aboutsummaryrefslogtreecommitdiff
path: root/ggs/n2.lyx
diff options
context:
space:
mode:
Diffstat (limited to 'ggs/n2.lyx')
-rw-r--r--ggs/n2.lyx213
1 files changed, 169 insertions, 44 deletions
diff --git a/ggs/n2.lyx b/ggs/n2.lyx
index a0f5b5e..d2f3f42 100644
--- a/ggs/n2.lyx
+++ b/ggs/n2.lyx
@@ -833,6 +833,128 @@ Así,
está bien definido por lo anterior y cumple las propiedades.
\end_layout
+\begin_layout Standard
+
+\series bold
+Lema de homogeneidad de las geodésicas:
+\series default
+ Sean
+\begin_inset Formula $S$
+\end_inset
+
+ una superficie regular,
+\begin_inset Formula $p\in S$
+\end_inset
+
+,
+\begin_inset Formula $v\in T_{p}S$
+\end_inset
+
+,
+\begin_inset Formula $\gamma_{v}:I_{v}\to S$
+\end_inset
+
+ la geodésica maximal con condiciones iniciales
+\begin_inset Formula $p$
+\end_inset
+
+ y
+\begin_inset Formula $v$
+\end_inset
+
+ y
+\begin_inset Formula $\lambda\in\mathbb{R}^{*}$
+\end_inset
+
+, entonces
+\begin_inset Formula $\gamma_{\lambda v}:I_{\gamma v}\to S$
+\end_inset
+
+ viene dada por
+\begin_inset Formula $I_{\lambda v}=\frac{1}{\lambda}I_{v}=\{\frac{t}{v}\}_{t\in I_{v}}$
+\end_inset
+
+ y
+\begin_inset Formula $\gamma_{\lambda v}(t)=\gamma_{v}(\lambda t)$
+\end_inset
+
+ para todo
+\begin_inset Formula $t\in I_{\lambda v}$
+\end_inset
+
+.
+
+\series bold
+Demostración:
+\series default
+ Sea
+\begin_inset Formula $\alpha:I\to S$
+\end_inset
+
+ con
+\begin_inset Formula $\alpha(t):=\gamma_{v}(\lambda t)$
+\end_inset
+
+, claramente
+\begin_inset Formula $I=\frac{1}{\lambda}I_{v}$
+\end_inset
+
+, pero
+\begin_inset Formula $\alpha$
+\end_inset
+
+ es una reparametrización afín de
+\begin_inset Formula $\gamma$
+\end_inset
+
+ y por tanto es una geodésica,
+\begin_inset Formula $\alpha(0)=\gamma(0)=p$
+\end_inset
+
+ y
+\begin_inset Formula $\alpha'(0)=\lambda\gamma'_{v}(0)=\lambda v$
+\end_inset
+
+, de modo que por unicidad es
+\begin_inset Formula $\alpha\equiv\gamma_{\lambda v}|_{I}$
+\end_inset
+
+e
+\begin_inset Formula $I=\frac{1}{\lambda}I_{v}\subseteq I_{\lambda v}$
+\end_inset
+
+.
+ Ahora bien, sea
+\begin_inset Formula $w:=\lambda v$
+\end_inset
+
+ y
+\begin_inset Formula $\beta:I'\to S$
+\end_inset
+
+ dada por
+\begin_inset Formula $\beta(t):=\gamma_{w}(\frac{1}{\lambda}v)$
+\end_inset
+
+, por el mismo argumento es
+\begin_inset Formula $I'=\lambda I_{w}=\lambda I_{\lambda v}\subseteq I_{v}$
+\end_inset
+
+, de modo que
+\begin_inset Formula $I_{\lambda v}\subseteq\frac{1}{\lambda}I_{v}$
+\end_inset
+
+ e
+\begin_inset Formula $I_{\lambda v}=\frac{1}{\lambda}I_{v}$
+\end_inset
+
+, con
+\begin_inset Formula $\alpha=\gamma_{\lambda v}$
+\end_inset
+
+.
+\end_layout
+
\begin_layout Section
Ecuaciones diferenciales lineales
\end_layout
@@ -949,34 +1071,31 @@ Hallar bases
.
\end_layout
-\begin_layout Enumerate
-Respecto de la base
+\begin_layout Standard
\begin_inset ERT
status open
\begin_layout Plain Layout
-{
+
+\backslash
+eremember
\end_layout
\end_inset
-\begin_inset Formula
-\begin{align*}
-{\cal B}:= & (w_{11},\dots,w_{1p_{1}},\dots,w_{r1},\dots,w_{rp_{r}},\\
- & \,v_{11},u_{11},\dots,v_{1q_{1}},u_{1q_{1}},\dots,v_{s1},u_{s1},\dots,v_{sq_{s}},u_{sq_{s}}),
-\end{align*}
-
-\end_inset
-
+\end_layout
+\begin_layout Standard
\begin_inset ERT
status open
\begin_layout Plain Layout
-}
+
+\backslash
+sremember{EDO}
\end_layout
\end_inset
@@ -984,44 +1103,43 @@ status open
\end_layout
-\begin_layout Standard
-\begin_inset ERT
+\begin_layout Enumerate
+\begin_inset Argument item:1
status open
\begin_layout Plain Layout
-
-
-\backslash
-eremember
+3.
\end_layout
\end_inset
-
-\end_layout
-
-\begin_layout Standard
+Respecto de la base
\begin_inset ERT
status open
\begin_layout Plain Layout
-
-\backslash
-sremember{EDO}
+{
\end_layout
\end_inset
-\end_layout
+\begin_inset Formula
+\begin{align*}
+{\cal B}:= & (w_{11},\dots,w_{1p_{1}},\dots,w_{r1},\dots,w_{rp_{r}},\\
+ & \,v_{11},u_{11},\dots,v_{1q_{1}},u_{1q_{1}},\dots,v_{s1},u_{s1},\dots,v_{sq_{s}},u_{sq_{s}}),
+\end{align*}
-\begin_layout Enumerate
-\begin_inset Argument item:1
+\end_inset
+
+
+\begin_inset ERT
status open
\begin_layout Plain Layout
+}
\end_layout
\end_inset
@@ -1187,24 +1305,10 @@ status open
\end_inset
-Si
-\begin_inset Formula $A$
-\end_inset
-
- es [de la primera forma][...], [...]
-\begin_inset Formula
-\[
-e^{tA}[...]=e^{t\lambda}\begin{pmatrix}1\\
-t & 1\\
-\frac{t^{2}}{2} & t & 1\\
-\vdots & \ddots & \ddots & \ddots\\
-\frac{t^{n-1}}{(n-1)!} & \cdots & \frac{t^{2}}{2} & t & 1
-\end{pmatrix}
-\]
-
-\end_inset
+\end_layout
+\begin_layout Standard
\begin_inset ERT
status open
@@ -1237,6 +1341,27 @@ sremember{EDO}
\end_layout
\begin_layout Standard
+Si
+\begin_inset Formula $A$
+\end_inset
+
+ es [de la primera forma][...], [...]
+\begin_inset Formula
+\[
+e^{tA}[...]=e^{t\lambda}\begin{pmatrix}1\\
+t & 1\\
+\frac{t^{2}}{2} & t & 1\\
+\vdots & \ddots & \ddots & \ddots\\
+\frac{t^{n-1}}{(n-1)!} & \cdots & \frac{t^{2}}{2} & t & 1
+\end{pmatrix}
+\]
+
+\end_inset
+
+
+\end_layout
+
+\begin_layout Standard
Si [es de la segunda][...],
\begin_inset Formula
\[