángulo medible +\series default + en +\begin_inset Formula $\Omega:=\Omega_{1}\times\Omega_{2}$ +\end_inset + + a los elementos de +\begin_inset Formula ${\cal R}:=\{A\times B\}_{A\in\Sigma_{1},B\in\Sigma_{2}}$ +\end_inset + +. + Llamamos +\series bold + +\begin_inset Formula $\sigma$ +\end_inset + +-álgebra producto +\series default + de partes de +\begin_inset Formula $\Omega$ +\end_inset + + a +\begin_inset Formula $\Sigma:=\Sigma_{1}\times\Sigma_{2}:=\sigma({\cal R})$ +\end_inset + +. +\end_layout + +\begin_layout Plain Layout +Como +\series bold +teorema +\series default +, dados dos espacios de medida +\begin_inset Formula $(\Omega_{1},\Sigma_{1},\mu_{1})$ +\end_inset + + y +\begin_inset Formula $(\Omega_{2},\Sigma_{2},\mu_{2})$ +\end_inset + +, existe una medida +\begin_inset Formula $\mu$ +\end_inset + + en +\begin_inset Formula $\Sigma_{1}\times\Sigma_{2}$ +\end_inset + + tal que +\begin_inset Formula $\mu(A\times B)=\mu_{1}(A)\mu_{2}(B)$ +\end_inset + + para cada +\begin_inset Formula $A\times B$ +\end_inset + + medible. + Si además los dos espacios de medida son +\begin_inset Formula $\sigma$ +\end_inset + +-finitos, +\begin_inset Formula $\mu$ +\end_inset + + es la única. + +\begin_inset Note Comment +status open + +\begin_layout Plain Layout + +\series bold +Demostración: +\end_layout + +\end_inset + + +\end_layout + +\begin_layout Section +Cambio de variable +\end_layout + +\end_inset + + +\end_layout + +\end_inset + + +\end_layout + +\begin_layout Standard +Sea +\begin_inset Formula $(\Omega,\Sigma,\mu)$ +\end_inset + + un espacio de medida, +\begin_inset Formula $(\Omega',\Sigma')$ +\end_inset + + un espacio medible y +\begin_inset Formula $g:\Omega\rightarrow\Omega'$ +\end_inset + + medible, llamamos +\series bold +medida imagen +\series default + de +\begin_inset Formula $\mu$ +\end_inset + + a través de +\begin_inset Formula $g$ +\end_inset + + a la medida +\begin_inset Formula $\nu:=\mu g^{-1}:\Sigma'\rightarrow[0,+\infty]$ +\end_inset + + dada por +\begin_inset Formula $\nu(A):=\mu(g^{-1}(A))$ +\end_inset + +. +\end_layout + +\begin_layout Standard +Una función +\begin_inset Formula $\Sigma'$ +\end_inset + +-medible +\begin_inset Formula $f:\Omega'\rightarrow\mathbb{C}$ +\end_inset + + es +\begin_inset Formula $\nu$ +\end_inset + +-integrable si y sólo si +\begin_inset Formula $f\circ g$ +\end_inset + + es +\begin_inset Formula $\mu$ +\end_inset + +-integrable, y si +\begin_inset Formula $f$ +\end_inset + + es +\begin_inset Formula $\nu$ +\end_inset + +-integrable o +\begin_inset Formula $f\geq0$ +\end_inset + + se tiene +\begin_inset Formula +\[ +\int f\,d\nu=\int f\circ g\,d\mu +\] + +\end_inset + + +\series bold +Demostración: +\series default + Para +\begin_inset Formula $A\in\Sigma'$ +\end_inset + + y +\begin_inset Formula $x\in\Omega$ +\end_inset + +, +\begin_inset Formula $\chi_{g^{-1}(A)}(x)=\chi_{A}(g(x))=(\chi_{A}\circ g)(x)$ +\end_inset + +, luego +\begin_inset Formula $\chi_{g^{-1}(A)}=\chi_{A}\circ g$ +\end_inset + + y +\begin_inset Formula $\int_{\Omega'}\chi_{A}d\nu=\nu(A)=\mu(g^{-1}(A))=\int_{\Omega}\chi_{g^{-1}(A)}d\mu=\int_{\Omega}(\chi_{A}\circ g)d\mu$ +\end_inset + +. + Con esto, una función simple +\begin_inset Formula $f:\Sigma'\rightarrow[0,+\infty]$ +\end_inset + + es +\begin_inset Formula $\nu$ +\end_inset + +-integrable si y sólo si +\begin_inset Formula $f\circ g$ +\end_inset + + es +\begin_inset Formula $\mu$ +\end_inset + +-integrable, y entonces +\begin_inset Formula $\int f\,d\nu=\int f\circ g\,d\mu$ +\end_inset + +. + Usando el teorema de la convergencia monótona podemos extender este resultado + a funciones medibles positivas, y el de la convergencia dominada nos da + el resultado para el caso general. +\end_layout + +\begin_layout Standard +Dada una función +\begin_inset Formula $\alpha:[a,b]\rightarrow\mathbb{R}$ +\end_inset + + creciente y continua por la derecha, llamamos +\series bold +medida de Lebesgue-Stieltjes +\series default + asociada a +\begin_inset Formula $\alpha$ +\end_inset + + o +\series bold +medida de Borel inducida +\series default + a la única medida de Borel con +\begin_inset Formula $\mu_{\alpha}((a,b])=\alpha(b)-\alpha(a)$ +\end_inset + +, y que se construye de forma similar a la de Lebesgue. +\end_layout + +\begin_layout Standard +Como +\series bold +teorema +\series default +, si +\begin_inset Formula $f:[a,b]\rightarrow\mathbb{R}$ +\end_inset + + es acotada y +\begin_inset Formula $D(f):=\{x\in[a,b]:f\text{ es discontinua en }x\}$ +\end_inset + +, entonces +\begin_inset Formula $f$ +\end_inset + + es integrable Riemann-Stieltjes con respecto a +\begin_inset Formula $\alpha$ +\end_inset + + en +\begin_inset Formula $[a,b]$ +\end_inset + + si y sólo si +\begin_inset Formula $\mu_{\alpha}(D(f))=0$ +\end_inset + +, y en tal caso +\begin_inset Formula $f$ +\end_inset + + es +\begin_inset Formula $\mu_{\alpha}$ +\end_inset + +-integrable y +\begin_inset Formula $\int_{[a,b]}f\,d\mu_{\alpha}=\int_{a}^{b}f\,d\alpha$ +\end_inset + +. + La demostración de esto es similar a la correspondiente para integrales + de Riemann simples. +\end_layout + +\begin_layout Standard +Dado un espacio de medida +\begin_inset Formula $(\Omega,\Sigma,\mu)$ +\end_inset + + finito, llamamos +\series bold +variables aleatorias +\series default + a las funciones medibles +\begin_inset Formula $f:\Omega\rightarrow\mathbb{R}$ +\end_inset + +, y tenemos que +\begin_inset Formula $\mu f^{-1}$ +\end_inset + + es una medida finita en +\begin_inset Formula $\mathbb{R}$ +\end_inset + + tal que +\begin_inset Formula $f=f\circ id$ +\end_inset + + es +\begin_inset Formula $\mu$ +\end_inset + +-integrable si y sólo si +\begin_inset Formula $id$ +\end_inset + + es +\begin_inset Formula $\mu f^{-1}$ +\end_inset + +-integrable, y entonces +\begin_inset Formula $\int_{\Omega}f\,d\mu=\int_{\mathbb{R}}id\,d\mu f^{-1}$ +\end_inset + +. +\end_layout + +\begin_layout Standard +Llamamos +\series bold +función de distribución +\series default + de +\begin_inset Formula $f$ +\end_inset + + a +\begin_inset Formula $F(x):=\mu(\{f\leq x\})$ +\end_inset + + o a +\begin_inset Formula $\varphi(x):=\mu(\{f>x\})=\mu(\Omega)-F(x)$ +\end_inset + +. + Sea +\begin_inset Formula $f:\Omega\rightarrow(a,b]$ +\end_inset + + una variable aleatoria, +\begin_inset Formula $F(x):=\mu(\{f\leq x\})$ +\end_inset + + y +\begin_inset Formula $\varphi(x):=\mu(\{f>x\})$ +\end_inset + +, entonces +\begin_inset Formula $f$ +\end_inset + + es integrable y +\begin_inset Formula +\[ +\int f\,d\mu=\int_{[a,b]}id\,d\mu f^{-1}=\int_{a}^{b}id\,dF=-\int_{a}^{b}id\,d\varphi +\] + +\end_inset + + +\series bold + +\begin_inset Newpage clearpage +\end_inset + +Demostración: +\series default +La identidad es continua y por tanto integrable Riemann-Stieltjes respecto + a +\begin_inset Formula $F$ +\end_inset + + o +\begin_inset Formula $\varphi$ +\end_inset + +, y como +\begin_inset Formula $F(y)-F(x)=-(\varphi(y)-\varphi(x))$ +\end_inset + +, se tiene +\begin_inset Formula $\int_{a}^{b}id\,dF=-\int_{a}^{b}id\,d\varphi$ +\end_inset + +, pero entonces +\begin_inset Formula $id$ +\end_inset + + es +\begin_inset Formula $\mu f^{-1}$ +\end_inset + +-integrable. +\end_layout + +\begin_layout Standard +Si +\begin_inset Formula $f$ +\end_inset + + no es acotada, podemos aplicar este resultado a los conjuntos +\begin_inset Formula $E_{a,b}:=\{a<f\leq b\}$ +\end_inset + + para +\begin_inset Formula $a<b$ +\end_inset + + cualesquiera definiendo +\begin_inset Formula $\mu_{a,b}(E):=\mu(E\cap E_{a,b})$ +\end_inset + + y usando esta medida. +\end_layout + +\begin_layout Standard +La restricción de que +\begin_inset Formula $f$ +\end_inset + + sea acotada se puede suprimir definiendo +\begin_inset Formula +\[ +\int_{-\infty}^{+\infty}id\,d\varphi:=\lim_{\begin{subarray}{c} +a\to-\infty\\ +b\to+\infty +\end{subarray}}\int_{a}^{b}id\,d\varphi +\] + +\end_inset + + cuando el límite existe. + En tal caso se cumple +\begin_inset Formula +\begin{eqnarray*} +\int_{\Omega}f^{+}d\mu=\lim_{b\rightarrow+\infty}\int_{E_{0,b}}f\,d\mu<+\infty & \text{ y } & \int_{\Omega}f^{-}d\mu=-\lim_{a\rightarrow-\infty}\int_{E_{a,0}}f\,d\mu<+\infty +\end{eqnarray*} + +\end_inset + +por lo que +\begin_inset Formula $f$ +\end_inset + + es +\begin_inset Formula $\mu$ +\end_inset + +-integrable. +\end_layout + +\begin_layout Standard +De aquí que, si +\begin_inset Formula $f:\Omega\rightarrow\mathbb{R}$ +\end_inset + + es medible, entonces +\begin_inset Formula $f\in{\cal L}^{1}(\Omega)$ +\end_inset + + si y sólo si +\begin_inset Formula $\int_{-\infty}^{+\infty}id\,d\varphi$ +\end_inset + + es finita, y en tal caso +\begin_inset Formula $\int_{\Omega}f\,d\mu=-\int_{-\infty}^{+\infty}id\,d\varphi$ +\end_inset + +. + Entonces: +\end_layout + +\begin_layout Enumerate +Si +\begin_inset Formula $f:\Omega\rightarrow[a,b]$ +\end_inset + + es medible con +\begin_inset Formula $\varphi(x):=\mu(\{f>x\})$ +\end_inset + + y +\begin_inset Formula $\phi:[a,b]\rightarrow\mathbb{R}$ +\end_inset + + es continua, entonces +\begin_inset Formula $\phi\circ f$ +\end_inset + + es integrable y +\begin_inset Formula +\[ +\int_{\Omega}\phi\circ f\,d\mu=-\int_{a}^{b}\phi\,d\varphi +\] + +\end_inset + + +\end_layout + +\begin_layout Enumerate +Si es +\begin_inset Formula $f:\Omega\rightarrow\mathbb{R}$ +\end_inset + + y +\begin_inset Formula $\phi:\mathbb{R}\rightarrow[0,+\infty)$ +\end_inset + +, entonces +\begin_inset Formula +\[ +\int_{\Omega}\phi\circ f\,d\mu=-\int_{-\infty}^{+\infty}\phi\,d\varphi +\] + +\end_inset + + +\end_layout + +\begin_layout Enumerate +Si es +\begin_inset Formula $\phi:\mathbb{R}\rightarrow\mathbb{R}$ +\end_inset + + y +\begin_inset Formula $\phi\circ f$ +\end_inset + + es integrable, esta igualdad también se cumple. +\end_layout + +\begin_layout Standard +Llamamos +\begin_inset Formula ${\cal L}_{\phi}(\mu)$ +\end_inset + + al conjunto de funciones medibles +\begin_inset Formula $f$ +\end_inset + + tales que +\begin_inset Formula $\phi\circ f$ +\end_inset + + es integrable, y para +\begin_inset Formula $\phi(x)=|x|^{p}$ +\end_inset + +, escribimos +\begin_inset Formula ${\cal L}^{p}(\mu):={\cal L}_{\phi}(\mu)$ +\end_inset + +. + Esto es compatible con la definición inicial de +\begin_inset Formula ${\cal L}^{1}(\mu)$ +\end_inset + +. +\end_layout + +\end_body +\end_document |
