aboutsummaryrefslogtreecommitdiff
path: root/ggs/n3.lyx
diff options
context:
space:
mode:
Diffstat (limited to 'ggs/n3.lyx')
-rw-r--r--ggs/n3.lyx21
1 files changed, 15 insertions, 6 deletions
diff --git a/ggs/n3.lyx b/ggs/n3.lyx
index 7210f7f..4bad339 100644
--- a/ggs/n3.lyx
+++ b/ggs/n3.lyx
@@ -1194,11 +1194,15 @@ Sean
\end_inset
Entonces
-\begin_inset Formula $\Vert\alpha'(t)\Vert^{2}=r'(t)^{2}\Vert d(\exp_{p_{0}})_{\tilde{\alpha}(t)}(V(t))\Vert^{2}+2r(t)r'(t)\langle d(\exp_{p_{0}})_{\tilde{\alpha}(t)}(V(t)),d(\exp_{p_{0}})_{\tilde{\alpha}(t)}(V'(t))\rangle+r(t)^{2}\Vert d(\exp_{p_{0}})_{\tilde{\alpha}(t)}(V'(t))\Vert^{2}$
+\begin_inset Formula
+\begin{align*}
+\Vert\alpha'(t)\Vert^{2}= & r'(t)^{2}\Vert d(\exp_{p_{0}})_{\tilde{\alpha}(t)}(V(t))\Vert^{2}\\
+ & +2r(t)r'(t)\langle d(\exp_{p_{0}})_{\tilde{\alpha}(t)}(V(t)),d(\exp_{p_{0}})_{\tilde{\alpha}(t)}(V'(t))\rangle+r(t)^{2}\Vert d(\exp_{p_{0}})_{\tilde{\alpha}(t)}(V'(t))\Vert^{2}.
+\end{align*}
+
\end_inset
-.
- Como
+Como
\begin_inset Formula $V(t)$
\end_inset
@@ -1211,10 +1215,14 @@ Entonces
\end_inset
, luego
-\begin_inset Formula $\langle r(t)V(t),V'(t)\rangle=r(t)\langle V(t),V'(t)\rangle=0$
+\begin_inset Formula
+\[
+\langle r(t)V(t),V'(t)\rangle=r(t)\langle V(t),V'(t)\rangle=0
+\]
+
\end_inset
- y
+y
\begin_inset Formula
\begin{multline*}
\langle d(\exp_{p_{0}})_{\tilde{\alpha}(t)}(V(t)),d(\exp_{p_{0}})_{\tilde{\alpha}(t)}(V'(t))\rangle=\\
@@ -1881,7 +1889,8 @@ queda
pero
\begin_inset Formula
\begin{multline*}
-\lim_{r\to0}\frac{\partial}{\partial r}\left(\sqrt{\overline{E}\overline{G}-\overline{F}^{2}}(r_{\theta})\right)=\lim_{r\to0}\frac{\frac{\partial}{\partial r}(\overline{E}(r_{\theta}))\overline{G}(r_{\theta})+\overline{E}(r_{\theta})\frac{\partial}{\partial r}(\overline{G}(r_{\theta}))-2\overline{F}(r_{\theta})\frac{\partial}{\partial r}(\overline{F}(r_{\theta}))}{2\sqrt{\overline{E}\overline{G}-\overline{F}^{2}}(r_{\theta})}\in\mathbb{R},
+\lim_{r\to0}\frac{\partial}{\partial r}\left(\sqrt{\overline{E}\overline{G}-\overline{F}^{2}}(r_{\theta})\right)=\\
+=\lim_{r\to0}\frac{\frac{\partial}{\partial r}(\overline{E}(r_{\theta}))\overline{G}(r_{\theta})+\overline{E}(r_{\theta})\frac{\partial}{\partial r}(\overline{G}(r_{\theta}))-2\overline{F}(r_{\theta})\frac{\partial}{\partial r}(\overline{F}(r_{\theta}))}{2\sqrt{\overline{E}\overline{G}-\overline{F}^{2}}(r_{\theta})}\in\mathbb{R},
\end{multline*}
\end_inset