diff options
| author | Juan Marin Noguera <juan@mnpi.eu> | 2022-12-04 21:12:22 +0100 |
|---|---|---|
| committer | Juan Marin Noguera <juan@mnpi.eu> | 2022-12-04 21:12:22 +0100 |
| commit | 214b20d1614b09cd5c18e111df0f0d392af2e721 (patch) | |
| tree | 18e6ded17b7fe84129ebfe5149c9f77dd307d226 /ga | |
| parent | 43e23cdd2ae85a634c4d5c8d921cc671738682bf (diff) | |
Cambios estéticos y de compatibilidad (ver mensaje)
* Cambiado globalmente el formato de los conjuntos por comprehensión de la
notación con ":" a la más común con "|".
* Cambiado el formato de "|" en los conjuntos definidos con \left\{ y \right\}
para que la barra vertical sea tan grande como las llaves.
* Cambiado grafo del tema 4 de AED I de formato SVG a raster.
Antes de esto no compilaba porque ImageMagick tiene desactivada por seguridad
la conversión que LyX necesita para representar imágenes SVG. Se mantiene la
versión SVG en el repositorio por si fuera necesaria en el futuro.
* Cambiadas imágenes de puertas lógicas del tema 3 de FC a su versión PDF.
Antes se usaba la versión SVG, que causa los mismos problemas.
* Cambiadas imágenes en los apuntes de FC para que se miren como figuras.
* Marcadas algunas partes de BBDD como idioma inglés debido a fallos en LaTeX o
algunos paquetes cuando el idioma no es inglés. No afecta a la presentación.
* Añadidos saltos de línea donde hacía falta de los apuntes de ISO.
* Corregida referencia en tema 1 AC: ga -> GyA.
Diffstat (limited to 'ga')
| -rw-r--r-- | ga/n1.lyx | 18 | ||||
| -rw-r--r-- | ga/n2.lyx | 4 | ||||
| -rw-r--r-- | ga/n3.lyx | 12 | ||||
| -rw-r--r-- | ga/n4.lyx | 20 | ||||
| -rw-r--r-- | ga/n5.lyx | 6 | ||||
| -rw-r--r-- | ga/n6.lyx | 2 |
6 files changed, 31 insertions, 31 deletions
@@ -2271,7 +2271,7 @@ Dado un espacio topológico \end_inset , -\begin_inset Formula $\{f\in\mathbb{R}^{X}:f\text{ continua}\}$ +\begin_inset Formula $\{f\in\mathbb{R}^{X}\mid f\text{ continua}\}$ \end_inset es un subanillo de @@ -2287,7 +2287,7 @@ Dado un espacio vectorial \end_inset , -\begin_inset Formula $\{f\in V^{V}:f\text{ lineal}\}$ +\begin_inset Formula $\{f\in V^{V}\mid f\text{ lineal}\}$ \end_inset es un subanillo de @@ -2307,7 +2307,7 @@ Dado un anillo \end_inset , -\begin_inset Formula $\{f\in A^{X}:f\text{ constante}\}$ +\begin_inset Formula $\{f\in A^{X}\mid f\text{ constante}\}$ \end_inset es un subanillo de @@ -3944,7 +3944,7 @@ Demostración: \end_inset , pues -\begin_inset Formula $\pi^{-1}(J/I)=\{x:\pi(x)=[x]\in J/I\}$ +\begin_inset Formula $\pi^{-1}(J/I)=\{x\mid\pi(x)=[x]\in J/I\}$ \end_inset , pero si @@ -4005,7 +4005,7 @@ Ahora vemos que, dado un ideal \end_inset , -\begin_inset Formula $\pi^{-1}(X)=\{x:[x]\in X\}\ni0$ +\begin_inset Formula $\pi^{-1}(X)=\{x\mid[x]\in X\}\ni0$ \end_inset ; para @@ -4058,7 +4058,7 @@ Ahora vemos que, dado un ideal . Además, -\begin_inset Formula $\pi^{-1}(X)/I=\{x:[x]\in X\}/I=\{[x]:[x]\in X\}=X$ +\begin_inset Formula $\pi^{-1}(X)/I=\{x\mid[x]\in X\}/I=\{[x]\mid[x]\in X\}=X$ \end_inset . @@ -4185,8 +4185,8 @@ La intersección de una familia de ideales de , definimos los ideales \begin_inset Formula \begin{eqnarray*} -\sum_{x\in X}I_{x} & := & \left\{ \sum_{x\in S}a_{x}:S\subseteq X\text{ finito},a_{x}\in I_{x}\right\} ,\\ -\prod_{x\in X}I_{x} & := & \left\{ \sum_{k=1}^{n}\prod_{x\in S}a_{kx}:n\in\mathbb{N},S\subseteq X\text{ finito},a_{kx}\in I_{x}\right\} . +\sum_{x\in X}I_{x} & := & \left\{ \sum_{x\in S}a_{x}\;\middle|\;S\subseteq X\text{ finito},a_{x}\in I_{x}\right\} ,\\ +\prod_{x\in X}I_{x} & := & \left\{ \sum_{k=1}^{n}\prod_{x\in S}a_{kx}\;\middle|\;n\in\mathbb{N},S\subseteq X\text{ finito},a_{kx}\in I_{x}\right\} . \end{eqnarray*} \end_inset @@ -4257,7 +4257,7 @@ En efecto, \end_inset , -\begin_inset Formula $(n)\cap(m)=\{k\in\mathbb{Z}:n,m|k\}=\{k:\text{mcm}(n,m)|k\}=(\text{mcm}(n,m))$ +\begin_inset Formula $(n)\cap(m)=\{k\in\mathbb{Z}\mid n,m|k\}=\{k\mid\text{mcm}(n,m)|k\}=(\text{mcm}(n,m))$ \end_inset y @@ -2668,7 +2668,7 @@ Si . Veamos que -\begin_inset Formula $\mathbb{Z}[\sqrt{m}]^{*}=\{x:|N(x)|=1\}$ +\begin_inset Formula $\mathbb{Z}[\sqrt{m}]^{*}=\{x\mid |N(x)|=1\}$ \end_inset . @@ -3376,7 +3376,7 @@ euclídea \end_layout \begin_layout Enumerate -\begin_inset Formula $\forall a\in D,b\in D\setminus\{0\},\exists q,r\in D:(a=bq+r\land(r=0\lor\delta(r)<\delta(b)))$ +\begin_inset Formula $\forall a\in D,b\in D\setminus\{0\},\exists q,r\in D\mid (a=bq+r\land(r=0\lor\delta(r)<\delta(b)))$ \end_inset . @@ -169,11 +169,11 @@ polinomios constantes \end_inset , -\begin_inset Formula $\{a_{0}+a_{1}X+\dots+a_{n}X^{n}\in A[X]:a_{0}\in I\}$ +\begin_inset Formula $\{a_{0}+a_{1}X+\dots+a_{n}X^{n}\in A[X]\mid a_{0}\in I\}$ \end_inset e -\begin_inset Formula $I[X]:=\{a_{0}+a_{1}X+\dots+a_{n}X^{n}\in A[X]:a_{0},\dots,a_{n}\in I\}$ +\begin_inset Formula $I[X]:=\{a_{0}+a_{1}X+\dots+a_{n}X^{n}\in A[X]\mid a_{0},\dots,a_{n}\in I\}$ \end_inset son ideales de @@ -197,7 +197,7 @@ grado \end_inset a -\begin_inset Formula $\text{gr}(p):=\max\{k\in\mathbb{N}:p_{k}\neq0\}$ +\begin_inset Formula $\text{gr}(p):=\max\{k\in\mathbb{N}\mid p_{k}\neq0\}$ \end_inset , @@ -1570,7 +1570,7 @@ Para \end_inset , existe -\begin_inset Formula $m:=\max\{k\in\mathbb{N}:(X-a)^{k}\mid f\}$ +\begin_inset Formula $m:=\max\{k\in\mathbb{N}\mid (X-a)^{k}\mid f\}$ \end_inset @@ -3473,7 +3473,7 @@ Definimos \end_inset , -\begin_inset Formula $c(p):=\{x:x=\text{mcd}_{k\geq0}p_{k}\}$ +\begin_inset Formula $c(p):=\{x\mid x=\text{mcd}_{k\geq0}p_{k}\}$ \end_inset , y para @@ -4641,7 +4641,7 @@ Demostración: \end_inset , luego existe -\begin_inset Formula $i:=\min\{j:p\nmid b_{j}\}$ +\begin_inset Formula $i:=\min\{j\mid p\nmid b_{j}\}$ \end_inset y entonces @@ -745,7 +745,7 @@ Si \end_inset es una familia de grupos, -\begin_inset Formula $\bigoplus_{i\in I}G_{i}:=\{(g_{i})_{i\in I}\in\prod_{i\in I}G_{i}:\{i\in I:g_{i}\ne1\}\text{ es finito}\}$ +\begin_inset Formula $\bigoplus_{i\in I}G_{i}:=\{(g_{i})_{i\in I}\in\prod_{i\in I}G_{i}\mid \{i\in I\mid g_{i}\ne1\}\text{ es finito}\}$ \end_inset es un subgrupo de @@ -773,7 +773,7 @@ centralizador \end_inset es el subgrupo -\begin_inset Formula $C_{G}(x):=\{g\in G:gx=xg\}$ +\begin_inset Formula $C_{G}(x):=\{g\in G\mid gx=xg\}$ \end_inset , y el @@ -785,7 +785,7 @@ centro \end_inset es el subgrupo abeliano -\begin_inset Formula $Z(G):=\{g\in G:\forall x\in G,gx=xg\}=\bigcap_{x\in X}C_{G}(x)$ +\begin_inset Formula $Z(G):=\{g\in G\mid \forall x\in G,gx=xg\}=\bigcap_{x\in X}C_{G}(x)$ \end_inset . @@ -2973,7 +2973,7 @@ estabilizador \end_inset a -\begin_inset Formula $\text{Estab}_{G}(x):=\{g\in G:g\cdot x=x\}$ +\begin_inset Formula $\text{Estab}_{G}(x):=\{g\in G\mid g\cdot x=x\}$ \end_inset . @@ -3014,7 +3014,7 @@ estabilizador \end_inset a -\begin_inset Formula $\text{Estab}_{G}(x):=\{g\in G:x\cdot g=x\}$ +\begin_inset Formula $\text{Estab}_{G}(x):=\{g\in G\mid x\cdot g=x\}$ \end_inset . @@ -3050,7 +3050,7 @@ acción por translación a la izquierda y \begin_inset Formula \[ -\text{Estab}_{G}(xH)=\{g\in G:gxH=xH\}=\{g\in G:x^{-1}gx\in H\}=xHx^{-1}=H^{x^{-1}}. +\text{Estab}_{G}(xH)=\{g\in G\mid gxH=xH\}=\{g\in G\mid x^{-1}gx\in H\}=xHx^{-1}=H^{x^{-1}}. \] \end_inset @@ -3170,7 +3170,7 @@ normalizador \end_inset es -\begin_inset Formula $N_{G}(H):=\text{Estab}_{G}(H)=\{g\in G:H^{g}=H\}$ +\begin_inset Formula $N_{G}(H):=\text{Estab}_{G}(H)=\{g\in G\mid H^{g}=H\}$ \end_inset , el mayor subgrupo de @@ -3393,12 +3393,12 @@ status open \begin_layout Plain Layout Si la acción es por la izquierda, -\begin_inset Formula $\text{Estab}_{G}(x)^{g^{-1}}=\{ghg^{-1}:h\cdot x=x\}=\{p\in G:g^{-1}pg\cdot x=x\}=\{p\in G:p\cdot(g\cdot x)=g\cdot x\}=\text{Estab}_{G}(g\cdot x)$ +\begin_inset Formula $\text{Estab}_{G}(x)^{g^{-1}}=\{ghg^{-1}\mid h\cdot x=x\}=\{p\in G\mid g^{-1}pg\cdot x=x\}=\{p\in G\mid p\cdot(g\cdot x)=g\cdot x\}=\text{Estab}_{G}(g\cdot x)$ \end_inset . Si es por la derecha, -\begin_inset Formula $\text{Estab}_{G}(x)^{g}=\{g^{-1}hg:x\cdot h=x\}=\{p\in G:x\cdot gpg^{-1}=x\}=\{p\in G:(x\cdot g)\cdot p=x\cdot g\}$ +\begin_inset Formula $\text{Estab}_{G}(x)^{g}=\{g^{-1}hg\mid x\cdot h=x\}=\{p\in G\mid x\cdot gpg^{-1}=x\}=\{p\in G\mid (x\cdot g)\cdot p=x\cdot g\}$ \end_inset . @@ -3606,7 +3606,7 @@ status open Demostración: \series default Sea -\begin_inset Formula $X:=\{(g_{1},\dots,g_{p})\in G^{p}:g_{1}\cdots g_{p}=1\}$ +\begin_inset Formula $X:=\{(g_{1},\dots,g_{p})\in G^{p}\mid g_{1}\cdots g_{p}=1\}$ \end_inset , @@ -98,7 +98,7 @@ suma \end_inset a -\begin_inset Formula $\sum_{i\in I}B_{i}:=\{\sum_{i\in I}b_{i}:b_{i}\in B_{i},\{i\in I:b_{i}\neq0\}\text{ es finito}\}$ +\begin_inset Formula $\sum_{i\in I}B_{i}:=\{\sum_{i\in I}b_{i}\mid b_{i}\in B_{i},\{i\in I\mid b_{i}\neq0\}\text{ es finito}\}$ \end_inset . @@ -453,7 +453,7 @@ Para \end_inset con -\begin_inset Formula $\{i\in I:b_{i}\neq0\}$ +\begin_inset Formula $\{i\in I\mid b_{i}\neq0\}$ \end_inset finito. @@ -704,7 +704,7 @@ subgrupo de es \begin_inset Formula \[ -t_{p}(A):=\{a\in A:\exists n\in\mathbb{N}:p^{n}a=0\}=\{a\in A:|a|\text{ es potencia de }p\}. +t_{p}(A):=\{a\in A\mid \exists n\in\mathbb{N}\mid p^{n}a=0\}=\{a\in A\mid |a|\text{ es potencia de }p\}. \] \end_inset @@ -168,7 +168,7 @@ mueve \series default en caso contrario. Llamamos -\begin_inset Formula $M(\sigma):=\{i\in\mathbb{N}_{n}:\sigma(i)\neq i\}$ +\begin_inset Formula $M(\sigma):=\{i\in\mathbb{N}_{n}\mid \sigma(i)\neq i\}$ \end_inset , y es claro que |
