diff options
| author | Juan Marin Noguera <juan@mnpi.eu> | 2022-12-04 22:49:17 +0100 |
|---|---|---|
| committer | Juan Marin Noguera <juan@mnpi.eu> | 2022-12-04 22:49:17 +0100 |
| commit | c34b47089a133e58032fe4ea52f61efacaf5f548 (patch) | |
| tree | 4242772e26a9e7b6f7e02b1d1e00dfbe68981345 /tem | |
| parent | 214b20d1614b09cd5c18e111df0f0d392af2e721 (diff) | |
Oops
Diffstat (limited to 'tem')
| -rw-r--r-- | tem/n1.lyx | 16 | ||||
| -rw-r--r-- | tem/n2.lyx | 6 | ||||
| -rw-r--r-- | tem/n3.lyx | 6 | ||||
| -rw-r--r-- | tem/n4.lyx | 10 | ||||
| -rw-r--r-- | tem/n5.lyx | 6 |
5 files changed, 22 insertions, 22 deletions
@@ -149,7 +149,7 @@ abiertos cerrados \series default a los complementarios de los abiertos: -\begin_inset Formula ${\cal C_{T}}:={\cal C}:=\{X\backslash A\}_{A\in{\cal T}}$ +\begin_inset Formula ${\cal C_{T}}\coloneqq {\cal C}\coloneqq \{X\backslash A\}_{A\in{\cal T}}$ \end_inset . @@ -370,7 +370,7 @@ La topología discreta \series default : -\begin_inset Formula ${\cal T}_{D}:={\cal P}(X)$ +\begin_inset Formula ${\cal T}_{D}\coloneqq {\cal P}(X)$ \end_inset , la topología más grande que se puede definir sobre @@ -489,7 +489,7 @@ topología relativa topología de subespacio \series default como -\begin_inset Formula ${\cal T}|_{H}:={\cal T}_{H}:=\{A\cap H\}_{A\in{\cal T}}$ +\begin_inset Formula ${\cal T}|_{H}\coloneqq {\cal T}_{H}\coloneqq \{A\cap H\}_{A\in{\cal T}}$ \end_inset . @@ -671,7 +671,7 @@ Si . Pero si -\begin_inset Formula $C:=X\backslash A$ +\begin_inset Formula $C\coloneqq X\backslash A$ \end_inset , entonces @@ -1381,7 +1381,7 @@ círculo \end_inset es el conjunto -\begin_inset Formula $C_{d}(p;r):=C(p;r):=\{x\in X\mid d(p,x)=r\}$ +\begin_inset Formula $C_{d}(p;r)\coloneqq C(p;r)\coloneqq \{x\in X\mid d(p,x)=r\}$ \end_inset . @@ -1402,7 +1402,7 @@ bola abierta \end_inset es el conjunto -\begin_inset Formula $B_{d}(p;r):=B(p;r):=\{x\in X\mid d(p,x)<r\}$ +\begin_inset Formula $B_{d}(p;r)\coloneqq B(p;r)\coloneqq \{x\in X\mid d(p,x)<r\}$ \end_inset , y la @@ -1422,7 +1422,7 @@ bola cerrada \end_inset es el conjunto -\begin_inset Formula $\overline{B}_{d}(p;r):=\overline{B}(p;r):=B[p;r]:=\{x\in X\mid d(p,x)\leq r\}$ +\begin_inset Formula $\overline{B}_{d}(p;r)\coloneqq \overline{B}(p;r)\coloneqq B[p;r]\coloneqq \{x\in X\mid d(p,x)\leq r\}$ \end_inset . @@ -1707,7 +1707,7 @@ Demostración: . Ahora bien, si tomamos -\begin_inset Formula $r:=\min\{r_{1},\dots,r_{n}\}$ +\begin_inset Formula $r\coloneqq \min\{r_{1},\dots,r_{n}\}$ \end_inset , vemos que @@ -1160,7 +1160,7 @@ Sea \end_inset , entonces -\begin_inset Formula $x\in\overline{S}\iff\exists\{x_{n}\}_{n=1}^{\infty}\subseteq S\mid x_{n}\rightarrow x$ +\begin_inset Formula $x\in\overline{S}\iff\exists\{x_{n}\}_{n=1}^{\infty}\subseteq S:x_{n}\rightarrow x$ \end_inset . @@ -1249,7 +1249,7 @@ Así pues, en un espacio métrico \end_inset si y sólo si -\begin_inset Formula $\forall x\in X,\exists\{x_{n}\}_{n=1}^{\infty}\subseteq S\mid x_{n}\rightarrow x$ +\begin_inset Formula $\forall x\in X,\exists\{x_{n}\}_{n=1}^{\infty}\subseteq S:x_{n}\rightarrow x$ \end_inset , y @@ -1257,7 +1257,7 @@ Así pues, en un espacio métrico \end_inset si y sólo si -\begin_inset Formula $\exists\{x_{n}\}_{n=1}^{\infty}\subseteq S,\{y_{n}\}_{n=1}^{\infty}\subseteq X\backslash S\mid x_{n},y_{n}\rightarrow x$ +\begin_inset Formula $\exists\{x_{n}\}_{n=1}^{\infty}\subseteq S,\{y_{n}\}_{n=1}^{\infty}\subseteq X\backslash S:x_{n},y_{n}\rightarrow x$ \end_inset . @@ -401,7 +401,7 @@ Sea . Podemos tomar -\begin_inset Formula $V'_{1}:=V_{1}\cap U_{1}\in{\cal E}(p)$ +\begin_inset Formula $V'_{1}\coloneqq V_{1}\cap U_{1}\in{\cal E}(p)$ \end_inset y existirá @@ -1096,7 +1096,7 @@ biyectiva \end_inset Sea -\begin_inset Formula $g:=f^{-1}:Y\rightarrow X$ +\begin_inset Formula $g\coloneqq f^{-1}:Y\rightarrow X$ \end_inset continua y @@ -1142,7 +1142,7 @@ biyectiva . Para ver que -\begin_inset Formula $g:=f^{-1}$ +\begin_inset Formula $g\coloneqq f^{-1}$ \end_inset es continua, dado @@ -369,7 +369,7 @@ Demostración: \end_inset y definimos -\begin_inset Formula $G=\{x\in[a,b]|\exists\{A_{i_{1}},\dots,A_{i_{n}}\}\in{\cal P}_{0}({\cal A})\mid [a,x]\subseteq A_{i_{1}}\cup\dots\cup A_{i_{n}}\}$ +\begin_inset Formula $G=\{x\in[a,b]|\exists\{A_{i_{1}},\dots,A_{i_{n}}\}\in{\cal P}_{0}({\cal A}):[a,x]\subseteq A_{i_{1}}\cup\dots\cup A_{i_{n}}\}$ \end_inset . @@ -641,7 +641,7 @@ Demostración: . Sea entonces -\begin_inset Formula $A:=\bigcap_{i=1}^{r}A_{x_{i}}\in{\cal E}(p)$ +\begin_inset Formula $A\coloneqq \bigcap_{i=1}^{r}A_{x_{i}}\in{\cal E}(p)$ \end_inset , dado @@ -1379,7 +1379,7 @@ teorema de la continuidad de la función inversa Demostración: \series default Basta probar que -\begin_inset Formula $g:=f^{-1}$ +\begin_inset Formula $g\coloneqq f^{-1}$ \end_inset es continua. @@ -1513,7 +1513,7 @@ Demostración: . Sea ahora -\begin_inset Formula $\delta'_{p}:=\frac{\delta_{p}}{2}$ +\begin_inset Formula $\delta'_{p}\coloneqq \frac{\delta_{p}}{2}$ \end_inset y @@ -1529,7 +1529,7 @@ Demostración: \end_inset , y llamamos -\begin_inset Formula $\delta:=\min\{\delta'_{p_{1}},\dots,\delta'_{p_{r}}\}$ +\begin_inset Formula $\delta\coloneqq \min\{\delta'_{p_{1}},\dots,\delta'_{p_{r}}\}$ \end_inset . @@ -813,7 +813,7 @@ criterio del peine \end_inset , entonces -\begin_inset Formula $H:=\bigcup_{i\in I}H_{i}$ +\begin_inset Formula $H\coloneqq \bigcup_{i\in I}H_{i}$ \end_inset es conexo. @@ -950,7 +950,7 @@ En particular, si \end_inset entonces -\begin_inset Formula $H:=\bigcup_{i\in I}H_{i}$ +\begin_inset Formula $H\coloneqq \bigcup_{i\in I}H_{i}$ \end_inset es conexo, y si @@ -1128,7 +1128,7 @@ convexo segmento \series default -\begin_inset Formula $L_{xy}:=\{(1-t)x+ty\}_{t\in[0,1]}$ +\begin_inset Formula $L_{xy}\coloneqq \{(1-t)x+ty\}_{t\in[0,1]}$ \end_inset es un subconjunto de |
