aboutsummaryrefslogtreecommitdiff
path: root/ga/n5.lyx
diff options
context:
space:
mode:
Diffstat (limited to 'ga/n5.lyx')
-rw-r--r--ga/n5.lyx30
1 files changed, 15 insertions, 15 deletions
diff --git a/ga/n5.lyx b/ga/n5.lyx
index 668a3e2..37371b4 100644
--- a/ga/n5.lyx
+++ b/ga/n5.lyx
@@ -98,7 +98,7 @@ suma
\end_inset
a
-\begin_inset Formula $\sum_{i\in I}B_{i}:=\{\sum_{i\in I}b_{i}\mid b_{i}\in B_{i},\{i\in I\mid b_{i}\neq0\}\text{ es finito}\}$
+\begin_inset Formula $\sum_{i\in I}B_{i}\coloneqq \{\sum_{i\in I}b_{i}\mid b_{i}\in B_{i},\{i\in I\mid b_{i}\neq0\}\text{ es finito}\}$
\end_inset
.
@@ -404,7 +404,7 @@ Sean
\begin_layout Standard
Si
-\begin_inset Formula $\hat{B}_{i}:=0\times\dots\times0\times B_{i}\times0\times\dots\times0\leq B_{1}\times\dots\times B_{n}$
+\begin_inset Formula $\hat{B}_{i}\coloneqq 0\times\dots\times0\times B_{i}\times0\times\dots\times0\leq B_{1}\times\dots\times B_{n}$
\end_inset
, entonces
@@ -420,7 +420,7 @@ Si
\end_inset
dada por
-\begin_inset Formula $f(b_{1},\dots,b_{n}):=b_{1}+\dots+b_{n}$
+\begin_inset Formula $f(b_{1},\dots,b_{n})\coloneqq b_{1}+\dots+b_{n}$
\end_inset
es un isomorfismo de grupos.
@@ -704,7 +704,7 @@ subgrupo de
es
\begin_inset Formula
\[
-t_{p}(A):=\{a\in A\mid \exists n\in\mathbb{N}\mid p^{n}a=0\}=\{a\in A\mid |a|\text{ es potencia de }p\}.
+t_{p}(A):=\{a\in A\mid \exists n\in\mathbb{N}:p^{n}a=0\}=\{a\in A\mid|a|\text{ es potencia de }p\}.
\]
\end_inset
@@ -799,7 +799,7 @@ Demostración:
\end_inset
,
-\begin_inset Formula $q_{i}:=\prod_{j\neq i}p_{j}^{\alpha_{j}}$
+\begin_inset Formula $q_{i}\coloneqq \prod_{j\neq i}p_{j}^{\alpha_{j}}$
\end_inset
, es claro que ningún primo divide a todos los
@@ -860,7 +860,7 @@ Demostración:
.
Sea entonces
-\begin_inset Formula $t_{i}:=\prod_{j\neq i}p_{j}^{\beta_{j}}$
+\begin_inset Formula $t_{i}\coloneqq \prod_{j\neq i}p_{j}^{\beta_{j}}$
\end_inset
para cada
@@ -931,7 +931,7 @@ Demostración:
\begin_layout Standard
Si
-\begin_inset Formula $n:=p_{1}^{\alpha_{1}}\cdots p_{k}^{\alpha_{k}}$
+\begin_inset Formula $n\coloneqq p_{1}^{\alpha_{1}}\cdots p_{k}^{\alpha_{k}}$
\end_inset
es una factorización prima
@@ -1108,11 +1108,11 @@ Queda ver que
.
Sean
-\begin_inset Formula $B:=\langle a\rangle$
+\begin_inset Formula $B\coloneqq \langle a\rangle$
\end_inset
y
-\begin_inset Formula $C:=A/B$
+\begin_inset Formula $C\coloneqq A/B$
\end_inset
, si
@@ -1171,7 +1171,7 @@ Dado
\end_inset
, tomamos
-\begin_inset Formula $y:=x$
+\begin_inset Formula $y\coloneqq x$
\end_inset
.
@@ -1223,7 +1223,7 @@ Dado
.
Sea ahora
-\begin_inset Formula $y:=x-rp^{m+t-s}a$
+\begin_inset Formula $y\coloneqq x-rp^{m+t-s}a$
\end_inset
, entonces
@@ -1723,11 +1723,11 @@ A=\langle a_{11}\rangle_{p_{1}^{\alpha_{1}}}\oplus\dots\oplus\langle a_{1m}\rang
\end_inset
, sean
-\begin_inset Formula $b_{j}:=a_{1j}+\dots+a_{kj}$
+\begin_inset Formula $b_{j}\coloneqq a_{1j}+\dots+a_{kj}$
\end_inset
y
-\begin_inset Formula $d_{j}:=p_{1}^{\alpha_{1j}}\cdots p_{k}^{\alpha_{kj}}$
+\begin_inset Formula $d_{j}\coloneqq p_{1}^{\alpha_{1j}}\cdots p_{k}^{\alpha_{kj}}$
\end_inset
, por el teorema chino de los restos,
@@ -1809,7 +1809,7 @@ Todas las descomposiciones primarias de
\begin_deeper
\begin_layout Standard
Sea
-\begin_inset Formula $A:=A_{11}\oplus\dots\oplus A_{1m_{1}}\oplus\dots\oplus A_{k1}\oplus\dots\oplus A_{km_{k}}$
+\begin_inset Formula $A\coloneqq A_{11}\oplus\dots\oplus A_{1m_{1}}\oplus\dots\oplus A_{k1}\oplus\dots\oplus A_{km_{k}}$
\end_inset
con
@@ -1943,7 +1943,7 @@ Sea
.
Entonces, si
-\begin_inset Formula $q:=p^{\alpha_{i}}$
+\begin_inset Formula $q\coloneqq p^{\alpha_{i}}$
\end_inset
,