aboutsummaryrefslogtreecommitdiff
path: root/fvv2
diff options
context:
space:
mode:
Diffstat (limited to 'fvv2')
-rw-r--r--fvv2/n1.lyx10
-rw-r--r--fvv2/n2.lyx6
-rw-r--r--fvv2/n3.lyx16
-rw-r--r--fvv2/n4.lyx2
4 files changed, 17 insertions, 17 deletions
diff --git a/fvv2/n1.lyx b/fvv2/n1.lyx
index 7f67d1f..e7eda47 100644
--- a/fvv2/n1.lyx
+++ b/fvv2/n1.lyx
@@ -208,7 +208,7 @@ gráfica
a
\begin_inset Formula
\[
-\text{graf}(f):=\{(x_{1},\dots,x_{n},y)\in\mathbb{R}^{n+1}:(x_{1},\dots,x_{n})\in[a_{1},b_{1}]\times\dots\times[a_{n},b_{n}]\land y=f(x_{1},\dots,x_{n})\}
+\text{graf}(f):=\{(x_{1},\dots,x_{n},y)\in\mathbb{R}^{n+1}\mid (x_{1},\dots,x_{n})\in[a_{1},b_{1}]\times\dots\times[a_{n},b_{n}]\land y=f(x_{1},\dots,x_{n})\}
\]
\end_inset
@@ -221,7 +221,7 @@ subgrafo
\begin_inset Formula
\begin{multline*}
\text{subgraf}(f):=\\
-\{(x_{1},\dots,x_{n},y)\in\mathbb{R}^{n+1}:(x_{1},\dots,x_{n})\in[a_{1},b_{1}]\times\dots\times[a_{n},b_{n}]\land0\leq y\leq f(x_{1},\dots,x_{n})\}
+\{(x_{1},\dots,x_{n},y)\in\mathbb{R}^{n+1}\mid (x_{1},\dots,x_{n})\in[a_{1},b_{1}]\times\dots\times[a_{n},b_{n}]\land0\leq y\leq f(x_{1},\dots,x_{n})\}
\end{multline*}
\end_inset
@@ -1452,7 +1452,7 @@ Sea
\end_inset
,
-\begin_inset Formula $B:=\{x\in A:\text{osc}(f,x)\geq\varepsilon\}$
+\begin_inset Formula $B:=\{x\in A\mid \text{osc}(f,x)\geq\varepsilon\}$
\end_inset
es cerrado.
@@ -1539,7 +1539,7 @@ teorema de Lebesgue de caracterización de las funciones integrables
\end_inset
si y sólo si
-\begin_inset Formula $B:=\{x\in R:f\text{ no es continua en }x\}$
+\begin_inset Formula $B:=\{x\in R\mid f\text{ no es continua en }x\}$
\end_inset
tiene medida nula.
@@ -1559,7 +1559,7 @@ status open
\end_inset
Sea
-\begin_inset Formula $B_{k}:=\{x\in R:o(f,x)\geq\frac{1}{k}\}$
+\begin_inset Formula $B_{k}:=\{x\in R\mid o(f,x)\geq\frac{1}{k}\}$
\end_inset
, basta probar que cada
diff --git a/fvv2/n2.lyx b/fvv2/n2.lyx
index 56b1b12..bd555e8 100644
--- a/fvv2/n2.lyx
+++ b/fvv2/n2.lyx
@@ -654,7 +654,7 @@ espacio de medida
\end_inset
-finita si y sólo si
-\begin_inset Formula $\{x\in\Omega:f(x)>0\}$
+\begin_inset Formula $\{x\in\Omega\mid f(x)>0\}$
\end_inset
es numerable.
@@ -889,7 +889,7 @@ medida exterior
como
\begin_inset Formula
\[
-\lambda_{n}^{*}(B):=\inf\left\{ \sum_{k\in\mathbb{N}}v([a_{k},b_{k})):B\subseteq\dot{\bigcup_{k\in\mathbb{N}}}[a_{k},b_{k})\right\}
+\lambda_{n}^{*}(B):=\inf\left\{ \sum_{k\in\mathbb{N}}v([a_{k},b_{k}))\mid B\subseteq\dot{\bigcup_{k\in\mathbb{N}}}[a_{k},b_{k})\right\}
\]
\end_inset
@@ -1146,7 +1146,7 @@ Para
\end_inset
, y por tanto
-\begin_inset Formula $\lambda_{n}^{*}(S)=\inf\{\lambda_{n}^{*}(A):A\supseteq S\text{ abierto}\}$
+\begin_inset Formula $\lambda_{n}^{*}(S)=\inf\{\lambda_{n}^{*}(A)\mid A\supseteq S\text{ abierto}\}$
\end_inset
.
diff --git a/fvv2/n3.lyx b/fvv2/n3.lyx
index a35f67f..11ac40c 100644
--- a/fvv2/n3.lyx
+++ b/fvv2/n3.lyx
@@ -172,7 +172,7 @@ status open
\end_inset
Sea
-\begin_inset Formula ${\cal A}:=\{E\in\Sigma':f^{-1}(E)\in\Sigma\}$
+\begin_inset Formula ${\cal A}:=\{E\in\Sigma'\mid f^{-1}(E)\in\Sigma\}$
\end_inset
, vemos que
@@ -627,7 +627,7 @@ Una función
\end_inset
y la notación
-\begin_inset Formula $\{f\bullet a\}:=\{\omega\in\Omega:f(\omega)\bullet a\}$
+\begin_inset Formula $\{f\bullet a\}\mid =\{\omega\in\Omega\mid f(\omega)\bullet a\}$
\end_inset
.
@@ -1554,7 +1554,7 @@ Sea
\end_inset
y
-\begin_inset Formula ${\cal S}(\Omega)^{+}:=\{h\in{\cal S}(\Omega):h\geq0\}$
+\begin_inset Formula ${\cal S}(\Omega)^{+}:=\{h\in{\cal S}(\Omega)\mid h\geq0\}$
\end_inset
, llamamos
@@ -1719,7 +1719,7 @@ Para
medible, se define
\begin_inset Formula
\[
-\int f\,d\mu:=\sup\left\{ \int s\,d\mu:s\in{\cal S}(\Omega)\land0\leq s\leq f\right\}
+\int f\,d\mu:=\sup\left\{ \int s\,d\mu\mid s\in{\cal S}(\Omega)\land0\leq s\leq f\right\}
\]
\end_inset
@@ -2236,7 +2236,7 @@ Una función medible
\end_inset
, si y sólo si
-\begin_inset Formula $f^{+}=\max\{f,0\},f^{-}=\min\{f,0\}:\Omega\rightarrow[-\infty,+\infty]$
+\begin_inset Formula $f^{+}=\max\{f,0\},f^{-}=\min\{f,0\}\mid \Omega\rightarrow[-\infty,+\infty]$
\end_inset
son integrables, y definimos
@@ -3315,11 +3315,11 @@ Demostración:
\end_inset
es continua, y como
-\begin_inset Formula $\delta:=\min\{d(x,K):x\notin A\}>0$
+\begin_inset Formula $\delta:=\min\{d(x,K)\mid x\notin A\}>0$
\end_inset
,
-\begin_inset Formula $A_{0}:=\{x:d(x,K)<\frac{\delta}{2}\}$
+\begin_inset Formula $A_{0}:=\{x\mid d(x,K)<\frac{\delta}{2}\}$
\end_inset
es un abierto acotado con
@@ -3328,7 +3328,7 @@ Demostración:
.
Tomando
-\begin_inset Formula $F_{0}:=\mathbb{R}^{n}\backslash A_{0}=\{x:d(x,K)\geq\frac{\delta}{2}\}$
+\begin_inset Formula $F_{0}:=\mathbb{R}^{n}\backslash A_{0}=\{x\mid d(x,K)\geq\frac{\delta}{2}\}$
\end_inset
, podemos definir
diff --git a/fvv2/n4.lyx b/fvv2/n4.lyx
index 6628b45..2db00c5 100644
--- a/fvv2/n4.lyx
+++ b/fvv2/n4.lyx
@@ -360,7 +360,7 @@ teorema
\end_inset
es acotada y
-\begin_inset Formula $D(f):=\{x\in[a,b]:f\text{ es discontinua en }x\}$
+\begin_inset Formula $D(f):=\{x\in[a,b]\mid f\text{ es discontinua en }x\}$
\end_inset
, entonces