aboutsummaryrefslogtreecommitdiff
path: root/ts/n3.lyx
diff options
context:
space:
mode:
Diffstat (limited to 'ts/n3.lyx')
-rw-r--r--ts/n3.lyx70
1 files changed, 35 insertions, 35 deletions
diff --git a/ts/n3.lyx b/ts/n3.lyx
index 8443b38..c287b3d 100644
--- a/ts/n3.lyx
+++ b/ts/n3.lyx
@@ -165,11 +165,11 @@ Las funciones
\end_inset
dadas por
-\begin_inset Formula $f(x):=\tan(\frac{\pi}{2}x)$
+\begin_inset Formula $f(x)\coloneqq \tan(\frac{\pi}{2}x)$
\end_inset
y
-\begin_inset Formula $g(x):=\frac{x}{1-x^{2}}$
+\begin_inset Formula $g(x)\coloneqq \frac{x}{1-x^{2}}$
\end_inset
son homeomorfismos.
@@ -177,7 +177,7 @@ Las funciones
\begin_layout Enumerate
Sea
-\begin_inset Formula $N:=(0,\dots,0,1)\in\mathbb{R}^{n+1}$
+\begin_inset Formula $N\coloneqq (0,\dots,0,1)\in\mathbb{R}^{n+1}$
\end_inset
, la
@@ -202,7 +202,7 @@ status open
\begin_layout Plain Layout
Sean
-\begin_inset Formula $\pi:=\mathbb{R}^{n}\times\{-1\}$
+\begin_inset Formula $\pi\coloneqq \mathbb{R}^{n}\times\{-1\}$
\end_inset
y
@@ -215,7 +215,7 @@ Sean
\series default
la proyección estereográfica.
Si
-\begin_inset Formula $y:=g(x)$
+\begin_inset Formula $y\coloneqq g(x)$
\end_inset
,
@@ -309,7 +309,7 @@ Sean
status open
\begin_layout Plain Layout
-\begin_inset Formula $\mathbb{S}^{n}\setminus\{N\mid =(0,\dots,0,1)\}$
+\begin_inset Formula $\mathbb{S}^{n}\setminus\{N\coloneqq (0,\dots,0,1)\}$
\end_inset
y
@@ -321,7 +321,7 @@ status open
\end_inset
y
-\begin_inset Formula $\pi:=\mathbb{R}^{n}\times\{-1\}$
+\begin_inset Formula $\pi\coloneqq \mathbb{R}^{n}\times\{-1\}$
\end_inset
, son linealmente isomorfos, por lo que son homeomorfos y
@@ -338,7 +338,7 @@ status open
\begin_layout Enumerate
El disco
-\begin_inset Formula $\mathbb{D}^{n}:=\overline{B}_{d_{2}}(0;1)\subseteq\mathbb{R}^{n}$
+\begin_inset Formula $\mathbb{D}^{n}\coloneqq \overline{B}_{d_{2}}(0;1)\subseteq\mathbb{R}^{n}$
\end_inset
es homeomorfo a
@@ -355,7 +355,7 @@ Sea
\end_inset
dada por
-\begin_inset Formula $f(x):=x\frac{\Vert x\Vert_{\infty}}{\Vert x\Vert_{2}}$
+\begin_inset Formula $f(x)\coloneqq x\frac{\Vert x\Vert_{\infty}}{\Vert x\Vert_{2}}$
\end_inset
para
@@ -363,7 +363,7 @@ Sea
\end_inset
y
-\begin_inset Formula $f(0):=0$
+\begin_inset Formula $f(0)\coloneqq 0$
\end_inset
, queremos ver que
@@ -371,7 +371,7 @@ Sea
\end_inset
es biyectiva con inversa
-\begin_inset Formula $g(y):=y\frac{\Vert y\Vert_{2}}{\Vert y\Vert_{\infty}}$
+\begin_inset Formula $g(y)\coloneqq y\frac{\Vert y\Vert_{2}}{\Vert y\Vert_{\infty}}$
\end_inset
para
@@ -723,7 +723,7 @@ unión disjunta
\end_inset
a
-\begin_inset Formula $X\amalg Y:=(X\times\{0\})\cup(Y\times\{1\})$
+\begin_inset Formula $X\amalg Y\coloneqq (X\times\{0\})\cup(Y\times\{1\})$
\end_inset
.
@@ -736,7 +736,7 @@ unión disjunta
\end_inset
son espacios topológicos, definimos la topología
-\begin_inset Formula ${\cal T}_{X\amalg Y}:=\{U\subseteq X\amalg Y\mid \{x\mid (x,0)\in U\}\in{\cal T}_{X}\land\{y\mid (y,1)\in U\}\in{\cal T}_{Y}\}$
+\begin_inset Formula ${\cal T}_{X\amalg Y}\coloneqq \{U\subseteq X\amalg Y\mid \{x\mid (x,0)\in U\}\in{\cal T}_{X}\land\{y\mid(y,1)\in U\}\in{\cal T}_{Y}\}$
\end_inset
.
@@ -806,11 +806,11 @@ Sea
\end_inset
dada por
-\begin_inset Formula $f(x,0):=e^{x_{1}}v_{1}+\sum_{k=2}^{n}x_{k}v_{k}$
+\begin_inset Formula $f(x,0)\coloneqq e^{x_{1}}v_{1}+\sum_{k=2}^{n}x_{k}v_{k}$
\end_inset
y
-\begin_inset Formula $f(y,0):=-e^{x_{1}}v_{1}+\sum_{k=2}^{n}x_{k}v_{k}$
+\begin_inset Formula $f(y,0)\coloneqq -e^{x_{1}}v_{1}+\sum_{k=2}^{n}x_{k}v_{k}$
\end_inset
es un homeomorfismo.
@@ -934,7 +934,7 @@ Sea
\end_inset
,
-\begin_inset Formula $\{U_{i}\mid =\{x\mid (x,0)\in A_{i}\}\}_{i\in I}$
+\begin_inset Formula $\{U_{i}\coloneqq \{x\mid (x,0)\in A_{i}\}\}_{i\in I}$
\end_inset
lo es de
@@ -947,7 +947,7 @@ Sea
.
Del mismo modo
-\begin_inset Formula $\{V_{j}\mid =\{y\mid (y,1)\in A_{i}\}\}_{j\in I}$
+\begin_inset Formula $\{V_{j}\coloneqq \{y\mid (y,1)\in A_{i}\}\}_{j\in I}$
\end_inset
admite un subrecubrimiento finito
@@ -1257,7 +1257,7 @@ Demostración:
\end_inset
dada por
-\begin_inset Formula $f((x_{1},\dots,x_{m}),(y_{1},\dots,y_{n})):=(x_{1},\dots,x_{m},y_{1},\dots,y_{n})$
+\begin_inset Formula $f((x_{1},\dots,x_{m}),(y_{1},\dots,y_{n}))\coloneqq (x_{1},\dots,x_{m},y_{1},\dots,y_{n})$
\end_inset
es biyectiva.
@@ -1278,11 +1278,11 @@ Demostración:
\end_inset
, sean
-\begin_inset Formula $a:=d_{\infty}(z,x)<\varepsilon_{x}$
+\begin_inset Formula $a\coloneqq d_{\infty}(z,x)<\varepsilon_{x}$
\end_inset
y
-\begin_inset Formula $b:=d_{\infty}(w,y)<\delta_{y}$
+\begin_inset Formula $b\coloneqq d_{\infty}(w,y)<\delta_{y}$
\end_inset
, la bola
@@ -1312,11 +1312,11 @@ Demostración:
\end_inset
dada por
-\begin_inset Formula $f(L(x)):=(x,-1)$
+\begin_inset Formula $f(L(x))\coloneqq (x,-1)$
\end_inset
y
-\begin_inset Formula $f(R(y)):=(y,1)$
+\begin_inset Formula $f(R(y))\coloneqq (y,1)$
\end_inset
es biyectiva.
@@ -1370,11 +1370,11 @@ proyecciones
\end_inset
dadas por
-\begin_inset Formula $\pi_{1}(a,b):=a$
+\begin_inset Formula $\pi_{1}(a,b)\coloneqq a$
\end_inset
y
-\begin_inset Formula $\pi_{2}(a,b):=b$
+\begin_inset Formula $\pi_{2}(a,b)\coloneqq b$
\end_inset
son continuas.
@@ -1416,7 +1416,7 @@ Sean
\end_inset
dada por
-\begin_inset Formula $f(x):=(a(x),b(x))$
+\begin_inset Formula $f(x)\coloneqq (a(x),b(x))$
\end_inset
es continua si y sólo si lo son
@@ -2144,7 +2144,7 @@ Demostración:
.
Sea
-\begin_inset Formula $U:=\bigcap_{k=1}^{n}U_{y_{k}}$
+\begin_inset Formula $U\coloneqq \bigcap_{k=1}^{n}U_{y_{k}}$
\end_inset
, entonces
@@ -2269,7 +2269,7 @@ Sean
\end_inset
, sea
-\begin_inset Formula $I_{x}:=\{i\in I\mid x\in U_{i}\}$
+\begin_inset Formula $I_{x}\coloneqq \{i\in I\mid x\in U_{i}\}$
\end_inset
,
@@ -2376,7 +2376,7 @@ proyección canónica
aplicación cociente
\series default
-\begin_inset Formula $p(x):=\overline{x}:=[x]$
+\begin_inset Formula $p(x)\coloneqq \overline{x}\coloneqq [x]$
\end_inset
que a cada
@@ -2429,7 +2429,7 @@ Si
\end_inset
, llamamos
-\begin_inset Formula $X/A:=X/\sim_{A}$
+\begin_inset Formula $X/A\coloneqq X/\sim_{A}$
\end_inset
donde
@@ -2467,7 +2467,7 @@ Ejemplos:
\begin_layout Enumerate
Sea
-\begin_inset Formula $X:=\mathbb{D}^{2}$
+\begin_inset Formula $X\coloneqq \mathbb{D}^{2}$
\end_inset
,
@@ -2501,11 +2501,11 @@ para
\end_inset
,
-\begin_inset Formula $f(0):=(0,0,1)$
+\begin_inset Formula $f(0)\coloneqq (0,0,1)$
\end_inset
y
-\begin_inset Formula $f(*):=(0,0,-1)$
+\begin_inset Formula $f(*)\coloneqq (0,0,-1)$
\end_inset
.
@@ -2631,7 +2631,7 @@ Para
\end_inset
, sea
-\begin_inset Formula $X:=[0,1]^{n}$
+\begin_inset Formula $X\coloneqq [0,1]^{n}$
\end_inset
,
@@ -2643,7 +2643,7 @@ Para
\begin_layout Enumerate
Sean
-\begin_inset Formula $X:=\mathbb{R}^{3}\setminus\{0\}$
+\begin_inset Formula $X\coloneqq \mathbb{R}^{3}\setminus\{0\}$
\end_inset
y
@@ -2663,7 +2663,7 @@ Sean
\begin_layout Standard
Además, sea
-\begin_inset Formula $X:=[0,1]\times[0,1]$
+\begin_inset Formula $X\coloneqq [0,1]\times[0,1]$
\end_inset
: