aboutsummaryrefslogtreecommitdiff
path: root/mne/n4.lyx
diff options
context:
space:
mode:
Diffstat (limited to 'mne/n4.lyx')
-rw-r--r--mne/n4.lyx28
1 files changed, 14 insertions, 14 deletions
diff --git a/mne/n4.lyx b/mne/n4.lyx
index 9aed707..c480167 100644
--- a/mne/n4.lyx
+++ b/mne/n4.lyx
@@ -321,7 +321,7 @@ Consideremos un método multipaso de paso fijo que, para un problema en un
\end_inset
dada por
-\begin_inset Formula $\tau(h):=\max_{i=0}^{n_{h}}\Vert\tau_{i}(h)\Vert$
+\begin_inset Formula $\tau(h)\coloneqq \max_{i=0}^{n_{h}}\Vert\tau_{i}(h)\Vert$
\end_inset
, el método es
@@ -385,7 +385,7 @@ estable
\end_inset
, sea
-\begin_inset Formula $(t_{i},\omega_{i})_{i=0}^{n}:=(t_{hi},\omega_{hi})_{i=0}^{n_{h}}$
+\begin_inset Formula $(t_{i},\omega_{i})_{i=0}^{n}\coloneqq (t_{hi},\omega_{hi})_{i=0}^{n_{h}}$
\end_inset
, si se puede generar una solución
@@ -393,7 +393,7 @@ estable
\end_inset
con
-\begin_inset Formula $\tilde{\omega}_{i}:=\omega_{i}$
+\begin_inset Formula $\tilde{\omega}_{i}\coloneqq \omega_{i}$
\end_inset
para
@@ -468,7 +468,7 @@ Demostración:
\end_inset
los coeficientes del método y
-\begin_inset Formula $\varepsilon_{i}:=h\tau_{i}(h)$
+\begin_inset Formula $\varepsilon_{i}\coloneqq h\tau_{i}(h)$
\end_inset
, como
@@ -561,11 +561,11 @@ teorema
\end_inset
dado por
-\begin_inset Formula $\omega_{0}:=x(t_{0})$
+\begin_inset Formula $\omega_{0}\coloneqq x(t_{0})$
\end_inset
y
-\begin_inset Formula $\omega_{i+1}:=\omega_{i}+hØ(t_{i},\omega_{i},h)$
+\begin_inset Formula $\omega_{i+1}\coloneqq \omega_{i}+hØ(t_{i},\omega_{i},h)$
\end_inset
con
@@ -594,11 +594,11 @@ Fijado
\end_inset
dados por
-\begin_inset Formula $\omega_{i+1}:=\omega_{i}+hØ(t_{i},\omega_{i},h)$
+\begin_inset Formula $\omega_{i+1}\coloneqq \omega_{i}+hØ(t_{i},\omega_{i},h)$
\end_inset
y
-\begin_inset Formula $\tilde{\omega}_{i+1}:=\tilde{\omega}_{i}+hØ(t_{i},\tilde{\omega}_{i},h)+\varepsilon_{i+1}$
+\begin_inset Formula $\tilde{\omega}_{i+1}\coloneqq \tilde{\omega}_{i}+hØ(t_{i},\tilde{\omega}_{i},h)+\varepsilon_{i+1}$
\end_inset
para ciertos
@@ -641,7 +641,7 @@ Con esto, como
\end_inset
, llamando
-\begin_inset Formula $M:=(1+hL)^{n}$
+\begin_inset Formula $M\coloneqq (1+hL)^{n}$
\end_inset
,
@@ -806,7 +806,7 @@ donde los
polinomio característico
\series default
de la ecuación es
-\begin_inset Formula $P(\lambda):=\lambda^{m}-a_{m-1}\lambda^{m-1}-\dots-a_{1}\lambda-a_{0}$
+\begin_inset Formula $P(\lambda)\coloneqq \lambda^{m}-a_{m-1}\lambda^{m-1}-\dots-a_{1}\lambda-a_{0}$
\end_inset
.
@@ -840,7 +840,7 @@ Dados un método multipaso de paso fijo
\end_inset
y
-\begin_inset Formula $\omega_{i}:=\alpha_{i}$
+\begin_inset Formula $\omega_{i}\coloneqq \alpha_{i}$
\end_inset
para
@@ -950,11 +950,11 @@ begin{sloppypar}
\end_inset
Dados un método implícito
-\begin_inset Formula $\omega_{i}:=F(t_{i},h,\omega_{i-1},\dots,\omega_{i-m})$
+\begin_inset Formula $\omega_{i}\coloneqq F(t_{i},h,\omega_{i-1},\dots,\omega_{i-m})$
\end_inset
y uno explícito
-\begin_inset Formula $\omega_{i}:=G(t_{i},h,\omega_{i},\dots,\omega_{i-m})$
+\begin_inset Formula $\omega_{i}\coloneqq G(t_{i},h,\omega_{i},\dots,\omega_{i-m})$
\end_inset
, el
@@ -1072,7 +1072,7 @@ Sean
\begin_layout Standard
El método es de paso variable, ajustando el paso como en los métodos de
paso fijo pero con error
-\begin_inset Formula $E:=\frac{19}{270}\Vert\beta_{i}-\omega_{i}\Vert$
+\begin_inset Formula $E\coloneqq \frac{19}{270}\Vert\beta_{i}-\omega_{i}\Vert$
\end_inset
.