diff options
Diffstat (limited to 'ts/n1.lyx')
| -rw-r--r-- | ts/n1.lyx | 70 |
1 files changed, 35 insertions, 35 deletions
@@ -158,7 +158,7 @@ topología trivial indiscreta \series default a -\begin_inset Formula ${\cal T}_{\text{ind}}:=\{\emptyset,X\}$ +\begin_inset Formula ${\cal T}_{\text{ind}}\coloneqq \{\emptyset,X\}$ \end_inset y @@ -166,7 +166,7 @@ indiscreta topología discreta \series default a -\begin_inset Formula ${\cal T}_{\text{dis}}:={\cal P}(X)$ +\begin_inset Formula ${\cal T}_{\text{dis}}\coloneqq {\cal P}(X)$ \end_inset . @@ -268,7 +268,7 @@ entorno \end_inset es un elemento de -\begin_inset Formula ${\cal E}(x):=\{U\in{\cal T}\mid x\in{\cal U}\}$ +\begin_inset Formula ${\cal E}(x)\coloneqq \{U\in{\cal T}\mid x\in{\cal U}\}$ \end_inset . @@ -343,7 +343,7 @@ En \end_inset tenemos la distancia usual -\begin_inset Formula $d_{u}(x,y):=|x-y|$ +\begin_inset Formula $d_{u}(x,y)\coloneqq |x-y|$ \end_inset . @@ -368,7 +368,7 @@ d_{p}(x,y):=\left(\sum_{k=1}^{n}d(x_{k},y_{k})^{p}\right)^{\frac{1}{p}} \end_inset , y -\begin_inset Formula $d_{\infty}(x,y):=\max_{k=1}^{n}d(x_{k},y_{k})$ +\begin_inset Formula $d_{\infty}(x,y)\coloneqq \max_{k=1}^{n}d(x_{k},y_{k})$ \end_inset . @@ -485,7 +485,7 @@ inducida \end_inset a la topología -\begin_inset Formula ${\cal T}_{d}:=\{A\in X\mid \forall x\in A,\exists\delta>0\mid B_{d}(x,\delta)\subseteq A\}$ +\begin_inset Formula ${\cal T}_{d}\coloneqq \{A\in X\mid \forall x\in A,\exists\delta>0\mid B_{d}(x,\delta)\subseteq A\}$ \end_inset . @@ -537,7 +537,7 @@ Dados un espacio topológico \end_inset , -\begin_inset Formula ${\cal T}_{Y}:=\{U\cap Y\}_{U\in{\cal T}}$ +\begin_inset Formula ${\cal T}_{Y}\coloneqq \{U\cap Y\}_{U\in{\cal T}}$ \end_inset es una topología sobre @@ -578,7 +578,7 @@ La -esfera \series default , -\begin_inset Formula $\mathbb{S}^{n}(r):=\{(x_{1},\dots,x_{n+1})\in\mathbb{R}^{n+1}\mid x_{1}^{2}+\dots+x_{n+1}^{2}=r^{2}\}$ +\begin_inset Formula $\mathbb{S}^{n}(r)\coloneqq \{(x_{1},\dots,x_{n+1})\in\mathbb{R}^{n+1}\mid x_{1}^{2}+\dots+x_{n+1}^{2}=r^{2}\}$ \end_inset . @@ -610,7 +610,7 @@ El intervalo cerrado \series default -\begin_inset Formula $I:=[0,1]\subseteq\mathbb{R}$ +\begin_inset Formula $I\coloneqq [0,1]\subseteq\mathbb{R}$ \end_inset o el @@ -630,7 +630,7 @@ El cilindro \series default , -\begin_inset Formula $C:=\{(x,y,z)\in\mathbb{R}^{3}\mid x^{2}+y^{2}=1,0\leq z\leq1\}$ +\begin_inset Formula $C\coloneqq \{(x,y,z)\in\mathbb{R}^{3}\mid x^{2}+y^{2}=1,0\leq z\leq1\}$ \end_inset , cono de rotación sobre el eje @@ -666,7 +666,7 @@ El toro \series default , -\begin_inset Formula $\mathbb{T}:=\{(x,y,z)\in\mathbb{R}^{3}\mid x^{2}+y^{2}+z^{2}-4\sqrt{x^{2}+y^{2}}+3=0\}$ +\begin_inset Formula $\mathbb{T}\coloneqq \{(x,y,z)\in\mathbb{R}^{3}\mid x^{2}+y^{2}+z^{2}-4\sqrt{x^{2}+y^{2}}+3=0\}$ \end_inset , cono de rotación sobre el eje @@ -695,7 +695,7 @@ status open \end_inset Tenemos -\begin_inset Formula $\{(x,0,z)\mid (x-2)^{2}+z^{2}=1\}=\{\alpha(s)\mid =(\cos s+2,0,\sin s)\}_{s\in[0,2\pi]}$ +\begin_inset Formula $\{(x,0,z)\mid (x-2)^{2}+z^{2}=1\}=\{\alpha(s)\coloneqq (\cos s+2,0,\sin s)\}_{s\in[0,2\pi]}$ \end_inset , luego el cono de rotación es @@ -820,7 +820,7 @@ La cinta de Möbius \series default , -\begin_inset Formula $M:=\{(\cos\theta(3-t\sin\frac{\theta}{2}),\sin\theta(3-t\sin\frac{\theta}{2}),t\cos\frac{\theta}{2})\}_{\theta\in[0,2\pi],t\in[-1,1]}$ +\begin_inset Formula $M\coloneqq \{(\cos\theta(3-t\sin\frac{\theta}{2}),\sin\theta(3-t\sin\frac{\theta}{2}),t\cos\frac{\theta}{2})\}_{\theta\in[0,2\pi],t\in[-1,1]}$ \end_inset . @@ -947,7 +947,7 @@ restricción del rango \end_inset , dada por -\begin_inset Formula $f'(x):=f(x)$ +\begin_inset Formula $f'(x)\coloneqq f(x)$ \end_inset , es continua. @@ -1039,7 +1039,7 @@ suma \end_inset , -\begin_inset Formula $s(x,y):=x+y$ +\begin_inset Formula $s(x,y)\coloneqq x+y$ \end_inset , con la topología usual. @@ -1065,7 +1065,7 @@ Como los abiertos en \end_inset , -\begin_inset Formula $t:=s(x_{0},y_{0})$ +\begin_inset Formula $t\coloneqq s(x_{0},y_{0})$ \end_inset y @@ -1122,7 +1122,7 @@ producto \end_inset , -\begin_inset Formula $p(x,y):=xy$ +\begin_inset Formula $p(x,y)\coloneqq xy$ \end_inset , con la topología usual. @@ -1144,7 +1144,7 @@ Dado \end_inset , -\begin_inset Formula $t:=p(x_{0},y_{0})$ +\begin_inset Formula $t\coloneqq p(x_{0},y_{0})$ \end_inset , @@ -1156,7 +1156,7 @@ Dado \end_inset y -\begin_inset Formula $\delta:=\min\{1,\frac{r}{|x_{0}|+|y_{0}|+1}\}$ +\begin_inset Formula $\delta\coloneqq \min\{1,\frac{r}{|x_{0}|+|y_{0}|+1}\}$ \end_inset , para @@ -1199,7 +1199,7 @@ diagonal \end_inset , -\begin_inset Formula $d(x):=(x,\dots,x)$ +\begin_inset Formula $d(x)\coloneqq (x,\dots,x)$ \end_inset , con la topología usual. @@ -1217,7 +1217,7 @@ Basta ver que, dada una bola , su inversa es un abierto. Tenemos -\begin_inset Formula $d^{-1}(B_{d_{\infty}}(y,r))=\{x\mid d_{\infty}((x,\dots,x),y)<r\}=\{t\mid |x-y_{1}|,\dots,|x-y_{n}|<r\}$ +\begin_inset Formula $d^{-1}(B_{d_{\infty}}(y,r))=\{x\mid d_{\infty}((x,\dots,x),y)<r\}=\{t\mid|x-y_{1}|,\dots,|x-y_{n}|<r\}$ \end_inset , pero @@ -1242,7 +1242,7 @@ Una función \end_inset es continua si y sólo si los componentes -\begin_inset Formula $f_{i}(x):=f(x)_{i}$ +\begin_inset Formula $f_{i}(x)\coloneqq f(x)_{i}$ \end_inset lo son. @@ -1352,15 +1352,15 @@ status open La función es continua porque lo es en cada componente, al serlo la suma y el producto. Dado -\begin_inset Formula $u:=(\cos\theta,x,y,z)$ +\begin_inset Formula $u\coloneqq (\cos\theta,x,y,z)$ \end_inset , sean -\begin_inset Formula $v:=(x,y,z)$ +\begin_inset Formula $v\coloneqq (x,y,z)$ \end_inset y -\begin_inset Formula $n:=\Vert v\Vert$ +\begin_inset Formula $n\coloneqq \Vert v\Vert$ \end_inset . @@ -1565,7 +1565,7 @@ C:=\left(\begin{array}{ccc} \begin_layout Enumerate Revertimos las dos rotaciones anteriores. Sea -\begin_inset Formula $t:=\sqrt{x^{2}+y^{2}}$ +\begin_inset Formula $t\coloneqq \sqrt{x^{2}+y^{2}}$ \end_inset , @@ -2043,7 +2043,7 @@ topología generada \end_inset a -\begin_inset Formula ${\cal T}_{{\cal B}}:=\{U\subseteq X\mid \forall x\in U,\exists B\in{\cal B}\mid x\in B\subseteq U\}$ +\begin_inset Formula ${\cal T}_{{\cal B}}\coloneqq \{U\subseteq X\mid \forall x\in U,\exists B\in{\cal B}\mid x\in B\subseteq U\}$ \end_inset , y se tiene que @@ -2075,7 +2075,7 @@ topología del límite inferior \end_inset generada por la base -\begin_inset Formula ${\cal B}_{\ell i}:=\{[a,b)\}_{a,b\in\mathbb{R};a<b}$ +\begin_inset Formula ${\cal B}_{\ell i}\coloneqq \{[a,b)\}_{a,b\in\mathbb{R};a<b}$ \end_inset . @@ -2107,7 +2107,7 @@ En efecto, \end_inset , pero tomando la base -\begin_inset Formula ${\cal B}_{u}:=\{(a,b)\}_{a,b\in\mathbb{R},a<b}$ +\begin_inset Formula ${\cal B}_{u}\coloneqq \{(a,b)\}_{a,b\in\mathbb{R},a<b}$ \end_inset de la topología usual de @@ -2240,11 +2240,11 @@ Tomamos la base \end_inset , -\begin_inset Formula $(p_{n}:=\frac{\lceil an\rceil}{n})_{n\geq n_{0}}$ +\begin_inset Formula $(p_{n}\coloneqq \frac{\lceil an\rceil}{n})_{n\geq n_{0}}$ \end_inset y -\begin_inset Formula $(q_{n}:=\frac{\lfloor bn\rfloor}{n})_{n\geq n_{0}}$ +\begin_inset Formula $(q_{n}\coloneqq \frac{\lfloor bn\rfloor}{n})_{n\geq n_{0}}$ \end_inset , @@ -2294,7 +2294,7 @@ Sea \end_inset , sea -\begin_inset Formula $U_{x}:=[x,x+1)\in{\cal T}_{\ell i}$ +\begin_inset Formula $U_{x}\coloneqq [x,x+1)\in{\cal T}_{\ell i}$ \end_inset , existe @@ -2409,7 +2409,7 @@ Ejemplos: status open \begin_layout Plain Layout -\begin_inset Formula ${\cal B}_{x}:=\{[x,x+\frac{1}{n})\}_{n\in\mathbb{N}^{*}}$ +\begin_inset Formula ${\cal B}_{x}\coloneqq \{[x,x+\frac{1}{n})\}_{n\in\mathbb{N}^{*}}$ \end_inset . @@ -2430,7 +2430,7 @@ Todo espacio métrico status open \begin_layout Plain Layout -\begin_inset Formula ${\cal B}_{x}:=\{B_{d}(x-\frac{1}{n},x+\frac{1}{n})\}_{n\in\mathbb{N}^{*}}$ +\begin_inset Formula ${\cal B}_{x}\coloneqq \{B_{d}(x-\frac{1}{n},x+\frac{1}{n})\}_{n\in\mathbb{N}^{*}}$ \end_inset . @@ -2456,7 +2456,7 @@ Dada una base \end_inset numerable, -\begin_inset Formula ${\cal B}_{x}:=\{B\in{\cal B}\mid x\in B\}$ +\begin_inset Formula ${\cal B}_{x}\coloneqq \{B\in{\cal B}\mid x\in B\}$ \end_inset es base de entornos de |
