diff options
Diffstat (limited to 'graf/n1.lyx')
| -rw-r--r-- | graf/n1.lyx | 32 |
1 files changed, 16 insertions, 16 deletions
diff --git a/graf/n1.lyx b/graf/n1.lyx index 921c7d8..0f2f84f 100644 --- a/graf/n1.lyx +++ b/graf/n1.lyx @@ -209,7 +209,7 @@ Dados un grafo \end_inset y -\begin_inset Formula $e:=(i,j)\in E$ +\begin_inset Formula $e\coloneqq (i,j)\in E$ \end_inset , @@ -346,7 +346,7 @@ G^{\complement}:=(V,E^{\complement}):=(V,\{S\in{\cal P}(V)\mid |S|=2,S\notin E\} \end_inset Un grafo -\begin_inset Formula $G':=(V',E')$ +\begin_inset Formula $G'\coloneqq (V',E')$ \end_inset es un @@ -354,7 +354,7 @@ Un grafo subgrafo \series default de -\begin_inset Formula $G:=(V,E)$ +\begin_inset Formula $G\coloneqq (V,E)$ \end_inset si @@ -404,11 +404,11 @@ inducido \end_inset a -\begin_inset Formula $G_{V'}:=(V',E_{V'})$ +\begin_inset Formula $G_{V'}\coloneqq (V',E_{V'})$ \end_inset , donde -\begin_inset Formula $E_{V'}:=\{S\in E\mid S\subseteq V'\}$ +\begin_inset Formula $E_{V'}\coloneqq \{S\in E\mid S\subseteq V'\}$ \end_inset , y @@ -462,7 +462,7 @@ independiente \end_inset , -\begin_inset Formula $G-v:=G-\{v\}$ +\begin_inset Formula $G-v\coloneqq G-\{v\}$ \end_inset , y si @@ -470,7 +470,7 @@ independiente \end_inset , -\begin_inset Formula $G-e:=G-\{e\}$ +\begin_inset Formula $G-e\coloneqq G-\{e\}$ \end_inset . @@ -504,11 +504,11 @@ maximal \begin_layout Standard Dos grafos -\begin_inset Formula $G:=(V,E)$ +\begin_inset Formula $G\coloneqq (V,E)$ \end_inset y -\begin_inset Formula $G':=(V',E')$ +\begin_inset Formula $G'\coloneqq (V',E')$ \end_inset son @@ -540,7 +540,7 @@ Grado de un nodo \begin_layout Standard Dado un grafo -\begin_inset Formula $G:=(V,E)$ +\begin_inset Formula $G\coloneqq (V,E)$ \end_inset , llamamos @@ -627,11 +627,11 @@ eje colgante \series default . Llamamos -\begin_inset Formula $\delta_{G}:=\min_{v\in V}o(v)$ +\begin_inset Formula $\delta_{G}\coloneqq \min_{v\in V}o(v)$ \end_inset y -\begin_inset Formula $\Delta_{G}:=\max_{v\in V}o(v)$ +\begin_inset Formula $\Delta_{G}\coloneqq \max_{v\in V}o(v)$ \end_inset . @@ -749,7 +749,7 @@ Teorema de Erdös y Gallai : \series default Una secuencia -\begin_inset Formula $S:=(d_{1},\dots,d_{n})$ +\begin_inset Formula $S\coloneqq (d_{1},\dots,d_{n})$ \end_inset monótona decreciente de naturales es una secuencia gráfica si y sólo si @@ -1598,7 +1598,7 @@ status open \end_inset Sea -\begin_inset Formula $G:=(\{1,\dots,n\},E)$ +\begin_inset Formula $G\coloneqq (\{1,\dots,n\},E)$ \end_inset un grafo con @@ -2008,7 +2008,7 @@ Representaciones matriciales \begin_layout Standard Dado un grafo no dirigido -\begin_inset Formula $G:=(\{1,\dots,n\},E)$ +\begin_inset Formula $G\coloneqq (\{1,\dots,n\},E)$ \end_inset , la @@ -2020,7 +2020,7 @@ matriz de adyacencia \end_inset es la matriz -\begin_inset Formula $A:=(a_{ij})_{ij}\in{\cal M}_{n}(\mathbb{Z})$ +\begin_inset Formula $A\coloneqq (a_{ij})_{ij}\in{\cal M}_{n}(\mathbb{Z})$ \end_inset dada por |
