aboutsummaryrefslogtreecommitdiff
path: root/ggs/n1.lyx
diff options
context:
space:
mode:
Diffstat (limited to 'ggs/n1.lyx')
-rw-r--r--ggs/n1.lyx30
1 files changed, 15 insertions, 15 deletions
diff --git a/ggs/n1.lyx b/ggs/n1.lyx
index b2f3a82..3cd6e5a 100644
--- a/ggs/n1.lyx
+++ b/ggs/n1.lyx
@@ -137,15 +137,15 @@ Entonces, dada una curva
\end_inset
p.p.a., si
-\begin_inset Formula $\mathbf{t}(s):=\alpha'(s)$
+\begin_inset Formula $\mathbf{t}(s)\coloneqq \alpha'(s)$
\end_inset
y
-\begin_inset Formula $\mathbf{n}(s):=J\mathbf{t}(s)$
+\begin_inset Formula $\mathbf{n}(s)\coloneqq J\mathbf{t}(s)$
\end_inset
[...], [...]
-\begin_inset Formula $\kappa_{\alpha}(s):=\langle\mathbf{t}'(s),\mathbf{n}(s)\rangle$
+\begin_inset Formula $\kappa_{\alpha}(s)\coloneqq \langle\mathbf{t}'(s),\mathbf{n}(s)\rangle$
\end_inset
[...].
@@ -192,12 +192,12 @@ fórmulas de Frenet
\end_inset
es su vector tangente, [...]
-\begin_inset Formula $\kappa(s):=|\mathbf{t}'(s)|$
+\begin_inset Formula $\kappa(s)\coloneqq |\mathbf{t}'(s)|$
\end_inset
.
[...]
-\begin_inset Formula $\mathbf{n}(s):=\frac{\mathbf{t}'(s)}{\kappa(s)}[...],$
+\begin_inset Formula $\mathbf{n}(s)\coloneqq \frac{\mathbf{t}'(s)}{\kappa(s)}[...],$
\end_inset
[...]
@@ -613,11 +613,11 @@ Para un
\end_inset
,
-\begin_inset Formula $V(t)^{\top}:=\pi_{T_{\alpha(t)}S}V(t)$
+\begin_inset Formula $V(t)^{\top}\coloneqq \pi_{T_{\alpha(t)}S}V(t)$
\end_inset
y
-\begin_inset Formula $V(t)^{\bot}:=\pi_{(T_{\alpha(t)}S)^{\bot}}V(t)$
+\begin_inset Formula $V(t)^{\bot}\coloneqq \pi_{(T_{\alpha(t)}S)^{\bot}}V(t)$
\end_inset
.
@@ -772,7 +772,7 @@ Propiedades: Sean
\begin_deeper
\begin_layout Standard
Si
-\begin_inset Formula $\pi:=\pi_{T_{\alpha(t)}S}$
+\begin_inset Formula $\pi\coloneqq \pi_{T_{\alpha(t)}S}$
\end_inset
,
@@ -881,7 +881,7 @@ Sean
\end_inset
,
-\begin_inset Formula $\tilde{\alpha}:=(u,v):=X^{-1}\circ\alpha:I\to U$
+\begin_inset Formula $\tilde{\alpha}\coloneqq (u,v)\coloneqq X^{-1}\circ\alpha:I\to U$
\end_inset
y
@@ -914,11 +914,11 @@ Demostración:
\end_inset
,
-\begin_inset Formula $p:=\alpha(t)$
+\begin_inset Formula $p\coloneqq \alpha(t)$
\end_inset
,
-\begin_inset Formula $q:=X^{-1}(p)$
+\begin_inset Formula $q\coloneqq X^{-1}(p)$
\end_inset
y
@@ -1148,7 +1148,7 @@ E.d.o intrínseca de los campos paralelos:
\end_inset
,
-\begin_inset Formula $(u,v):=X^{-1}\circ\alpha:I\to U$
+\begin_inset Formula $(u,v)\coloneqq X^{-1}\circ\alpha:I\to U$
\end_inset
y
@@ -1391,11 +1391,11 @@ Sean
\end_inset
,
-\begin_inset Formula $p:=\alpha(a)$
+\begin_inset Formula $p\coloneqq \alpha(a)$
\end_inset
,
-\begin_inset Formula $q:=\alpha(b)$
+\begin_inset Formula $q\coloneqq \alpha(b)$
\end_inset
y
@@ -1440,7 +1440,7 @@ La
aplicación transporte paralelo
\series default
es la
-\begin_inset Formula $P_{\alpha}:=P_{a}^{b}(\alpha):T_{p}S\to T_{q}S$
+\begin_inset Formula $P_{\alpha}\coloneqq P_{a}^{b}(\alpha):T_{p}S\to T_{q}S$
\end_inset
que a cada