diff options
Diffstat (limited to 'ggs/n2.lyx')
| -rw-r--r-- | ggs/n2.lyx | 74 |
1 files changed, 37 insertions, 37 deletions
@@ -195,7 +195,7 @@ Sea \end_inset un cambio de parámetro y -\begin_inset Formula $\alpha:=\gamma\circ h$ +\begin_inset Formula $\alpha\coloneqq \gamma\circ h$ \end_inset , entonces @@ -287,7 +287,7 @@ Si \end_inset es una curva y -\begin_inset Formula $(u,v):=X^{-1}\circ\alpha:I\to U$ +\begin_inset Formula $(u,v)\coloneqq X^{-1}\circ\alpha:I\to U$ \end_inset , @@ -360,7 +360,7 @@ Teorema de Picard en un abierto: \end_inset existe -\begin_inset Formula $K:=[t_{0}-\alpha,t_{0}+\alpha]\times\overline{B}(x_{0},b)\subseteq\Omega$ +\begin_inset Formula $K\coloneqq [t_{0}-\alpha,t_{0}+\alpha]\times\overline{B}(x_{0},b)\subseteq\Omega$ \end_inset tal que @@ -569,7 +569,7 @@ intervalo maximal de existencia Demostración: \series default Sea -\begin_inset Formula ${\cal J}_{p,v}:=\{(I,\alpha)\mid \alpha\mid I\to S\text{ geodésica},0\in I,\alpha(0)=p,\alpha'(0)=v\}$ +\begin_inset Formula ${\cal J}_{p,v}\coloneqq \{(I,\alpha)\mid \alpha\mid I\to S\text{ geodésica},0\in I,\alpha(0)=p,\alpha'(0)=v\}$ \end_inset . @@ -586,7 +586,7 @@ Demostración: \end_inset , -\begin_inset Formula $(u_{0},v_{0}):=X^{-1}(p)$ +\begin_inset Formula $(u_{0},v_{0})\coloneqq X^{-1}(p)$ \end_inset y @@ -619,7 +619,7 @@ Demostración: \end_inset , y entonces -\begin_inset Formula $\alpha(t):=X(u(t),v(t))$ +\begin_inset Formula $\alpha(t)\coloneqq X(u(t),v(t))$ \end_inset es una geodésica con @@ -669,7 +669,7 @@ Sean ahora es abierto y, por el teorema del peine, también conexo, luego es un intervalo. Sea -\begin_inset Formula $A:=\{t\in I_{1}\cap I_{2}\mid \alpha_{1}(t)=\alpha_{2}(t),\alpha'_{1}(t)=\alpha'_{2}(t)\}$ +\begin_inset Formula $A\coloneqq \{t\in I_{1}\cap I_{2}\mid \alpha_{1}(t)=\alpha_{2}(t),\alpha'_{1}(t)=\alpha'_{2}(t)\}$ \end_inset , y queremos ver que @@ -694,7 +694,7 @@ Sean ahora \end_inset , y es cerrado por ser la anti-imagen del 0 por la función continua -\begin_inset Formula $F(t):=\Vert\alpha_{1}(t)-\alpha_{2}(t)\Vert+\Vert\alpha'_{1}(t)+\alpha'_{2}(t)\Vert$ +\begin_inset Formula $F(t)\coloneqq \Vert\alpha_{1}(t)-\alpha_{2}(t)\Vert+\Vert\alpha'_{1}(t)+\alpha'_{2}(t)\Vert$ \end_inset . @@ -742,15 +742,15 @@ Sean ahora \end_inset , y si -\begin_inset Formula $\varepsilon:=\min\{\varepsilon_{1},\varepsilon_{2}\}$ +\begin_inset Formula $\varepsilon\coloneqq \min\{\varepsilon_{1},\varepsilon_{2}\}$ \end_inset , -\begin_inset Formula $(u_{1},v_{1}):=X^{-1}\circ\alpha_{1}$ +\begin_inset Formula $(u_{1},v_{1})\coloneqq X^{-1}\circ\alpha_{1}$ \end_inset y -\begin_inset Formula $(u_{2},v_{2}):=X^{-1}\circ\alpha_{2}$ +\begin_inset Formula $(u_{2},v_{2})\coloneqq X^{-1}\circ\alpha_{2}$ \end_inset , entonces @@ -802,7 +802,7 @@ Así, . Sea entonces -\begin_inset Formula $I_{v}:=\bigcup_{(I,\alpha)\in{\cal J}_{p,v}}I$ +\begin_inset Formula $I_{v}\coloneqq \bigcup_{(I,\alpha)\in{\cal J}_{p,v}}I$ \end_inset , @@ -892,7 +892,7 @@ Demostración: \end_inset con -\begin_inset Formula $\alpha(t):=\gamma_{v}(\lambda t)$ +\begin_inset Formula $\alpha(t)\coloneqq \gamma_{v}(\lambda t)$ \end_inset , claramente @@ -925,7 +925,7 @@ e . Ahora bien, sea -\begin_inset Formula $w:=\lambda v$ +\begin_inset Formula $w\coloneqq \lambda v$ \end_inset y @@ -933,7 +933,7 @@ e \end_inset dada por -\begin_inset Formula $\beta(t):=\gamma_{w}(\frac{1}{\lambda}v)$ +\begin_inset Formula $\beta(t)\coloneqq \gamma_{w}(\frac{1}{\lambda}v)$ \end_inset , por el mismo argumento es @@ -1024,7 +1024,7 @@ Cálculo de \end_inset , [...] -\begin_inset Formula $E(T,\lambda_{k}):=\ker(T-\lambda_{k}I)^{n_{k}}$ +\begin_inset Formula $E(T,\lambda_{k})\coloneqq \ker(T-\lambda_{k}I)^{n_{k}}$ \end_inset , y [...] @@ -1160,15 +1160,15 @@ status open \begin_layout Enumerate Sea -\begin_inset Formula $P:=M_{{\cal CB}}$ +\begin_inset Formula $P\coloneqq M_{{\cal CB}}$ \end_inset , entonces la parte semisimple es -\begin_inset Formula $S:=PS_{0}P^{-1}$ +\begin_inset Formula $S\coloneqq PS_{0}P^{-1}$ \end_inset y la nilpotente es -\begin_inset Formula $N:=A-S$ +\begin_inset Formula $N\coloneqq A-S$ \end_inset . @@ -1421,7 +1421,7 @@ Dado el plano \end_inset dada por -\begin_inset Formula $\gamma(t):=p+tv$ +\begin_inset Formula $\gamma(t)\coloneqq p+tv$ \end_inset . @@ -1430,7 +1430,7 @@ Dado el plano \begin_deeper \begin_layout Standard Tomando la normal -\begin_inset Formula $N(p):=a$ +\begin_inset Formula $N(p)\coloneqq a$ \end_inset , como @@ -1471,7 +1471,7 @@ Dado \end_inset , la geodésica maximal de la esfera -\begin_inset Formula $S:=\mathbb{S}^{2}(r)$ +\begin_inset Formula $S\coloneqq \mathbb{S}^{2}(r)$ \end_inset con condiciones iniciales @@ -1500,11 +1500,11 @@ Dado \begin_deeper \begin_layout Standard Tomando la normal -\begin_inset Formula $N(p):=\frac{p}{r}$ +\begin_inset Formula $N(p)\coloneqq \frac{p}{r}$ \end_inset y llamando -\begin_inset Formula $N(t):=N(\gamma(t))$ +\begin_inset Formula $N(t)\coloneqq N(\gamma(t))$ \end_inset , @@ -1524,7 +1524,7 @@ Tomando la normal \end_inset Si -\begin_inset Formula $c:=\frac{\Vert v\Vert^{2}}{r^{2}}=0$ +\begin_inset Formula $c\coloneqq \frac{\Vert v\Vert^{2}}{r^{2}}=0$ \end_inset , @@ -1579,7 +1579,7 @@ Sean \end_inset , -\begin_inset Formula $S:=\{(x,y,z)\in\mathbb{R}^{3}\mid x^{2}+y^{2}=r^{2}\}$ +\begin_inset Formula $S\coloneqq \{(x,y,z)\in\mathbb{R}^{3}\mid x^{2}+y^{2}=r^{2}\}$ \end_inset un cilindro, @@ -1634,7 +1634,7 @@ p_{3}+tv_{3} \end_inset en otro caso, donde -\begin_inset Formula $c:=\frac{\sqrt{\Vert v\Vert^{2}-v_{3}^{2}}}{r}$ +\begin_inset Formula $c\coloneqq \frac{\sqrt{\Vert v\Vert^{2}-v_{3}^{2}}}{r}$ \end_inset , que es una circunferencia horizontal si @@ -1679,7 +1679,7 @@ N(x,y,z)=\frac{\nabla f}{\Vert\nabla f\Vert}=\frac{(2x,2y,0)}{2\sqrt{x^{2}+y^{2} \end_inset Entonces, sean -\begin_inset Formula $N(t):=N(\gamma(t))$ +\begin_inset Formula $N(t)\coloneqq N(\gamma(t))$ \end_inset y @@ -1897,7 +1897,7 @@ Sea triedro de Darboux \series default es la base [...] -\begin_inset Formula $(\alpha'(s),J\alpha'(s):=\alpha'(s)\wedge N(\alpha(s)),N(\alpha(s))\rangle$ +\begin_inset Formula $(\alpha'(s),J\alpha'(s)\coloneqq \alpha'(s)\wedge N(\alpha(s)),N(\alpha(s))\rangle$ \end_inset . @@ -1910,7 +1910,7 @@ triedro de Darboux \end_inset donde -\begin_inset Formula $\kappa_{g}:=\langle\alpha'',J\alpha'\rangle:I\to\mathbb{R}$ +\begin_inset Formula $\kappa_{g}\coloneqq \langle\alpha'',J\alpha'\rangle:I\to\mathbb{R}$ \end_inset , es la @@ -1926,7 +1926,7 @@ curvatura geodésica \end_inset [, y -\begin_inset Formula $\kappa_{n}:=\langle\alpha'',N(\alpha)\rangle$ +\begin_inset Formula $\kappa_{n}\coloneqq \langle\alpha'',N(\alpha)\rangle$ \end_inset es la @@ -1995,7 +1995,7 @@ Si \end_inset es un cambio de parámetro que conserva la orientación con -\begin_inset Formula $\beta:=\alpha\circ h$ +\begin_inset Formula $\beta\coloneqq \alpha\circ h$ \end_inset p.p.a., la curvatura geodésica de @@ -2027,7 +2027,7 @@ Demostración: \end_inset , sea -\begin_inset Formula $s:=h^{-1}(t)$ +\begin_inset Formula $s\coloneqq h^{-1}(t)$ \end_inset , @@ -2080,7 +2080,7 @@ pregeodésica \end_inset tal que -\begin_inset Formula $\beta:=\alpha\circ h$ +\begin_inset Formula $\beta\coloneqq \alpha\circ h$ \end_inset es una geodésica de @@ -2112,7 +2112,7 @@ Sea \end_inset un cambio de parámetro tal que -\begin_inset Formula $\beta:=\alpha\circ h$ +\begin_inset Formula $\beta\coloneqq \alpha\circ h$ \end_inset es una geodésica, entonces @@ -2124,7 +2124,7 @@ Sea \end_inset , luego -\begin_inset Formula $\gamma(s):=\beta(\frac{s}{c})$ +\begin_inset Formula $\gamma(s)\coloneqq \beta(\frac{s}{c})$ \end_inset es una geodésica y es p.p.a. @@ -2134,7 +2134,7 @@ Sea . Sea entonces -\begin_inset Formula $\tilde{h}(s):=h(\frac{s}{c})$ +\begin_inset Formula $\tilde{h}(s)\coloneqq h(\frac{s}{c})$ \end_inset , entonces |
