aboutsummaryrefslogtreecommitdiff
path: root/tem
diff options
context:
space:
mode:
Diffstat (limited to 'tem')
-rw-r--r--tem/n1.lyx16
-rw-r--r--tem/n2.lyx6
-rw-r--r--tem/n3.lyx6
-rw-r--r--tem/n4.lyx10
-rw-r--r--tem/n5.lyx6
5 files changed, 22 insertions, 22 deletions
diff --git a/tem/n1.lyx b/tem/n1.lyx
index 39659d7..e3a9d97 100644
--- a/tem/n1.lyx
+++ b/tem/n1.lyx
@@ -149,7 +149,7 @@ abiertos
cerrados
\series default
a los complementarios de los abiertos:
-\begin_inset Formula ${\cal C_{T}}:={\cal C}:=\{X\backslash A\}_{A\in{\cal T}}$
+\begin_inset Formula ${\cal C_{T}}\coloneqq {\cal C}\coloneqq \{X\backslash A\}_{A\in{\cal T}}$
\end_inset
.
@@ -370,7 +370,7 @@ La
topología discreta
\series default
:
-\begin_inset Formula ${\cal T}_{D}:={\cal P}(X)$
+\begin_inset Formula ${\cal T}_{D}\coloneqq {\cal P}(X)$
\end_inset
, la topología más grande que se puede definir sobre
@@ -489,7 +489,7 @@ topología relativa
topología de subespacio
\series default
como
-\begin_inset Formula ${\cal T}|_{H}:={\cal T}_{H}:=\{A\cap H\}_{A\in{\cal T}}$
+\begin_inset Formula ${\cal T}|_{H}\coloneqq {\cal T}_{H}\coloneqq \{A\cap H\}_{A\in{\cal T}}$
\end_inset
.
@@ -671,7 +671,7 @@ Si
.
Pero si
-\begin_inset Formula $C:=X\backslash A$
+\begin_inset Formula $C\coloneqq X\backslash A$
\end_inset
, entonces
@@ -1381,7 +1381,7 @@ círculo
\end_inset
es el conjunto
-\begin_inset Formula $C_{d}(p;r):=C(p;r):=\{x\in X\mid d(p,x)=r\}$
+\begin_inset Formula $C_{d}(p;r)\coloneqq C(p;r)\coloneqq \{x\in X\mid d(p,x)=r\}$
\end_inset
.
@@ -1402,7 +1402,7 @@ bola abierta
\end_inset
es el conjunto
-\begin_inset Formula $B_{d}(p;r):=B(p;r):=\{x\in X\mid d(p,x)<r\}$
+\begin_inset Formula $B_{d}(p;r)\coloneqq B(p;r)\coloneqq \{x\in X\mid d(p,x)<r\}$
\end_inset
, y la
@@ -1422,7 +1422,7 @@ bola cerrada
\end_inset
es el conjunto
-\begin_inset Formula $\overline{B}_{d}(p;r):=\overline{B}(p;r):=B[p;r]:=\{x\in X\mid d(p,x)\leq r\}$
+\begin_inset Formula $\overline{B}_{d}(p;r)\coloneqq \overline{B}(p;r)\coloneqq B[p;r]\coloneqq \{x\in X\mid d(p,x)\leq r\}$
\end_inset
.
@@ -1707,7 +1707,7 @@ Demostración:
.
Ahora bien, si tomamos
-\begin_inset Formula $r:=\min\{r_{1},\dots,r_{n}\}$
+\begin_inset Formula $r\coloneqq \min\{r_{1},\dots,r_{n}\}$
\end_inset
, vemos que
diff --git a/tem/n2.lyx b/tem/n2.lyx
index 912a7be..82d69c9 100644
--- a/tem/n2.lyx
+++ b/tem/n2.lyx
@@ -1160,7 +1160,7 @@ Sea
\end_inset
, entonces
-\begin_inset Formula $x\in\overline{S}\iff\exists\{x_{n}\}_{n=1}^{\infty}\subseteq S\mid x_{n}\rightarrow x$
+\begin_inset Formula $x\in\overline{S}\iff\exists\{x_{n}\}_{n=1}^{\infty}\subseteq S:x_{n}\rightarrow x$
\end_inset
.
@@ -1249,7 +1249,7 @@ Así pues, en un espacio métrico
\end_inset
si y sólo si
-\begin_inset Formula $\forall x\in X,\exists\{x_{n}\}_{n=1}^{\infty}\subseteq S\mid x_{n}\rightarrow x$
+\begin_inset Formula $\forall x\in X,\exists\{x_{n}\}_{n=1}^{\infty}\subseteq S:x_{n}\rightarrow x$
\end_inset
, y
@@ -1257,7 +1257,7 @@ Así pues, en un espacio métrico
\end_inset
si y sólo si
-\begin_inset Formula $\exists\{x_{n}\}_{n=1}^{\infty}\subseteq S,\{y_{n}\}_{n=1}^{\infty}\subseteq X\backslash S\mid x_{n},y_{n}\rightarrow x$
+\begin_inset Formula $\exists\{x_{n}\}_{n=1}^{\infty}\subseteq S,\{y_{n}\}_{n=1}^{\infty}\subseteq X\backslash S:x_{n},y_{n}\rightarrow x$
\end_inset
.
diff --git a/tem/n3.lyx b/tem/n3.lyx
index 35cc0dc..89d965d 100644
--- a/tem/n3.lyx
+++ b/tem/n3.lyx
@@ -401,7 +401,7 @@ Sea
.
Podemos tomar
-\begin_inset Formula $V'_{1}:=V_{1}\cap U_{1}\in{\cal E}(p)$
+\begin_inset Formula $V'_{1}\coloneqq V_{1}\cap U_{1}\in{\cal E}(p)$
\end_inset
y existirá
@@ -1096,7 +1096,7 @@ biyectiva
\end_inset
Sea
-\begin_inset Formula $g:=f^{-1}:Y\rightarrow X$
+\begin_inset Formula $g\coloneqq f^{-1}:Y\rightarrow X$
\end_inset
continua y
@@ -1142,7 +1142,7 @@ biyectiva
.
Para ver que
-\begin_inset Formula $g:=f^{-1}$
+\begin_inset Formula $g\coloneqq f^{-1}$
\end_inset
es continua, dado
diff --git a/tem/n4.lyx b/tem/n4.lyx
index 2f3a2e7..3e83317 100644
--- a/tem/n4.lyx
+++ b/tem/n4.lyx
@@ -369,7 +369,7 @@ Demostración:
\end_inset
y definimos
-\begin_inset Formula $G=\{x\in[a,b]|\exists\{A_{i_{1}},\dots,A_{i_{n}}\}\in{\cal P}_{0}({\cal A})\mid [a,x]\subseteq A_{i_{1}}\cup\dots\cup A_{i_{n}}\}$
+\begin_inset Formula $G=\{x\in[a,b]|\exists\{A_{i_{1}},\dots,A_{i_{n}}\}\in{\cal P}_{0}({\cal A}):[a,x]\subseteq A_{i_{1}}\cup\dots\cup A_{i_{n}}\}$
\end_inset
.
@@ -641,7 +641,7 @@ Demostración:
.
Sea entonces
-\begin_inset Formula $A:=\bigcap_{i=1}^{r}A_{x_{i}}\in{\cal E}(p)$
+\begin_inset Formula $A\coloneqq \bigcap_{i=1}^{r}A_{x_{i}}\in{\cal E}(p)$
\end_inset
, dado
@@ -1379,7 +1379,7 @@ teorema de la continuidad de la función inversa
Demostración:
\series default
Basta probar que
-\begin_inset Formula $g:=f^{-1}$
+\begin_inset Formula $g\coloneqq f^{-1}$
\end_inset
es continua.
@@ -1513,7 +1513,7 @@ Demostración:
.
Sea ahora
-\begin_inset Formula $\delta'_{p}:=\frac{\delta_{p}}{2}$
+\begin_inset Formula $\delta'_{p}\coloneqq \frac{\delta_{p}}{2}$
\end_inset
y
@@ -1529,7 +1529,7 @@ Demostración:
\end_inset
, y llamamos
-\begin_inset Formula $\delta:=\min\{\delta'_{p_{1}},\dots,\delta'_{p_{r}}\}$
+\begin_inset Formula $\delta\coloneqq \min\{\delta'_{p_{1}},\dots,\delta'_{p_{r}}\}$
\end_inset
.
diff --git a/tem/n5.lyx b/tem/n5.lyx
index 93b40a3..8987d1f 100644
--- a/tem/n5.lyx
+++ b/tem/n5.lyx
@@ -813,7 +813,7 @@ criterio del peine
\end_inset
, entonces
-\begin_inset Formula $H:=\bigcup_{i\in I}H_{i}$
+\begin_inset Formula $H\coloneqq \bigcup_{i\in I}H_{i}$
\end_inset
es conexo.
@@ -950,7 +950,7 @@ En particular, si
\end_inset
entonces
-\begin_inset Formula $H:=\bigcup_{i\in I}H_{i}$
+\begin_inset Formula $H\coloneqq \bigcup_{i\in I}H_{i}$
\end_inset
es conexo, y si
@@ -1128,7 +1128,7 @@ convexo
segmento
\series default
-\begin_inset Formula $L_{xy}:=\{(1-t)x+ty\}_{t\in[0,1]}$
+\begin_inset Formula $L_{xy}\coloneqq \{(1-t)x+ty\}_{t\in[0,1]}$
\end_inset
es un subconjunto de