aboutsummaryrefslogtreecommitdiff
path: root/ga
diff options
context:
space:
mode:
Diffstat (limited to 'ga')
-rw-r--r--ga/n1.lyx18
-rw-r--r--ga/n2.lyx4
-rw-r--r--ga/n3.lyx12
-rw-r--r--ga/n4.lyx20
-rw-r--r--ga/n5.lyx6
-rw-r--r--ga/n6.lyx2
6 files changed, 31 insertions, 31 deletions
diff --git a/ga/n1.lyx b/ga/n1.lyx
index 16a9bef..d1b406c 100644
--- a/ga/n1.lyx
+++ b/ga/n1.lyx
@@ -2271,7 +2271,7 @@ Dado un espacio topológico
\end_inset
,
-\begin_inset Formula $\{f\in\mathbb{R}^{X}:f\text{ continua}\}$
+\begin_inset Formula $\{f\in\mathbb{R}^{X}\mid f\text{ continua}\}$
\end_inset
es un subanillo de
@@ -2287,7 +2287,7 @@ Dado un espacio vectorial
\end_inset
,
-\begin_inset Formula $\{f\in V^{V}:f\text{ lineal}\}$
+\begin_inset Formula $\{f\in V^{V}\mid f\text{ lineal}\}$
\end_inset
es un subanillo de
@@ -2307,7 +2307,7 @@ Dado un anillo
\end_inset
,
-\begin_inset Formula $\{f\in A^{X}:f\text{ constante}\}$
+\begin_inset Formula $\{f\in A^{X}\mid f\text{ constante}\}$
\end_inset
es un subanillo de
@@ -3944,7 +3944,7 @@ Demostración:
\end_inset
, pues
-\begin_inset Formula $\pi^{-1}(J/I)=\{x:\pi(x)=[x]\in J/I\}$
+\begin_inset Formula $\pi^{-1}(J/I)=\{x\mid\pi(x)=[x]\in J/I\}$
\end_inset
, pero si
@@ -4005,7 +4005,7 @@ Ahora vemos que, dado un ideal
\end_inset
,
-\begin_inset Formula $\pi^{-1}(X)=\{x:[x]\in X\}\ni0$
+\begin_inset Formula $\pi^{-1}(X)=\{x\mid[x]\in X\}\ni0$
\end_inset
; para
@@ -4058,7 +4058,7 @@ Ahora vemos que, dado un ideal
.
Además,
-\begin_inset Formula $\pi^{-1}(X)/I=\{x:[x]\in X\}/I=\{[x]:[x]\in X\}=X$
+\begin_inset Formula $\pi^{-1}(X)/I=\{x\mid[x]\in X\}/I=\{[x]\mid[x]\in X\}=X$
\end_inset
.
@@ -4185,8 +4185,8 @@ La intersección de una familia de ideales de
, definimos los ideales
\begin_inset Formula
\begin{eqnarray*}
-\sum_{x\in X}I_{x} & := & \left\{ \sum_{x\in S}a_{x}:S\subseteq X\text{ finito},a_{x}\in I_{x}\right\} ,\\
-\prod_{x\in X}I_{x} & := & \left\{ \sum_{k=1}^{n}\prod_{x\in S}a_{kx}:n\in\mathbb{N},S\subseteq X\text{ finito},a_{kx}\in I_{x}\right\} .
+\sum_{x\in X}I_{x} & := & \left\{ \sum_{x\in S}a_{x}\;\middle|\;S\subseteq X\text{ finito},a_{x}\in I_{x}\right\} ,\\
+\prod_{x\in X}I_{x} & := & \left\{ \sum_{k=1}^{n}\prod_{x\in S}a_{kx}\;\middle|\;n\in\mathbb{N},S\subseteq X\text{ finito},a_{kx}\in I_{x}\right\} .
\end{eqnarray*}
\end_inset
@@ -4257,7 +4257,7 @@ En efecto,
\end_inset
,
-\begin_inset Formula $(n)\cap(m)=\{k\in\mathbb{Z}:n,m|k\}=\{k:\text{mcm}(n,m)|k\}=(\text{mcm}(n,m))$
+\begin_inset Formula $(n)\cap(m)=\{k\in\mathbb{Z}\mid n,m|k\}=\{k\mid\text{mcm}(n,m)|k\}=(\text{mcm}(n,m))$
\end_inset
y
diff --git a/ga/n2.lyx b/ga/n2.lyx
index 11e1265..caf4b8a 100644
--- a/ga/n2.lyx
+++ b/ga/n2.lyx
@@ -2668,7 +2668,7 @@ Si
.
Veamos que
-\begin_inset Formula $\mathbb{Z}[\sqrt{m}]^{*}=\{x:|N(x)|=1\}$
+\begin_inset Formula $\mathbb{Z}[\sqrt{m}]^{*}=\{x\mid |N(x)|=1\}$
\end_inset
.
@@ -3376,7 +3376,7 @@ euclídea
\end_layout
\begin_layout Enumerate
-\begin_inset Formula $\forall a\in D,b\in D\setminus\{0\},\exists q,r\in D:(a=bq+r\land(r=0\lor\delta(r)<\delta(b)))$
+\begin_inset Formula $\forall a\in D,b\in D\setminus\{0\},\exists q,r\in D\mid (a=bq+r\land(r=0\lor\delta(r)<\delta(b)))$
\end_inset
.
diff --git a/ga/n3.lyx b/ga/n3.lyx
index bd1768b..d3edbf2 100644
--- a/ga/n3.lyx
+++ b/ga/n3.lyx
@@ -169,11 +169,11 @@ polinomios constantes
\end_inset
,
-\begin_inset Formula $\{a_{0}+a_{1}X+\dots+a_{n}X^{n}\in A[X]:a_{0}\in I\}$
+\begin_inset Formula $\{a_{0}+a_{1}X+\dots+a_{n}X^{n}\in A[X]\mid a_{0}\in I\}$
\end_inset
e
-\begin_inset Formula $I[X]:=\{a_{0}+a_{1}X+\dots+a_{n}X^{n}\in A[X]:a_{0},\dots,a_{n}\in I\}$
+\begin_inset Formula $I[X]:=\{a_{0}+a_{1}X+\dots+a_{n}X^{n}\in A[X]\mid a_{0},\dots,a_{n}\in I\}$
\end_inset
son ideales de
@@ -197,7 +197,7 @@ grado
\end_inset
a
-\begin_inset Formula $\text{gr}(p):=\max\{k\in\mathbb{N}:p_{k}\neq0\}$
+\begin_inset Formula $\text{gr}(p):=\max\{k\in\mathbb{N}\mid p_{k}\neq0\}$
\end_inset
,
@@ -1570,7 +1570,7 @@ Para
\end_inset
, existe
-\begin_inset Formula $m:=\max\{k\in\mathbb{N}:(X-a)^{k}\mid f\}$
+\begin_inset Formula $m:=\max\{k\in\mathbb{N}\mid (X-a)^{k}\mid f\}$
\end_inset
@@ -3473,7 +3473,7 @@ Definimos
\end_inset
,
-\begin_inset Formula $c(p):=\{x:x=\text{mcd}_{k\geq0}p_{k}\}$
+\begin_inset Formula $c(p):=\{x\mid x=\text{mcd}_{k\geq0}p_{k}\}$
\end_inset
, y para
@@ -4641,7 +4641,7 @@ Demostración:
\end_inset
, luego existe
-\begin_inset Formula $i:=\min\{j:p\nmid b_{j}\}$
+\begin_inset Formula $i:=\min\{j\mid p\nmid b_{j}\}$
\end_inset
y entonces
diff --git a/ga/n4.lyx b/ga/n4.lyx
index 23c1d2f..accc8be 100644
--- a/ga/n4.lyx
+++ b/ga/n4.lyx
@@ -745,7 +745,7 @@ Si
\end_inset
es una familia de grupos,
-\begin_inset Formula $\bigoplus_{i\in I}G_{i}:=\{(g_{i})_{i\in I}\in\prod_{i\in I}G_{i}:\{i\in I:g_{i}\ne1\}\text{ es finito}\}$
+\begin_inset Formula $\bigoplus_{i\in I}G_{i}:=\{(g_{i})_{i\in I}\in\prod_{i\in I}G_{i}\mid \{i\in I\mid g_{i}\ne1\}\text{ es finito}\}$
\end_inset
es un subgrupo de
@@ -773,7 +773,7 @@ centralizador
\end_inset
es el subgrupo
-\begin_inset Formula $C_{G}(x):=\{g\in G:gx=xg\}$
+\begin_inset Formula $C_{G}(x):=\{g\in G\mid gx=xg\}$
\end_inset
, y el
@@ -785,7 +785,7 @@ centro
\end_inset
es el subgrupo abeliano
-\begin_inset Formula $Z(G):=\{g\in G:\forall x\in G,gx=xg\}=\bigcap_{x\in X}C_{G}(x)$
+\begin_inset Formula $Z(G):=\{g\in G\mid \forall x\in G,gx=xg\}=\bigcap_{x\in X}C_{G}(x)$
\end_inset
.
@@ -2973,7 +2973,7 @@ estabilizador
\end_inset
a
-\begin_inset Formula $\text{Estab}_{G}(x):=\{g\in G:g\cdot x=x\}$
+\begin_inset Formula $\text{Estab}_{G}(x):=\{g\in G\mid g\cdot x=x\}$
\end_inset
.
@@ -3014,7 +3014,7 @@ estabilizador
\end_inset
a
-\begin_inset Formula $\text{Estab}_{G}(x):=\{g\in G:x\cdot g=x\}$
+\begin_inset Formula $\text{Estab}_{G}(x):=\{g\in G\mid x\cdot g=x\}$
\end_inset
.
@@ -3050,7 +3050,7 @@ acción por translación a la izquierda
y
\begin_inset Formula
\[
-\text{Estab}_{G}(xH)=\{g\in G:gxH=xH\}=\{g\in G:x^{-1}gx\in H\}=xHx^{-1}=H^{x^{-1}}.
+\text{Estab}_{G}(xH)=\{g\in G\mid gxH=xH\}=\{g\in G\mid x^{-1}gx\in H\}=xHx^{-1}=H^{x^{-1}}.
\]
\end_inset
@@ -3170,7 +3170,7 @@ normalizador
\end_inset
es
-\begin_inset Formula $N_{G}(H):=\text{Estab}_{G}(H)=\{g\in G:H^{g}=H\}$
+\begin_inset Formula $N_{G}(H):=\text{Estab}_{G}(H)=\{g\in G\mid H^{g}=H\}$
\end_inset
, el mayor subgrupo de
@@ -3393,12 +3393,12 @@ status open
\begin_layout Plain Layout
Si la acción es por la izquierda,
-\begin_inset Formula $\text{Estab}_{G}(x)^{g^{-1}}=\{ghg^{-1}:h\cdot x=x\}=\{p\in G:g^{-1}pg\cdot x=x\}=\{p\in G:p\cdot(g\cdot x)=g\cdot x\}=\text{Estab}_{G}(g\cdot x)$
+\begin_inset Formula $\text{Estab}_{G}(x)^{g^{-1}}=\{ghg^{-1}\mid h\cdot x=x\}=\{p\in G\mid g^{-1}pg\cdot x=x\}=\{p\in G\mid p\cdot(g\cdot x)=g\cdot x\}=\text{Estab}_{G}(g\cdot x)$
\end_inset
.
Si es por la derecha,
-\begin_inset Formula $\text{Estab}_{G}(x)^{g}=\{g^{-1}hg:x\cdot h=x\}=\{p\in G:x\cdot gpg^{-1}=x\}=\{p\in G:(x\cdot g)\cdot p=x\cdot g\}$
+\begin_inset Formula $\text{Estab}_{G}(x)^{g}=\{g^{-1}hg\mid x\cdot h=x\}=\{p\in G\mid x\cdot gpg^{-1}=x\}=\{p\in G\mid (x\cdot g)\cdot p=x\cdot g\}$
\end_inset
.
@@ -3606,7 +3606,7 @@ status open
Demostración:
\series default
Sea
-\begin_inset Formula $X:=\{(g_{1},\dots,g_{p})\in G^{p}:g_{1}\cdots g_{p}=1\}$
+\begin_inset Formula $X:=\{(g_{1},\dots,g_{p})\in G^{p}\mid g_{1}\cdots g_{p}=1\}$
\end_inset
,
diff --git a/ga/n5.lyx b/ga/n5.lyx
index b562086..668a3e2 100644
--- a/ga/n5.lyx
+++ b/ga/n5.lyx
@@ -98,7 +98,7 @@ suma
\end_inset
a
-\begin_inset Formula $\sum_{i\in I}B_{i}:=\{\sum_{i\in I}b_{i}:b_{i}\in B_{i},\{i\in I:b_{i}\neq0\}\text{ es finito}\}$
+\begin_inset Formula $\sum_{i\in I}B_{i}:=\{\sum_{i\in I}b_{i}\mid b_{i}\in B_{i},\{i\in I\mid b_{i}\neq0\}\text{ es finito}\}$
\end_inset
.
@@ -453,7 +453,7 @@ Para
\end_inset
con
-\begin_inset Formula $\{i\in I:b_{i}\neq0\}$
+\begin_inset Formula $\{i\in I\mid b_{i}\neq0\}$
\end_inset
finito.
@@ -704,7 +704,7 @@ subgrupo de
es
\begin_inset Formula
\[
-t_{p}(A):=\{a\in A:\exists n\in\mathbb{N}:p^{n}a=0\}=\{a\in A:|a|\text{ es potencia de }p\}.
+t_{p}(A):=\{a\in A\mid \exists n\in\mathbb{N}\mid p^{n}a=0\}=\{a\in A\mid |a|\text{ es potencia de }p\}.
\]
\end_inset
diff --git a/ga/n6.lyx b/ga/n6.lyx
index f59c930..6641cef 100644
--- a/ga/n6.lyx
+++ b/ga/n6.lyx
@@ -168,7 +168,7 @@ mueve
\series default
en caso contrario.
Llamamos
-\begin_inset Formula $M(\sigma):=\{i\in\mathbb{N}_{n}:\sigma(i)\neq i\}$
+\begin_inset Formula $M(\sigma):=\{i\in\mathbb{N}_{n}\mid \sigma(i)\neq i\}$
\end_inset
, y es claro que