diff options
Diffstat (limited to 'tem/n1.lyx')
| -rw-r--r-- | tem/n1.lyx | 2320 |
1 files changed, 2320 insertions, 0 deletions
diff --git a/tem/n1.lyx b/tem/n1.lyx new file mode 100644 index 0000000..63ebf66 --- /dev/null +++ b/tem/n1.lyx @@ -0,0 +1,2320 @@ +#LyX 2.3 created this file. For more info see http://www.lyx.org/ +\lyxformat 544 +\begin_document +\begin_header +\save_transient_properties true +\origin unavailable +\textclass book +\use_default_options true +\maintain_unincluded_children false +\language spanish +\language_package default +\inputencoding auto +\fontencoding global +\font_roman "default" "default" +\font_sans "default" "default" +\font_typewriter "default" "default" +\font_math "auto" "auto" +\font_default_family default +\use_non_tex_fonts false +\font_sc false +\font_osf false +\font_sf_scale 100 100 +\font_tt_scale 100 100 +\use_microtype false +\use_dash_ligatures true +\graphics default +\default_output_format default +\output_sync 0 +\bibtex_command default +\index_command default +\paperfontsize default +\spacing single +\use_hyperref false +\papersize default +\use_geometry false +\use_package amsmath 1 +\use_package amssymb 1 +\use_package cancel 1 +\use_package esint 1 +\use_package mathdots 1 +\use_package mathtools 1 +\use_package mhchem 1 +\use_package stackrel 1 +\use_package stmaryrd 1 +\use_package undertilde 1 +\cite_engine basic +\cite_engine_type default +\biblio_style plain +\use_bibtopic false +\use_indices false +\paperorientation portrait +\suppress_date false +\justification true +\use_refstyle 1 +\use_minted 0 +\index Index +\shortcut idx +\color #008000 +\end_index +\secnumdepth 3 +\tocdepth 3 +\paragraph_separation indent +\paragraph_indentation default +\is_math_indent 0 +\math_numbering_side default +\quotes_style swiss +\dynamic_quotes 0 +\papercolumns 1 +\papersides 1 +\paperpagestyle default +\tracking_changes false +\output_changes false +\html_math_output 0 +\html_css_as_file 0 +\html_be_strict false +\end_header + +\begin_body + +\begin_layout Section +Espacios topológicos +\end_layout + +\begin_layout Standard +Un +\series bold +espacio topológico +\series default + es un par +\begin_inset Formula $(X,{\cal T})$ +\end_inset + + en el que +\begin_inset Formula ${\cal T}\subseteq{\cal P}(X)$ +\end_inset + + y cumple que: +\end_layout + +\begin_layout Enumerate +\begin_inset Formula $X,\emptyset\in{\cal T}$ +\end_inset + +. +\end_layout + +\begin_layout Enumerate +\begin_inset Formula $\{A_{1},\dots,A_{n}\}\subseteq{\cal T}\implies\bigcap_{i=1}^{n}A_{i}\in{\cal T}$ +\end_inset + +. +\end_layout + +\begin_layout Enumerate +\begin_inset Formula $\{A_{i}\}_{i\in I}\subseteq{\cal T}\implies\bigcup_{i\in I}A_{i}\in{\cal T}$ +\end_inset + +. +\end_layout + +\begin_layout Standard +Decimos que +\begin_inset Formula ${\cal T}$ +\end_inset + + es una +\series bold +topología +\series default + para +\begin_inset Formula $X$ +\end_inset + + y sus elementos son +\series bold +conjuntos abiertos +\series default +, o simplemente +\series bold +abiertos +\series default +, de +\begin_inset Formula $(X,{\cal T})$ +\end_inset + +. + Llamamos +\series bold +cerrados +\series default + a los complementarios de los abiertos: +\begin_inset Formula ${\cal C_{T}}:={\cal C}:=\{X\backslash A\}_{A\in{\cal T}}$ +\end_inset + +. + Un +\series bold +entorno +\series default + de +\begin_inset Formula $p\in X$ +\end_inset + + es un abierto que contiene a +\begin_inset Formula $p$ +\end_inset + +, y llamamos +\begin_inset Formula ${\cal E}(p)$ +\end_inset + + a la familia de todos los entornos de +\begin_inset Formula $p$ +\end_inset + +. +\end_layout + +\begin_layout Standard +\begin_inset Formula $A\in{\cal T}$ +\end_inset + + si y sólo si +\begin_inset Formula $\forall p\in A,\exists{\cal U}\in{\cal E}(p):{\cal U}\subseteq A$ +\end_inset + +. +\end_layout + +\begin_layout Itemize +\begin_inset Argument item:1 +status open + +\begin_layout Plain Layout +\begin_inset Formula $\implies]$ +\end_inset + + +\end_layout + +\end_inset + +Dado +\begin_inset Formula $x\in A$ +\end_inset + +, +\begin_inset Formula ${\cal U}=A$ +\end_inset + + es un entorno de +\begin_inset Formula $x$ +\end_inset + + en +\begin_inset Formula $A$ +\end_inset + +. +\end_layout + +\begin_layout Itemize +\begin_inset Argument item:1 +status open + +\begin_layout Plain Layout +\begin_inset Formula $\impliedby]$ +\end_inset + + +\end_layout + +\end_inset + +Para cada +\begin_inset Formula $x\in A$ +\end_inset + +, sea +\begin_inset Formula ${\cal U}_{x}\in{\cal E}(x)$ +\end_inset + + tal que +\begin_inset Formula ${\cal U}_{x}\subseteq A$ +\end_inset + +, se afirma que +\begin_inset Formula $\bigcup_{x\in A}{\cal U}_{x}=A$ +\end_inset + +. +\end_layout + +\begin_deeper +\begin_layout Itemize +\begin_inset Argument item:1 +status open + +\begin_layout Plain Layout +\begin_inset Formula $\subseteq]$ +\end_inset + + +\end_layout + +\end_inset + + +\begin_inset Formula ${\cal U}_{x}\subseteq A\forall x\in A\implies\bigcup_{x\in A}{\cal U}_{x}\subseteq A$ +\end_inset + +. +\end_layout + +\begin_layout Itemize +\begin_inset Argument item:1 +status open + +\begin_layout Plain Layout +\begin_inset Formula $\supseteq]$ +\end_inset + + +\end_layout + +\end_inset + + +\begin_inset Formula $\forall x\in A,x\in{\cal U}_{x}\subseteq\bigcup_{x\in A}{\cal U}_{x}\implies A\subseteq\bigcup_{x\in A}{\cal U}_{x}$ +\end_inset + +. +\end_layout + +\end_deeper +\begin_layout Standard +Propiedades de los cerrados: +\end_layout + +\begin_layout Itemize +\begin_inset Formula $X,\emptyset\in{\cal C_{T}}$ +\end_inset + +. +\end_layout + +\begin_layout Itemize +\begin_inset Formula $\{C_{1},\dots,C_{n}\}\subseteq{\cal C_{T}}\implies\bigcup_{i=1}^{n}C_{i}\in{\cal C_{T}}$ +\end_inset + +. +\end_layout + +\begin_layout Itemize +\begin_inset Formula $\{C_{i}\}_{i\in I}\subseteq{\cal C_{T}}\implies\bigcap_{i\in I}C_{i}\in{\cal C_{T}}$ +\end_inset + +. +\end_layout + +\begin_layout Standard +Si +\begin_inset Formula $A$ +\end_inset + + es un abierto y +\begin_inset Formula $C$ +\end_inset + + un cerrado, entonces +\begin_inset Formula $A\backslash C$ +\end_inset + + es abierto y +\begin_inset Formula $C\backslash A$ +\end_inset + + es cerrado. + +\series bold +Demostración: +\series default + +\begin_inset Formula $X\backslash C$ +\end_inset + + es abierto, por lo que +\begin_inset Formula $A\backslash C=A\cap(X\backslash C)$ +\end_inset + + también. + Por otro lado, +\begin_inset Formula $X\backslash(C\backslash A)=(X\backslash C)\cup A$ +\end_inset + +, que es abierto, por lo que +\begin_inset Formula $C\backslash A$ +\end_inset + + es cerrado. +\end_layout + +\begin_layout Standard +Algunas topologías: +\end_layout + +\begin_layout Itemize +La +\series bold +topología discreta +\series default +: +\begin_inset Formula ${\cal T}_{D}:={\cal P}(X)$ +\end_inset + +, la topología más grande que se puede definir sobre +\begin_inset Formula $X$ +\end_inset + +. +\end_layout + +\begin_layout Itemize +La +\series bold +topología trivial +\series default + o +\series bold +indiscreta +\series default +: +\begin_inset Formula ${\cal T}_{T}=\{\emptyset,X\}$ +\end_inset + +, la topología más pequeña que se puede definir sobre +\begin_inset Formula $X$ +\end_inset + +. +\end_layout + +\begin_layout Itemize +La +\series bold +topología cofinita +\series default +: +\begin_inset Formula ${\cal T}_{CF}=\{\emptyset\}\cup\{A\subseteq X:X\backslash A\text{ es finito}\}$ +\end_inset + +. + Esta se define sobre conjuntos infinitos, pues de lo contrario es +\begin_inset Formula ${\cal T}_{CF}={\cal T}_{D}$ +\end_inset + +. +\begin_inset Newline newline +\end_inset + +Sean +\begin_inset Formula $A,B\in{\cal T}$ +\end_inset + + no vacíos, +\begin_inset Formula $X\backslash A$ +\end_inset + + y +\begin_inset Formula $X\backslash B$ +\end_inset + + son finitos, por lo que +\begin_inset Formula $(X\backslash A)\cup(X\backslash B)=X\backslash(A\cap B)$ +\end_inset + + también lo es y +\begin_inset Formula $A\cap B\in{\cal T}$ +\end_inset + +. + Si, por ejemplo, +\begin_inset Formula $B=\emptyset$ +\end_inset + +, entonces +\begin_inset Formula $A\cap B=\emptyset\in{\cal T}$ +\end_inset + +. + Por otro lado, si +\begin_inset Formula $\{A_{i}\}_{i\in I}\subseteq{\cal T}$ +\end_inset + + es tal que +\begin_inset Formula $\bigcup_{i\in I}A_{i}\neq\emptyset$ +\end_inset + +, entonces +\begin_inset Formula $X\backslash\bigcup_{i\in I}A_{i}=\bigcap_{i\in I}(X\backslash A_{i})$ +\end_inset + + es finito. +\end_layout + +\begin_layout Standard +Dado el espacio topológico +\begin_inset Formula $(X,{\cal T})$ +\end_inset + +, definimos la +\series bold +topología inducida +\series default + por +\begin_inset Formula ${\cal T}$ +\end_inset + + en +\begin_inset Formula $H\subseteq X$ +\end_inset + +, +\series bold +topología relativa +\series default + o +\series bold +topología de subespacio +\series default + como +\begin_inset Formula ${\cal T}|_{H}:={\cal T}_{H}:=\{A\cap H\}_{A\in{\cal T}}$ +\end_inset + +. + Los abiertos de +\begin_inset Formula ${\cal T}_{H}$ +\end_inset + + se llaman +\series bold +abiertos relativos +\series default +, y +\begin_inset Formula $(H,{\cal T}_{H})$ +\end_inset + + es un +\series bold +subespacio topológico +\series default + de +\begin_inset Formula $(X,{\cal T})$ +\end_inset + +. + Todo subespacio topológico es un espacio topológico. + +\series bold +Demostración: +\end_layout + +\begin_layout Enumerate +\begin_inset Formula $\emptyset=\emptyset\cap H$ +\end_inset + + y +\begin_inset Formula $H=X\cap H$ +\end_inset + +. +\end_layout + +\begin_layout Enumerate +Sean +\begin_inset Formula $A',B'\in{\cal T}_{H}$ +\end_inset + +, existen +\begin_inset Formula $A,B\in{\cal T}$ +\end_inset + + tales que +\begin_inset Formula $A'=A\cap H$ +\end_inset + + y +\begin_inset Formula $B'=B\cap H$ +\end_inset + +, por lo que +\begin_inset Formula $A'\cap B'=A\cap B\cap H\in{\cal T}_{H}$ +\end_inset + +. +\end_layout + +\begin_layout Enumerate +Sea +\begin_inset Formula $\{A'_{i}\}_{i\in I}\subseteq{\cal T}_{H}$ +\end_inset + +, para cada +\begin_inset Formula $i\in I$ +\end_inset + + existe un +\begin_inset Formula $A_{i}\in{\cal T}$ +\end_inset + + tal que +\begin_inset Formula $A'_{i}=A_{i}\cap H$ +\end_inset + +, de modo que +\begin_inset Formula $\bigcup_{i\in I}A'_{i}=\bigcup_{i\in I}(A_{i}\cap H)=\left(\bigcup_{i\in I}A_{i}\right)\cap H\in{\cal T}_{H}$ +\end_inset + +. +\end_layout + +\begin_layout Standard +Si +\begin_inset Formula $H$ +\end_inset + + es abierto en +\begin_inset Formula $(X,{\cal T})$ +\end_inset + + entonces todo abierto relativo +\begin_inset Formula $A'\in{\cal T}_{H}$ +\end_inset + + también es abierto en el total. + +\series bold +Demostración: +\series default + Sea +\begin_inset Formula $A\in{\cal T}$ +\end_inset + + tal que +\begin_inset Formula $A'=A\cap H$ +\end_inset + +, como +\begin_inset Formula $A,H\in{\cal T}$ +\end_inset + +, entonces +\begin_inset Formula $A'\in{\cal T}$ +\end_inset + +. +\end_layout + +\begin_layout Standard +Dado +\begin_inset Formula $(X,{\cal T})$ +\end_inset + +, un subconjunto +\begin_inset Formula $C'\subseteq H\subseteq X$ +\end_inset + + es cerrado relativo ( +\begin_inset Formula $C'\in{\cal C}_{H})$ +\end_inset + + si y sólo si existe +\begin_inset Formula $C\in{\cal C}$ +\end_inset + + tal que +\begin_inset Formula $C'=C\cap H$ +\end_inset + +. +\end_layout + +\begin_layout Itemize +\begin_inset Argument item:1 +status open + +\begin_layout Plain Layout +\begin_inset Formula $\implies]$ +\end_inset + + +\end_layout + +\end_inset + +Si +\begin_inset Formula $C'\in{\cal C}_{H}$ +\end_inset + +, entonces +\begin_inset Formula $H\backslash C'\in{\cal T}_{H}$ +\end_inset + +, por lo que existe +\begin_inset Formula $A\in{\cal T}$ +\end_inset + + con +\begin_inset Formula $H\backslash C'=A\cap H$ +\end_inset + +. + Pero si +\begin_inset Formula $C:=X\backslash A$ +\end_inset + +, entonces +\begin_inset Formula $C'=H\backslash(H\backslash C')=H\backslash(A\cap H)=H\backslash A=H\cap(X\backslash A)=H\cap C$ +\end_inset + +. +\end_layout + +\begin_layout Itemize +\begin_inset Argument item:1 +status open + +\begin_layout Plain Layout +\begin_inset Formula $\impliedby]$ +\end_inset + + +\end_layout + +\end_inset + +Sea +\begin_inset Formula $C'=C\cap H$ +\end_inset + + con +\begin_inset Formula $C\in{\cal C}$ +\end_inset + +, entonces +\begin_inset Formula $H\backslash C'=H\backslash(C\cap H)=H\backslash C=H\cap(X\backslash C)$ +\end_inset + +, y como +\begin_inset Formula $X\backslash C\in{\cal T}$ +\end_inset + +, entonces +\begin_inset Formula $H\backslash C'\in{\cal T}_{H}$ +\end_inset + +, por lo que +\begin_inset Formula $C'\in{\cal C}_{H}$ +\end_inset + +. +\end_layout + +\begin_layout Section +Primer axioma de numerabilidad y condición de Hausdorff +\end_layout + +\begin_layout Standard +Una +\series bold +base de entornos +\series default + de +\begin_inset Formula $p\in X$ +\end_inset + + es una subfamilia +\begin_inset Formula ${\cal B}(p)\subseteq{\cal E}(p)$ +\end_inset + + tal que +\begin_inset Formula $\forall V\in{\cal E}(p),\exists U\in{\cal B}(p):U\subseteq V$ +\end_inset + +. + A partir de aquí, un espacio topológico +\begin_inset Formula $(X,{\cal T})$ +\end_inset + + satisface el +\series bold +primer axioma de numerabilidad +\series default +, o es +\series bold +1AN +\series default +, si todo punto posee una base de entornos numerable, es decir, si +\begin_inset Formula $\forall p\in X,\exists{\cal B}(p)\text{ base de }p:|{\cal B}(p)|\leq|\mathbb{N}|$ +\end_inset + +. +\end_layout + +\begin_layout Standard +Así, +\begin_inset Formula $(X,{\cal T}_{T})$ +\end_inset + + es 1AN, pues cada punto posee la base +\begin_inset Formula ${\cal B}(p)=\{X\}$ +\end_inset + +. + Sin embargo, +\begin_inset Formula $(\mathbb{R},{\cal T}_{CF})$ +\end_inset + + no es 1AN. + +\series bold +Demostración: +\series default + Si lo fuera, tendríamos +\begin_inset Formula ${\cal B}(0)=\{U_{n}\}_{n\in\mathbb{N}}$ +\end_inset + +, pero entonces +\begin_inset Formula $U_{n}=\mathbb{R}\backslash F_{n}$ +\end_inset + +, con +\begin_inset Formula $F_{n}$ +\end_inset + + finito, para cada +\begin_inset Formula $n\in\mathbb{N}$ +\end_inset + +. + Ahora bien, como la unión numerable de conjuntos finitos es numerable y + +\begin_inset Formula $\mathbb{R}$ +\end_inset + + no lo es, podemos elegir un punto +\begin_inset Formula $x\in\mathbb{R}\backslash\left(\bigcup_{n\in\mathbb{N}}F_{n}\right)=\bigcap_{n\in\mathbb{N}}(\mathbb{R}\backslash F_{n})=\bigcap_{n\in\mathbb{N}}U_{n}$ +\end_inset + + con +\begin_inset Formula $x\neq0$ +\end_inset + +. + Sea +\begin_inset Formula $A=\mathbb{R}\backslash\{x\}\in{\cal E}(0)$ +\end_inset + +, existirá un +\begin_inset Formula $U_{i}\subseteq A$ +\end_inset + +, pero entonces +\begin_inset Formula $x\in U_{i}\subseteq A=\mathbb{R}\backslash\{x\}\#$ +\end_inset + +. +\end_layout + +\begin_layout Standard +La propiedad 1AN es hereditaria, es decir, si +\begin_inset Formula $(X,{\cal T})$ +\end_inset + + es 1AN, también lo es cualquier +\begin_inset ERT +status open + +\begin_layout Plain Layout + +subes +\backslash +-pa +\backslash +-cio +\end_layout + +\end_inset + + topológico de este. + +\series bold +Demostración: +\series default + Debemos probar que si +\begin_inset Formula $Y\subseteq X$ +\end_inset + +, dado +\begin_inset Formula $y\in Y$ +\end_inset + + y +\begin_inset Formula ${\cal B}(y)$ +\end_inset + + una base de entornos de +\begin_inset Formula $y$ +\end_inset + + en +\begin_inset Formula $X$ +\end_inset + +, debemos probar que +\begin_inset Formula ${\cal B}_{Y}(y)=\{B\cap Y\}_{B\in{\cal B}(y)}$ +\end_inset + + es base de entornos de +\begin_inset Formula $y$ +\end_inset + + en +\begin_inset Formula $Y$ +\end_inset + +, pues entonces +\begin_inset Formula $|{\cal B}_{Y}(y)|\leq|{\cal B}(y)|\leq|\mathbb{N}|$ +\end_inset + +. + Para ello, vemos que todo +\begin_inset Formula $A\in{\cal B}_{Y}(y)$ +\end_inset + + es entorno de +\begin_inset Formula $y$ +\end_inset + + en +\begin_inset Formula $Y$ +\end_inset + +, pues +\begin_inset Formula $A=B\cap Y\in{\cal T}_{Y}$ +\end_inset + + con +\begin_inset Formula $B$ +\end_inset + + un entorno de +\begin_inset Formula $y$ +\end_inset + + en +\begin_inset Formula $X$ +\end_inset + +. + Ahora, si +\begin_inset Formula $V$ +\end_inset + + es un entorno de +\begin_inset Formula $y$ +\end_inset + + en +\begin_inset Formula $Y$ +\end_inset + +, entonces +\begin_inset Formula $V$ +\end_inset + + es abierto en +\begin_inset Formula $Y$ +\end_inset + +, por lo que existe un +\begin_inset Formula $A\in{\cal T}$ +\end_inset + + abierto en +\begin_inset Formula $X$ +\end_inset + + tal que +\begin_inset Formula $V=A\cap Y$ +\end_inset + +, y como +\begin_inset Formula $A$ +\end_inset + + es entorno de +\begin_inset Formula $y$ +\end_inset + + en +\begin_inset Formula $X$ +\end_inset + +, existe un +\begin_inset Formula $B\in{\cal B}(y)$ +\end_inset + + con +\begin_inset Formula $B\subseteq A$ +\end_inset + +, con lo que +\begin_inset Formula $y\in B\cap Y\subseteq A\cap Y=V$ +\end_inset + +. +\end_layout + +\begin_layout Standard +Un espacio topológico +\begin_inset Formula $(X,{\cal T})$ +\end_inset + + es +\series bold +de Hausdorff +\series default + o +\begin_inset Formula $T_{2}$ +\end_inset + + si +\begin_inset Formula $\forall p,q\in X,p\neq q;\exists U\in{\cal E}(p),V\in{\cal E}(q):U\cap V=\emptyset$ +\end_inset + +. + Así, por ejemplo, +\begin_inset Formula $(X,{\cal T}_{T})$ +\end_inset + + no es de Hausdorff para +\begin_inset Formula $|X|\geq2$ +\end_inset + +, pues dados +\begin_inset Formula $x,y\in X$ +\end_inset + + con +\begin_inset Formula $x\neq y$ +\end_inset + +, el único entorno de +\begin_inset Formula $x$ +\end_inset + + es +\begin_inset Formula $X$ +\end_inset + + y contiene a +\begin_inset Formula $y$ +\end_inset + +. +\end_layout + +\begin_layout Section +Espacios métricos +\end_layout + +\begin_layout Standard +Un +\series bold +espacio métrico +\series default + es un par +\begin_inset Formula $(X,d)$ +\end_inset + + formado por un conjunto +\begin_inset Formula $X\neq\emptyset$ +\end_inset + + y una aplicación +\begin_inset Formula $d:X\times X\rightarrow\mathbb{R}$ +\end_inset + + que cumple que +\begin_inset Formula $\forall x,y,z\in X:$ +\end_inset + + +\end_layout + +\begin_layout Enumerate +\begin_inset Formula $d(x,y)\geq0\land(d(x,y)=0\iff x=y)$ +\end_inset + +. +\end_layout + +\begin_layout Enumerate + +\series bold +Simetría: +\series default + +\begin_inset Formula $d(y,x)=d(x,y)$ +\end_inset + +. +\end_layout + +\begin_layout Enumerate + +\series bold +Desigualdad triangular: +\series default + +\begin_inset Formula $d(x,z)\leq d(x,y)+d(y,z)$ +\end_inset + +. +\end_layout + +\begin_layout Standard +Decimos que +\begin_inset Formula $d$ +\end_inset + + es una +\series bold +métrica +\series default + o +\series bold +distancia +\series default + sobre +\begin_inset Formula $X$ +\end_inset + +. + Ejemplos de métricas: +\end_layout + +\begin_layout Itemize + +\series bold +Métrica usual +\series default + sobre +\begin_inset Formula $\mathbb{R}$ +\end_inset + +: +\begin_inset Formula $d_{u}(x,y)=d_{|\,|}(x,y)=|x-y|$ +\end_inset + +. +\end_layout + +\begin_layout Itemize + +\series bold +Métrica del ascensor +\series default + sobre +\begin_inset Formula $\mathbb{R}^{2}$ +\end_inset + + +\series bold +: +\series default + +\begin_inset Formula +\[ +d((x_{1},x_{2}),(y_{1},y_{2}))=\begin{cases} +|x_{2}-y_{2}| & \text{si }x_{1}=y_{1}\\ +|x_{1}-y_{1}|+|x_{2}|+|y_{2}| & \text{si }x_{1}\neq y_{1} +\end{cases} +\] + +\end_inset + + +\end_layout + +\begin_layout Itemize + +\series bold +Métrica discreta +\series default +: +\begin_inset Formula $d_{D}(x,y)=\begin{cases} +0 & \text{si }x=y\\ +1 & \text{si }x\neq y +\end{cases}$ +\end_inset + +. +\end_layout + +\begin_layout Itemize + +\series bold +Espacios métricos producto +\series default +: Dados los espacios métricos +\begin_inset Formula $(X_{1},d_{1}),\dots,(X_{n},d_{n})$ +\end_inset + +, sean +\begin_inset Formula $x=(x_{1},\dots,x_{n}),y=(y_{1},\dots,y_{n})\in\prod_{i=1}^{n}X_{i}$ +\end_inset + +: +\end_layout + +\begin_deeper +\begin_layout Itemize + +\series bold +Métrica del taxi: +\series default + +\begin_inset Formula $d_{T}(x,y)=\sum_{i=1}^{n}d_{i}(x_{i},y_{i})$ +\end_inset + +. +\end_layout + +\begin_layout Itemize + +\series bold +Métrica euclídea: +\series default + +\begin_inset Formula $d_{E}(x,y)=\sqrt{\sum_{i=1}^{n}d_{i}(x_{i},y_{i})^{2}}$ +\end_inset + +. +\end_layout + +\begin_layout Itemize + +\series bold +Métrica del ajedrez: +\series default + +\begin_inset Formula $d_{\infty}(x,y)=\max\{d_{i}(x_{i},y_{i})\}_{1\leq i\leq n}$ +\end_inset + +. +\end_layout + +\begin_layout Itemize +\begin_inset Formula $d_{k}(x,y)=(\sum_{i=1}^{n}d_{i}(x_{i}y_{i})^{k})^{\frac{1}{k}}$ +\end_inset + +. + Entonces se tiene que +\begin_inset Formula $d_{T}=d_{1}$ +\end_inset + +, +\begin_inset Formula $d_{E}=d_{2}$ +\end_inset + + y +\begin_inset Formula $d_{\infty}$ +\end_inset + + tiene un nombre apropiado. +\end_layout + +\end_deeper +\begin_layout Itemize + +\series bold +Métrica estándar acotada +\series default +: +\begin_inset Formula $\overline{d}(x,y)=\min\{1,d(x,y)\}$ +\end_inset + +. + En general, obtenemos las mismas propiedades cambiando el 1 por cualquier + otro número real positivo. +\end_layout + +\begin_layout Itemize + +\series bold +Métrica estándar acotada (bis) +\series default +: +\begin_inset Formula $d'(x,y)=\frac{d(x,y)}{1+d(x,y)}$ +\end_inset + +. +\end_layout + +\begin_layout Itemize + +\series bold +Métrica inducida +\series default + por +\begin_inset Formula $d$ +\end_inset + + en +\begin_inset Formula $H\subseteq X$ +\end_inset + + +\series bold +: +\series default + +\begin_inset Formula $d_{H}:H\times H\rightarrow\mathbb{R}$ +\end_inset + + con +\begin_inset Formula $d_{H}(x,y)=d(x,y)$ +\end_inset + + para cualesquiera +\begin_inset Formula $x,y\in H$ +\end_inset + +. + Decimos que +\begin_inset Formula $(H,d_{H})$ +\end_inset + + es un +\series bold +subespacio métrico +\series default + de +\begin_inset Formula $(X,d)$ +\end_inset + +. +\end_layout + +\begin_layout Standard +\begin_inset ERT +status open + +\begin_layout Plain Layout + + +\backslash +begin{sloppypar} +\end_layout + +\end_inset + +Se define la distancia de un punto +\begin_inset Formula $p\in X$ +\end_inset + + a un subconjunto +\begin_inset Formula $S\subseteq X$ +\end_inset + + como +\begin_inset Formula $d(p,S)=\inf\{d(p,x)\}_{x\in S}$ +\end_inset + +. + Así, si +\begin_inset Formula $p\in S$ +\end_inset + + entonces +\begin_inset Formula $d(p,S)=0$ +\end_inset + +, si bien el recíproco no es cierto. +\begin_inset ERT +status open + +\begin_layout Plain Layout + + +\backslash +end{sloppypar} +\end_layout + +\end_inset + + +\end_layout + +\begin_layout Section +Círculos y bolas +\end_layout + +\begin_layout Standard +El +\series bold +círculo +\series default + en +\begin_inset Formula $(X,d)$ +\end_inset + + centrado en +\begin_inset Formula $p$ +\end_inset + + con radio +\begin_inset Formula $r$ +\end_inset + + es el conjunto +\begin_inset Formula $C_{d}(p;r):=C(p;r):=\{x\in X:d(p,x)=r\}$ +\end_inset + +. + Del mismo modo, la +\series bold +bola abierta +\series default + en +\begin_inset Formula $(X,d)$ +\end_inset + + centrada en +\begin_inset Formula $p$ +\end_inset + + con radio +\begin_inset Formula $r$ +\end_inset + + es el conjunto +\begin_inset Formula $B_{d}(p;r):=B(p;r):=\{x\in X:d(p,x)<r\}$ +\end_inset + +, y la +\series bold +bola cerrada +\series default + en +\begin_inset Formula $(X,d)$ +\end_inset + + centrada en +\begin_inset Formula $p$ +\end_inset + + con radio +\begin_inset Formula $r$ +\end_inset + + es el conjunto +\begin_inset Formula $\overline{B}_{d}(p;r):=\overline{B}(p;r):=B[p;r]:=\{x\in X:d(p,x)\leq r\}$ +\end_inset + +. + Se tiene que +\begin_inset Formula $B_{d}(p;r)=\bigcup_{0<s<r}C_{d}(p;s)$ +\end_inset + +, y +\begin_inset Formula $\overline{B}_{d}(p;r)=\bigcup_{0<s\leq r}C_{d}(p;s)$ +\end_inset + +. + Dado el espacio métrico +\begin_inset Formula $(X,d)$ +\end_inset + + y +\begin_inset Formula $H\subseteq X$ +\end_inset + +, +\begin_inset Formula $B_{d_{H}}(p;r)=B_{d}(p;r)\cap H$ +\end_inset + + para cualesquiera +\begin_inset Formula $p\in H$ +\end_inset + + y +\begin_inset Formula $r>0$ +\end_inset + +. +\end_layout + +\begin_layout Standard +\begin_inset Formula $(X,d)$ +\end_inset + + es +\series bold +acotado +\series default + si +\begin_inset Formula $\exists k>0:\forall x,y\in X,d(x,y)\leq k$ +\end_inset + +, y decimos entonces que +\begin_inset Formula $d$ +\end_inset + + es una +\series bold +métrica acotada +\series default +. + Esto sucede si y sólo si +\begin_inset Formula $\exists k>0,x_{0}\in X:B(x_{0};k)=X$ +\end_inset + +. +\end_layout + +\begin_layout Itemize +\begin_inset Argument item:1 +status open + +\begin_layout Plain Layout +\begin_inset Formula $\implies]$ +\end_inset + + +\end_layout + +\end_inset + +Sea +\begin_inset Formula $x_{0}\in X$ +\end_inset + +, entonces +\begin_inset Formula $\forall x\in X,d(x_{0},x)\leq k<k+1\implies x\in B_{d}(x_{0},k+1)\implies X\subseteq B_{d}(x_{0},k+1)\subseteq X$ +\end_inset + +. +\end_layout + +\begin_layout Itemize +\begin_inset Argument item:1 +status open + +\begin_layout Plain Layout +\begin_inset Formula $\impliedby]$ +\end_inset + + +\end_layout + +\end_inset + +Por la desigualdad triangular, +\begin_inset Formula $\forall p,q\in X,d(p,q)\leq d(p,x_{0})+d(x_{0},q)<k+k=2k$ +\end_inset + +, de modo que +\begin_inset Formula $(X,d)$ +\end_inset + + es acotado por +\begin_inset Formula $2k$ +\end_inset + +. +\end_layout + +\begin_layout Standard +También se dice que +\begin_inset Formula $H\subseteq X$ +\end_inset + + es acotado si +\begin_inset Formula $(H,d_{H})$ +\end_inset + + es acotado, o equivalentemente, si +\begin_inset Formula $\exists k>0,x_{0}\in X:H\subseteq B_{d}(x_{0};k)$ +\end_inset + +. + Por tanto las bolas son subconjuntos acotados, pues +\begin_inset Formula $B(p;r)$ +\end_inset + + está acotado por +\begin_inset Formula $r$ +\end_inset + + y +\begin_inset Formula $\overline{B}_{d}(x;r)$ +\end_inset + + por (al menos) +\begin_inset Formula $2r$ +\end_inset + +. + Definimos el +\series bold +diámetro +\series default + de un espacio métrico acotado +\begin_inset Formula $(X,d)$ +\end_inset + + como +\begin_inset Formula $\text{diám}(X)=\sup\{d(x,y)\}_{x,y\in X}$ +\end_inset + +. +\end_layout + +\begin_layout Section +Subconjuntos abiertos y cerrados +\end_layout + +\begin_layout Standard +En un espacio métrico +\begin_inset Formula $(X,d)$ +\end_inset + +, +\begin_inset Formula $A\subseteq X$ +\end_inset + + es un +\series bold +subconjunto abierto +\series default +, o simplemente un +\series bold +abierto +\series default +, si +\begin_inset Formula $\forall x\in A,\exists r_{x}>0:B(x;r_{x})\subseteq A$ +\end_inset + +. + Toda bola abierta es un abierto. + +\series bold +Demostración: +\series default + Sea +\begin_inset Formula $B(x;r)$ +\end_inset + + una bola abierta en +\begin_inset Formula $(X,d)$ +\end_inset + + e +\begin_inset Formula $y\in B(x;r)$ +\end_inset + +, si tomamos +\begin_inset Formula $\delta$ +\end_inset + + tal que +\begin_inset Formula $0<\delta\leq r-d(x,y)$ +\end_inset + + y +\begin_inset Formula $z\in B(y;\delta)$ +\end_inset + +, por la desigualdad triangular, +\begin_inset Formula $d(x,z)\leq d(x,y)+d(y,z)<d(x,y)+\delta\leq r$ +\end_inset + +, por lo que +\begin_inset Formula $B(y;\delta)\subseteq B(x;r)$ +\end_inset + +. +\end_layout + +\begin_layout Standard +La condición de ser abierto depende de la métrica y del conjunto sobre el + que esta se define, si bien el conjunto total +\begin_inset Formula $X$ +\end_inset + + y el vacío +\begin_inset Formula $\emptyset$ +\end_inset + + son abiertos en cualquier espacio métrico. +\end_layout + +\begin_layout Standard +Dados +\begin_inset Formula $A_{1},\dots,A_{n}$ +\end_inset + + abiertos en +\begin_inset Formula $(X,d)$ +\end_inset + +, la intersección finita +\begin_inset Formula $\bigcap_{i=1}^{n}A_{i}$ +\end_inset + + también lo es. + +\series bold +Demostración: +\series default + Si tomamos un +\begin_inset Formula $p\in\bigcap_{i=1}^{n}A_{i}$ +\end_inset + + arbitrario, para cada +\begin_inset Formula $i$ +\end_inset + + con +\begin_inset Formula $1\leq i\leq n$ +\end_inset + +, se tiene que +\begin_inset Formula $p\in A_{i}$ +\end_inset + + y existe un +\begin_inset Formula $r_{i}>0$ +\end_inset + + tal que +\begin_inset Formula $B(p;r_{i})\subseteq A_{i}$ +\end_inset + +. + Ahora bien, si tomamos +\begin_inset Formula $r:=\min\{r_{1},\dots,r_{n}\}$ +\end_inset + +, vemos que +\begin_inset Formula $B(p;r)\subseteq B(p;r_{i})\subseteq A_{i}$ +\end_inset + +, por lo que +\begin_inset Formula $B(p;r)\subseteq\bigcap_{i=1}^{n}A_{i}$ +\end_inset + +. +\end_layout + +\begin_layout Standard +Dada la familia +\begin_inset Formula $\{A_{i}\}_{i\in I}$ +\end_inset + + de abiertos en +\begin_inset Formula $(X,d)$ +\end_inset + +, entonces +\begin_inset Formula $\bigcup_{i\in I}A_{i}$ +\end_inset + + también es un abierto. + +\series bold +Demostración: +\series default + Sea +\begin_inset Formula $p\in\bigcup_{i\in I}A_{i}$ +\end_inset + + arbitrario. + Entonces existe un +\begin_inset Formula $i_{0}\in I$ +\end_inset + + tal que +\begin_inset Formula $p\in A_{i_{0}}$ +\end_inset + +, y como +\begin_inset Formula $A_{i_{0}}$ +\end_inset + + es abierto, existe un +\begin_inset Formula $r>0$ +\end_inset + + tal que +\begin_inset Formula $B(p;r)\subseteq A_{i_{0}}$ +\end_inset + +. + Entonces +\begin_inset Formula $B(p;r)\subseteq A_{i_{0}}\subseteq\bigcup_{i\in I}A_{i}$ +\end_inset + +. +\end_layout + +\begin_layout Standard +Así pues, todo espacio métrico +\begin_inset Formula $(X,d)$ +\end_inset + + lleva asociado un espacio topológico +\begin_inset Formula $(X,{\cal T}_{d})$ +\end_inset + +, donde +\begin_inset Formula ${\cal T}_{d}$ +\end_inset + + es el conjunto de abiertos de +\begin_inset Formula $(X,d)$ +\end_inset + +. +\end_layout + +\begin_layout Section +Espacios metrizables +\end_layout + +\begin_layout Standard +Un espacio topológico +\begin_inset Formula $(X,{\cal T})$ +\end_inset + + es +\series bold +metrizable +\series default + si existe una métrica +\begin_inset Formula $d$ +\end_inset + + en +\begin_inset Formula $X$ +\end_inset + + tal que +\begin_inset Formula ${\cal T}={\cal T}_{d}$ +\end_inset + +. +\end_layout + +\begin_layout Itemize +La métrica discreta lleva asociada la topología discreta ( +\begin_inset Formula ${\cal T}_{D}={\cal T}_{d_{D}}$ +\end_inset + +). +\begin_inset Newline newline +\end_inset + +Todo subconjunto de +\begin_inset Formula $X$ +\end_inset + + es abierto en +\begin_inset Formula $(X,d_{D})$ +\end_inset + +. +\end_layout + +\begin_layout Itemize +La topología indiscreta solo es metrizable si +\begin_inset Formula $X$ +\end_inset + + es +\series bold +unipuntual +\series default + ( +\begin_inset Formula $|X|=1$ +\end_inset + +). +\begin_inset Newline newline +\end_inset + +De lo contrario tendríamos +\begin_inset Formula $p,q\in X$ +\end_inset + + con +\begin_inset Formula $p\neq q$ +\end_inset + + y por tanto +\begin_inset Formula $d(p,q)=r>0$ +\end_inset + +, y entonces +\begin_inset Formula $q\notin B(p;\frac{r}{2})$ +\end_inset + +, pero esta bola sería un abierto distinto del vacío y del total, lo que + no existe en +\begin_inset Formula ${\cal T}_{T}$ +\end_inset + +. +\end_layout + +\begin_layout Standard +Dado el espacio métrico +\begin_inset Formula $(X,d)$ +\end_inset + + y +\begin_inset Formula $H\subseteq X$ +\end_inset + +, entonces +\begin_inset Formula ${\cal T}_{d}|_{H}={\cal T}_{d_{H}}$ +\end_inset + +. +\end_layout + +\begin_layout Itemize +\begin_inset Argument item:1 +status open + +\begin_layout Plain Layout +\begin_inset Formula $\subseteq]$ +\end_inset + + +\end_layout + +\end_inset + +Sea +\begin_inset Formula $A'\in{\cal T}_{d}|_{H}$ +\end_inset + +, existe +\begin_inset Formula $A\in{\cal T}_{d}$ +\end_inset + + tal que +\begin_inset Formula $A'=A\cap H$ +\end_inset + +. + Entonces para todo +\begin_inset Formula $p\in A'\subseteq A$ +\end_inset + + existe un +\begin_inset Formula $r>0$ +\end_inset + + tal que +\begin_inset Formula $B_{d}(p;r)\subseteq A$ +\end_inset + +, por lo que +\begin_inset Formula $B_{d}(p;r)\cap H\subseteq A'$ +\end_inset + +, pero como +\begin_inset Formula $B_{d}(p;r)\cap H=B_{d_{H}}(p;r)$ +\end_inset + +, entonces +\begin_inset Formula $A'\in{\cal T}_{d_{H}}$ +\end_inset + +. +\end_layout + +\begin_layout Itemize +\begin_inset Argument item:1 +status open + +\begin_layout Plain Layout +\begin_inset Formula $\supseteq]$ +\end_inset + + +\end_layout + +\end_inset + +Sea +\begin_inset Formula $A'\in{\cal T}_{d_{H}}$ +\end_inset + +, entonces para todo +\begin_inset Formula $p\in A'$ +\end_inset + + existe un +\begin_inset Formula $r>0$ +\end_inset + + tal que +\begin_inset Formula $B_{d_{H}}(p;r)=B_{d}(p;r)\cap H\subseteq A'$ +\end_inset + +, y si llamamos +\begin_inset Formula $A=\bigcup_{p\in A'}B_{d}(p;r)$ +\end_inset + +, se tiene que +\begin_inset Formula $A'\subseteq A\cap H=\left(\bigcup_{p\in A'}B_{d}(p;r)\right)\cap H=\bigcup_{p\in A'}(B_{d}(p;r)\cap H)=\bigcup_{p\in A'}B_{d_{H}}(p;r)\subseteq A'$ +\end_inset + + y +\begin_inset Formula $A'=A\cap H$ +\end_inset + + con +\begin_inset Formula $A\in{\cal T}_{d}$ +\end_inset + +, por lo que +\begin_inset Formula $A'\in{\cal T}_{d}|_{H}$ +\end_inset + +. +\end_layout + +\begin_layout Standard +Todo espacio metrizable es 1AN, pues cada punto +\begin_inset Formula $x\in X$ +\end_inset + + posee la base de entornos +\begin_inset Formula ${\cal B}(x)=\{B(x;\frac{1}{n})\}_{n\in\mathbb{N}}$ +\end_inset + +. + También es +\begin_inset Formula $T_{2}$ +\end_inset + +, pues dados +\begin_inset Formula $p,q\in X$ +\end_inset + + con +\begin_inset Formula $p\neq q$ +\end_inset + +, si +\begin_inset Formula $r=d(p,q)>0$ +\end_inset + +, entonces +\begin_inset Formula $B(p;\frac{r}{2})\cap B(q;\frac{r}{2})=\emptyset$ +\end_inset + +. +\end_layout + +\begin_layout Section +Métricas equivalentes +\end_layout + +\begin_layout Standard +Dos métricas +\begin_inset Formula $d$ +\end_inset + + y +\begin_inset Formula $d'$ +\end_inset + + sobre +\begin_inset Formula $X$ +\end_inset + + son +\series bold +equivalentes +\series default + si +\begin_inset Formula ${\cal T}_{d}={\cal T}_{d'}$ +\end_inset + +. + Equivalentemente, lo son si +\begin_inset Formula $\forall p\in X,r>0;(\exists\delta>0:B_{d}(p;\delta)\subseteq B_{d'}(p;r)\land\exists\delta'>0:B_{d'}(p;\delta')\subseteq B_{d}(p;r))$ +\end_inset + +. +\end_layout + +\begin_layout Itemize +\begin_inset Argument item:1 +status open + +\begin_layout Plain Layout +\begin_inset Formula $\implies]$ +\end_inset + + +\end_layout + +\end_inset + +Sean +\begin_inset Formula $d$ +\end_inset + + y +\begin_inset Formula $d'$ +\end_inset + + equivalentes, dados +\begin_inset Formula $p\in X$ +\end_inset + + y +\begin_inset Formula $r>0$ +\end_inset + +, entonces +\begin_inset Formula $B_{d'}(p;r)$ +\end_inset + + es un abierto en +\begin_inset Formula ${\cal T}_{d'}$ +\end_inset + + y por tanto en +\begin_inset Formula ${\cal T}_{d}$ +\end_inset + +, por lo que +\begin_inset Formula $\exists\delta>0:B_{d}(p;\delta)\subseteq B_{d'}(p;r)$ +\end_inset + +. + La otra condición se prueba de forma análoga. +\end_layout + +\begin_layout Itemize +\begin_inset Argument item:1 +status open + +\begin_layout Plain Layout +\begin_inset Formula $\impliedby]$ +\end_inset + + +\end_layout + +\end_inset + +Sea +\begin_inset Formula $A$ +\end_inset + + un abierto de +\begin_inset Formula ${\cal T}_{d}$ +\end_inset + + y +\begin_inset Formula $p\in A$ +\end_inset + +, existe pues un +\begin_inset Formula $r>0$ +\end_inset + + tal que +\begin_inset Formula $B_{d}(p;r)\subseteq A$ +\end_inset + + y por tanto un +\begin_inset Formula $\delta'>0$ +\end_inset + + tal que +\begin_inset Formula $B_{d'}(p;\delta')\subseteq B_{d}(p;r)$ +\end_inset + +, por lo que +\begin_inset Formula $A$ +\end_inset + + es abierto en +\begin_inset Formula ${\cal T}_{d'}$ +\end_inset + +. + El otro contenido se prueba de forma análoga. +\end_layout + +\begin_layout Standard +Dadas dos métricas +\begin_inset Formula $d$ +\end_inset + + y +\begin_inset Formula $d'$ +\end_inset + + sobre +\begin_inset Formula $X$ +\end_inset + +, si existen +\begin_inset Formula $m,M>0$ +\end_inset + + tales que +\begin_inset Formula $\forall x,y\in X,md(x,y)\leq d'(x,y)\leq Md(x,y)$ +\end_inset + +, entonces +\begin_inset Formula $d$ +\end_inset + + y +\begin_inset Formula $d'$ +\end_inset + + son equivalentes. + +\series bold +Demostración: +\series default + Dados +\begin_inset Formula $p\in X$ +\end_inset + + y +\begin_inset Formula $r>0$ +\end_inset + +, tomando +\begin_inset Formula $\delta=\frac{r}{M}$ +\end_inset + +, se tiene que si +\begin_inset Formula $d(p,q)\leq\delta$ +\end_inset + + entonces +\begin_inset Formula $d'(p,q)\leq Md(p,q)\leq M\delta=r$ +\end_inset + +, por lo que +\begin_inset Formula $B_{d}(p;\delta)\subseteq B_{d'}(p;r)$ +\end_inset + +. + Análogamente, tomando +\begin_inset Formula $\delta'=mr$ +\end_inset + +, se tiene que +\begin_inset Formula $B_{d'}(p;\delta')\subseteq B_{d}(p;r)$ +\end_inset + +. +\end_layout + +\begin_layout Standard +Así, las métricas +\begin_inset Formula $d_{E}$ +\end_inset + +, +\begin_inset Formula $d_{T}$ +\end_inset + + y +\begin_inset Formula $d_{\infty}$ +\end_inset + + sobre un mismo conjunto +\begin_inset Formula $X=X_{1}\times\dots\times X_{n}$ +\end_inset + + y métricas +\begin_inset Formula $d_{1},\dots,d_{n}$ +\end_inset + + son equivalentes, y si un subconjunto es acotado para alguna de las tres + métricas también lo es para las otras dos. + +\series bold +Demostración: +\series default + Se deduce de que +\begin_inset Formula $\frac{1}{n}d_{T}(x,y)\leq d_{\infty}(x,y)\leq d_{T}(x,y)$ +\end_inset + + y +\begin_inset Formula $\frac{1}{\sqrt{n}}d_{E}(x,y)\leq d_{\infty}(x,y)\leq d_{E}(x,y)$ +\end_inset + +. +\end_layout + +\begin_layout Standard +No obstante, las métricas euclídea y discreta no tienen por qué ser equivalentes +, pues en +\begin_inset Formula $\mathbb{R}^{2}$ +\end_inset + +, +\begin_inset Formula $\{(0,0)\}$ +\end_inset + + es abierto en la discreta pero no en la euclídea. + Llamamos +\begin_inset Formula $(\mathbb{R}^{n},d_{u})=(\mathbb{R}^{n},d_{E})$ +\end_inset + + con +\begin_inset Formula $d_{E}$ +\end_inset + + definido sobre +\begin_inset Formula $d_{|\,|}$ +\end_inset + + en +\begin_inset Formula $\mathbb{R}$ +\end_inset + +, y +\begin_inset Formula ${\cal T}_{u}$ +\end_inset + + a la topología asociada a +\begin_inset Formula $d_{u}$ +\end_inset + +. +\end_layout + +\end_body +\end_document |
