aboutsummaryrefslogtreecommitdiff
path: root/graf
diff options
context:
space:
mode:
Diffstat (limited to 'graf')
-rw-r--r--graf/n5.lyx213
1 files changed, 213 insertions, 0 deletions
diff --git a/graf/n5.lyx b/graf/n5.lyx
index d4c4f1b..d8fa808 100644
--- a/graf/n5.lyx
+++ b/graf/n5.lyx
@@ -242,6 +242,75 @@ En adelante el grafo a considerar será
\end_deeper
\begin_layout Enumerate
+\begin_inset Formula $\chi(G)=0$
+\end_inset
+
+ si y sólo si
+\begin_inset Formula $G$
+\end_inset
+
+ es vacío.
+\end_layout
+
+\begin_deeper
+\begin_layout Enumerate
+\begin_inset Argument item:1
+status open
+
+\begin_layout Plain Layout
+\begin_inset Formula $\implies$
+\end_inset
+
+
+\end_layout
+
+\end_inset
+
+Si
+\begin_inset Formula $\chi(G)=0$
+\end_inset
+
+, en particular existe
+\begin_inset Formula $f:V\to\emptyset$
+\end_inset
+
+ y
+\begin_inset Formula $V=\emptyset$
+\end_inset
+
+.
+\end_layout
+
+\begin_layout Enumerate
+\begin_inset Argument item:1
+status open
+
+\begin_layout Plain Layout
+\begin_inset Formula $\impliedby]$
+\end_inset
+
+
+\end_layout
+
+\end_inset
+
+Si
+\begin_inset Formula $V=\emptyset$
+\end_inset
+
+,
+\begin_inset Formula $E=\emptyset$
+\end_inset
+
+ y
+\begin_inset Formula $f:V\to\emptyset$
+\end_inset
+
+ es una 0-coloración.
+\end_layout
+
+\end_deeper
+\begin_layout Enumerate
\begin_inset Formula $\chi(G)=1$
\end_inset
@@ -311,6 +380,146 @@ Claramente
\end_deeper
\begin_layout Enumerate
+\begin_inset Formula $\chi(G)=2$
+\end_inset
+
+ si y sólo si
+\begin_inset Formula $G$
+\end_inset
+
+ es bipartito con algún eje.
+\end_layout
+
+\begin_deeper
+\begin_layout Enumerate
+\begin_inset Argument item:1
+status open
+
+\begin_layout Plain Layout
+\begin_inset Formula $\implies]$
+\end_inset
+
+
+\end_layout
+
+\end_inset
+
+La partición
+\begin_inset Formula $\{f^{-1}(0),f^{-1}(1)\}$
+\end_inset
+
+ de
+\begin_inset Formula $V$
+\end_inset
+
+ cumple que eje une dos vértices en el mismo conjunto y por tanto todos
+ unen un vértice de uno con uno del otro.
+ Hay algún eje porque si no lo hubiera sería
+\begin_inset Formula $\chi(G)=1$
+\end_inset
+
+.
+\end_layout
+
+\begin_layout Enumerate
+\begin_inset Argument item:1
+status open
+
+\begin_layout Plain Layout
+\begin_inset Formula $\impliedby]$
+\end_inset
+
+
+\end_layout
+
+\end_inset
+
+Sea
+\begin_inset Formula $(A,B)$
+\end_inset
+
+ la partición, definimos
+\begin_inset Formula $f(v):=0$
+\end_inset
+
+ para
+\begin_inset Formula $v\in A$
+\end_inset
+
+ y
+\begin_inset Formula $f(v):=1$
+\end_inset
+
+ para
+\begin_inset Formula $v\in B$
+\end_inset
+
+.
+ Entonces
+\begin_inset Formula $f$
+\end_inset
+
+ es una 2-coloración de
+\begin_inset Formula $G$
+\end_inset
+
+, y como hay algún eje,
+\begin_inset Formula $\chi(G)>1$
+\end_inset
+
+.
+\end_layout
+
+\end_deeper
+\begin_layout Enumerate
+Todo árbol no trivial es bipartito.
+\end_layout
+
+\begin_deeper
+\begin_layout Standard
+Se tiene
+\begin_inset Formula $|V|\geq2$
+\end_inset
+
+ y, sea
+\begin_inset Formula $n(v)$
+\end_inset
+
+ el nivel de un
+\begin_inset Formula $v\in V$
+\end_inset
+
+,
+\begin_inset Formula $f:V\to\{0,1\}$
+\end_inset
+
+ dada por
+\begin_inset Formula $f(v):=[n(v)]_{2}$
+\end_inset
+
+ es una coloración de
+\begin_inset Formula $G$
+\end_inset
+
+.
+ Como
+\begin_inset Formula $G$
+\end_inset
+
+ tiene ejes,
+\begin_inset Formula $\chi(G)>1$
+\end_inset
+
+ y
+\begin_inset Formula $\chi(G)=2$
+\end_inset
+
+.
+\end_layout
+
+\end_deeper
+\begin_layout Enumerate
+Sea
\begin_inset Note Note
status open
@@ -321,6 +530,10 @@ status open
\end_inset
+\begin_inset Formula $C_{n}:=(\{1,\dots,n\},\{\{$
+\end_inset
+
+
\end_layout
\end_body