diff options
Diffstat (limited to 'ggs/n1.lyx')
| -rw-r--r-- | ggs/n1.lyx | 30 |
1 files changed, 15 insertions, 15 deletions
@@ -137,15 +137,15 @@ Entonces, dada una curva \end_inset p.p.a., si -\begin_inset Formula $\mathbf{t}(s):=\alpha'(s)$ +\begin_inset Formula $\mathbf{t}(s)\coloneqq \alpha'(s)$ \end_inset y -\begin_inset Formula $\mathbf{n}(s):=J\mathbf{t}(s)$ +\begin_inset Formula $\mathbf{n}(s)\coloneqq J\mathbf{t}(s)$ \end_inset [...], [...] -\begin_inset Formula $\kappa_{\alpha}(s):=\langle\mathbf{t}'(s),\mathbf{n}(s)\rangle$ +\begin_inset Formula $\kappa_{\alpha}(s)\coloneqq \langle\mathbf{t}'(s),\mathbf{n}(s)\rangle$ \end_inset [...]. @@ -192,12 +192,12 @@ fórmulas de Frenet \end_inset es su vector tangente, [...] -\begin_inset Formula $\kappa(s):=|\mathbf{t}'(s)|$ +\begin_inset Formula $\kappa(s)\coloneqq |\mathbf{t}'(s)|$ \end_inset . [...] -\begin_inset Formula $\mathbf{n}(s):=\frac{\mathbf{t}'(s)}{\kappa(s)}[...],$ +\begin_inset Formula $\mathbf{n}(s)\coloneqq \frac{\mathbf{t}'(s)}{\kappa(s)}[...],$ \end_inset [...] @@ -613,11 +613,11 @@ Para un \end_inset , -\begin_inset Formula $V(t)^{\top}:=\pi_{T_{\alpha(t)}S}V(t)$ +\begin_inset Formula $V(t)^{\top}\coloneqq \pi_{T_{\alpha(t)}S}V(t)$ \end_inset y -\begin_inset Formula $V(t)^{\bot}:=\pi_{(T_{\alpha(t)}S)^{\bot}}V(t)$ +\begin_inset Formula $V(t)^{\bot}\coloneqq \pi_{(T_{\alpha(t)}S)^{\bot}}V(t)$ \end_inset . @@ -772,7 +772,7 @@ Propiedades: Sean \begin_deeper \begin_layout Standard Si -\begin_inset Formula $\pi:=\pi_{T_{\alpha(t)}S}$ +\begin_inset Formula $\pi\coloneqq \pi_{T_{\alpha(t)}S}$ \end_inset , @@ -881,7 +881,7 @@ Sean \end_inset , -\begin_inset Formula $\tilde{\alpha}:=(u,v):=X^{-1}\circ\alpha:I\to U$ +\begin_inset Formula $\tilde{\alpha}\coloneqq (u,v)\coloneqq X^{-1}\circ\alpha:I\to U$ \end_inset y @@ -914,11 +914,11 @@ Demostración: \end_inset , -\begin_inset Formula $p:=\alpha(t)$ +\begin_inset Formula $p\coloneqq \alpha(t)$ \end_inset , -\begin_inset Formula $q:=X^{-1}(p)$ +\begin_inset Formula $q\coloneqq X^{-1}(p)$ \end_inset y @@ -1148,7 +1148,7 @@ E.d.o intrínseca de los campos paralelos: \end_inset , -\begin_inset Formula $(u,v):=X^{-1}\circ\alpha:I\to U$ +\begin_inset Formula $(u,v)\coloneqq X^{-1}\circ\alpha:I\to U$ \end_inset y @@ -1391,11 +1391,11 @@ Sean \end_inset , -\begin_inset Formula $p:=\alpha(a)$ +\begin_inset Formula $p\coloneqq \alpha(a)$ \end_inset , -\begin_inset Formula $q:=\alpha(b)$ +\begin_inset Formula $q\coloneqq \alpha(b)$ \end_inset y @@ -1440,7 +1440,7 @@ La aplicación transporte paralelo \series default es la -\begin_inset Formula $P_{\alpha}:=P_{a}^{b}(\alpha):T_{p}S\to T_{q}S$ +\begin_inset Formula $P_{\alpha}\coloneqq P_{a}^{b}(\alpha):T_{p}S\to T_{q}S$ \end_inset que a cada |
