aboutsummaryrefslogtreecommitdiff
path: root/graf/n1.lyx
diff options
context:
space:
mode:
Diffstat (limited to 'graf/n1.lyx')
-rw-r--r--graf/n1.lyx32
1 files changed, 16 insertions, 16 deletions
diff --git a/graf/n1.lyx b/graf/n1.lyx
index 921c7d8..0f2f84f 100644
--- a/graf/n1.lyx
+++ b/graf/n1.lyx
@@ -209,7 +209,7 @@ Dados un grafo
\end_inset
y
-\begin_inset Formula $e:=(i,j)\in E$
+\begin_inset Formula $e\coloneqq (i,j)\in E$
\end_inset
,
@@ -346,7 +346,7 @@ G^{\complement}:=(V,E^{\complement}):=(V,\{S\in{\cal P}(V)\mid |S|=2,S\notin E\}
\end_inset
Un grafo
-\begin_inset Formula $G':=(V',E')$
+\begin_inset Formula $G'\coloneqq (V',E')$
\end_inset
es un
@@ -354,7 +354,7 @@ Un grafo
subgrafo
\series default
de
-\begin_inset Formula $G:=(V,E)$
+\begin_inset Formula $G\coloneqq (V,E)$
\end_inset
si
@@ -404,11 +404,11 @@ inducido
\end_inset
a
-\begin_inset Formula $G_{V'}:=(V',E_{V'})$
+\begin_inset Formula $G_{V'}\coloneqq (V',E_{V'})$
\end_inset
, donde
-\begin_inset Formula $E_{V'}:=\{S\in E\mid S\subseteq V'\}$
+\begin_inset Formula $E_{V'}\coloneqq \{S\in E\mid S\subseteq V'\}$
\end_inset
, y
@@ -462,7 +462,7 @@ independiente
\end_inset
,
-\begin_inset Formula $G-v:=G-\{v\}$
+\begin_inset Formula $G-v\coloneqq G-\{v\}$
\end_inset
, y si
@@ -470,7 +470,7 @@ independiente
\end_inset
,
-\begin_inset Formula $G-e:=G-\{e\}$
+\begin_inset Formula $G-e\coloneqq G-\{e\}$
\end_inset
.
@@ -504,11 +504,11 @@ maximal
\begin_layout Standard
Dos grafos
-\begin_inset Formula $G:=(V,E)$
+\begin_inset Formula $G\coloneqq (V,E)$
\end_inset
y
-\begin_inset Formula $G':=(V',E')$
+\begin_inset Formula $G'\coloneqq (V',E')$
\end_inset
son
@@ -540,7 +540,7 @@ Grado de un nodo
\begin_layout Standard
Dado un grafo
-\begin_inset Formula $G:=(V,E)$
+\begin_inset Formula $G\coloneqq (V,E)$
\end_inset
, llamamos
@@ -627,11 +627,11 @@ eje colgante
\series default
.
Llamamos
-\begin_inset Formula $\delta_{G}:=\min_{v\in V}o(v)$
+\begin_inset Formula $\delta_{G}\coloneqq \min_{v\in V}o(v)$
\end_inset
y
-\begin_inset Formula $\Delta_{G}:=\max_{v\in V}o(v)$
+\begin_inset Formula $\Delta_{G}\coloneqq \max_{v\in V}o(v)$
\end_inset
.
@@ -749,7 +749,7 @@ Teorema de Erdös y Gallai
:
\series default
Una secuencia
-\begin_inset Formula $S:=(d_{1},\dots,d_{n})$
+\begin_inset Formula $S\coloneqq (d_{1},\dots,d_{n})$
\end_inset
monótona decreciente de naturales es una secuencia gráfica si y sólo si
@@ -1598,7 +1598,7 @@ status open
\end_inset
Sea
-\begin_inset Formula $G:=(\{1,\dots,n\},E)$
+\begin_inset Formula $G\coloneqq (\{1,\dots,n\},E)$
\end_inset
un grafo con
@@ -2008,7 +2008,7 @@ Representaciones matriciales
\begin_layout Standard
Dado un grafo no dirigido
-\begin_inset Formula $G:=(\{1,\dots,n\},E)$
+\begin_inset Formula $G\coloneqq (\{1,\dots,n\},E)$
\end_inset
, la
@@ -2020,7 +2020,7 @@ matriz de adyacencia
\end_inset
es la matriz
-\begin_inset Formula $A:=(a_{ij})_{ij}\in{\cal M}_{n}(\mathbb{Z})$
+\begin_inset Formula $A\coloneqq (a_{ij})_{ij}\in{\cal M}_{n}(\mathbb{Z})$
\end_inset
dada por