diff options
Diffstat (limited to 'si')
| -rw-r--r-- | si/n2.lyx | 2 | ||||
| -rw-r--r-- | si/n3.lyx | 16 | ||||
| -rw-r--r-- | si/n7.lyx | 8 |
3 files changed, 14 insertions, 12 deletions
@@ -269,7 +269,7 @@ Y-O \end_inset , sea -\begin_inset Formula $N:=\{S\subseteq V\mid (u,S)\in A\}$ +\begin_inset Formula $N\coloneqq \{S\subseteq V\mid (u,S)\in A\}$ \end_inset , @@ -665,7 +665,7 @@ f(R)=\omega(R)+h(\text{final}(R))\leq\omega(R)+\min\omega({\cal P}_{\text{final} por lo que siempre se procesa antes una solución óptima que una no óptima. Sea ahora -\begin_inset Formula $p:=\inf\omega(A)>0$ +\begin_inset Formula $p\coloneqq \inf\omega(A)>0$ \end_inset , todo @@ -784,7 +784,7 @@ Si es monótona creciente. En efecto, sea -\begin_inset Formula $P_{i}:=v_{0}\cdots v_{i}$ +\begin_inset Formula $P_{i}\coloneqq v_{0}\cdots v_{i}$ \end_inset , para @@ -1008,7 +1008,9 @@ lSSi{$ \backslash text{ \backslash -rm fallo}(t):=r$}{$f_b +rm fallo}(t) +\backslash +coloneqq r$}{$f_b \backslash gets t$} \end_layout @@ -1253,7 +1255,7 @@ Entonces, si \end_inset , dado un -\begin_inset Formula $c:=(s,\{v_{1},\dots,v_{n}\})\in A$ +\begin_inset Formula $c\coloneqq (s,\{v_{1},\dots,v_{n}\})\in A$ \end_inset tal que todos los @@ -1269,7 +1271,7 @@ grafo solución \end_inset es -\begin_inset Formula $(V',A'):=(\{s,v_{1},\dots,v_{n}\}\cup\bigcup_{i}V_{i},c\cup\bigcup_{i}A_{i})$ +\begin_inset Formula $(V',A')\coloneqq (\{s,v_{1},\dots,v_{n}\}\cup\bigcup_{i}V_{i},c\cup\bigcup_{i}A_{i})$ \end_inset , donde @@ -1281,7 +1283,7 @@ grafo solución \end_inset , y el coste de la solución es -\begin_inset Formula $\omega(V',A'):=\omega(c)+\sum_{i}\omega(V_{i},A_{i})$ +\begin_inset Formula $\omega(V',A')\coloneqq \omega(c)+\sum_{i}\omega(V_{i},A_{i})$ \end_inset . @@ -2430,7 +2432,7 @@ Dadas las heurísticas \end_inset para un mismo problema, -\begin_inset Formula $h(v):=\max_{i=1}^{m}h_{i}$ +\begin_inset Formula $h(v)\coloneqq \max_{i=1}^{m}h_{i}$ \end_inset es una heurística que domina a todas las @@ -449,7 +449,7 @@ soporte \end_inset es -\begin_inset Formula $s(Z):=\frac{|\{e\in D\mid Z\subseteq e\}|}{|D|}$ +\begin_inset Formula $s(Z)\coloneqq \frac{|\{e\in D\mid Z\subseteq e\}|}{|D|}$ \end_inset ; la @@ -473,7 +473,7 @@ precisión \end_inset es -\begin_inset Formula $c(X\Rightarrow Y):=\frac{s(X\cup Y)}{s(X)}$ +\begin_inset Formula $c(X\Rightarrow Y)\coloneqq \frac{s(X\cup Y)}{s(X)}$ \end_inset , y su @@ -485,12 +485,12 @@ soporte cobertura \series default es -\begin_inset Formula $s(X\Rightarrow Y):=s(X\cup Y)$ +\begin_inset Formula $s(X\Rightarrow Y)\coloneqq s(X\cup Y)$ \end_inset . Las diapositivas usan la notación de mierda -\begin_inset Formula $|X|:=|\{e\in D\mid X\subseteq e\}|$ +\begin_inset Formula $|X|\coloneqq |\{e\in D\mid X\subseteq e\}|$ \end_inset . |
