diff options
Diffstat (limited to 'ts')
| -rw-r--r-- | ts/n.lyx | 168 | ||||
| -rw-r--r-- | ts/n1.lyx | 2358 |
2 files changed, 2526 insertions, 0 deletions
diff --git a/ts/n.lyx b/ts/n.lyx new file mode 100644 index 0000000..5c56ecf --- /dev/null +++ b/ts/n.lyx @@ -0,0 +1,168 @@ +#LyX 2.3 created this file. For more info see http://www.lyx.org/ +\lyxformat 544 +\begin_document +\begin_header +\save_transient_properties true +\origin unavailable +\textclass book +\use_default_options true +\maintain_unincluded_children false +\language spanish +\language_package default +\inputencoding auto +\fontencoding global +\font_roman "default" "default" +\font_sans "default" "default" +\font_typewriter "default" "default" +\font_math "auto" "auto" +\font_default_family default +\use_non_tex_fonts false +\font_sc false +\font_osf false +\font_sf_scale 100 100 +\font_tt_scale 100 100 +\use_microtype false +\use_dash_ligatures true +\graphics default +\default_output_format default +\output_sync 0 +\bibtex_command default +\index_command default +\paperfontsize 10 +\spacing single +\use_hyperref false +\papersize a5paper +\use_geometry true +\use_package amsmath 1 +\use_package amssymb 1 +\use_package cancel 1 +\use_package esint 1 +\use_package mathdots 1 +\use_package mathtools 1 +\use_package mhchem 1 +\use_package stackrel 1 +\use_package stmaryrd 1 +\use_package undertilde 1 +\cite_engine basic +\cite_engine_type default +\biblio_style plain +\use_bibtopic false +\use_indices false +\paperorientation portrait +\suppress_date false +\justification true +\use_refstyle 1 +\use_minted 0 +\index Index +\shortcut idx +\color #008000 +\end_index +\leftmargin 0.2cm +\topmargin 0.7cm +\rightmargin 0.2cm +\bottommargin 0.7cm +\secnumdepth 3 +\tocdepth 3 +\paragraph_separation indent +\paragraph_indentation default +\is_math_indent 0 +\math_numbering_side default +\quotes_style swiss +\dynamic_quotes 0 +\papercolumns 1 +\papersides 1 +\paperpagestyle empty +\tracking_changes false +\output_changes false +\html_math_output 0 +\html_css_as_file 0 +\html_be_strict false +\end_header + +\begin_body + +\begin_layout Title +Topología de superficies +\end_layout + +\begin_layout Date +\begin_inset Note Note +status open + +\begin_layout Plain Layout + +\end_layout + +\end_inset + + +\end_layout + +\begin_layout Standard +\begin_inset ERT +status open + +\begin_layout Plain Layout + + +\backslash +def +\backslash +cryear{2020} +\end_layout + +\end_inset + + +\end_layout + +\begin_layout Standard +\begin_inset CommandInset include +LatexCommand input +filename "../license.lyx" + +\end_inset + + +\end_layout + +\begin_layout Standard +Bibliografía: +\end_layout + +\begin_layout Itemize +Diapositivas de clase, Pascual Lucas (2019–20), Departamento de Matemáticas, + Universidad de Murcia. +\end_layout + +\begin_layout Itemize +Modelling CPV, Ian Richard Cole (2015), +\begin_inset Flex URL +status collapsed + +\begin_layout Plain Layout + +https://repository.lboro.ac.uk/articles/Modelling_CPV/9523520 +\end_layout + +\end_inset + +. +\end_layout + +\begin_layout Chapter +Espacios topológicos +\end_layout + +\begin_layout Standard +\begin_inset CommandInset include +LatexCommand input +filename "n1.lyx" + +\end_inset + + +\end_layout + +\end_body +\end_document diff --git a/ts/n1.lyx b/ts/n1.lyx new file mode 100644 index 0000000..910f51e --- /dev/null +++ b/ts/n1.lyx @@ -0,0 +1,2358 @@ +#LyX 2.3 created this file. For more info see http://www.lyx.org/ +\lyxformat 544 +\begin_document +\begin_header +\save_transient_properties true +\origin unavailable +\textclass book +\use_default_options true +\maintain_unincluded_children false +\language spanish +\language_package default +\inputencoding auto +\fontencoding global +\font_roman "default" "default" +\font_sans "default" "default" +\font_typewriter "default" "default" +\font_math "auto" "auto" +\font_default_family default +\use_non_tex_fonts false +\font_sc false +\font_osf false +\font_sf_scale 100 100 +\font_tt_scale 100 100 +\use_microtype false +\use_dash_ligatures true +\graphics default +\default_output_format default +\output_sync 0 +\bibtex_command default +\index_command default +\paperfontsize default +\spacing single +\use_hyperref false +\papersize default +\use_geometry false +\use_package amsmath 1 +\use_package amssymb 1 +\use_package cancel 1 +\use_package esint 1 +\use_package mathdots 1 +\use_package mathtools 1 +\use_package mhchem 1 +\use_package stackrel 1 +\use_package stmaryrd 1 +\use_package undertilde 1 +\cite_engine basic +\cite_engine_type default +\biblio_style plain +\use_bibtopic false +\use_indices false +\paperorientation portrait +\suppress_date false +\justification true +\use_refstyle 1 +\use_minted 0 +\index Index +\shortcut idx +\color #008000 +\end_index +\secnumdepth 3 +\tocdepth 3 +\paragraph_separation indent +\paragraph_indentation default +\is_math_indent 0 +\math_numbering_side default +\quotes_style french +\dynamic_quotes 0 +\papercolumns 1 +\papersides 1 +\paperpagestyle default +\tracking_changes false +\output_changes false +\html_math_output 0 +\html_css_as_file 0 +\html_be_strict false +\end_header + +\begin_body + +\begin_layout Standard +Dado un conjunto +\begin_inset Formula $X$ +\end_inset + +, +\begin_inset Formula ${\cal T}\subseteq{\cal P}(X)$ +\end_inset + + es una +\series bold +topología +\series default + si +\begin_inset Formula $\emptyset,X\in{\cal T}$ +\end_inset + +, +\begin_inset Formula $\forall{\cal A}\subseteq{\cal T},\bigcup{\cal A}\in{\cal T}$ +\end_inset + + y +\begin_inset Formula $\forall A_{1},\dots,A_{n}\in{\cal T},\bigcap\{A_{1},\dots,A_{n}\}\in{\cal T}$ +\end_inset + +. + Entonces llamamos +\series bold +espacio topológico +\series default + al par +\begin_inset Formula $(X,{\cal T})$ +\end_inset + +, ( +\series bold +conjuntos +\series default +) +\series bold +abiertos +\series default + a los elementos de +\begin_inset Formula ${\cal T}$ +\end_inset + + y ( +\series bold +conjuntos +\series default +) +\series bold +cerrados +\series default + a sus complementarios. + Así, +\begin_inset Formula $\emptyset$ +\end_inset + + y +\begin_inset Formula $X$ +\end_inset + + son cerrados, la intersección arbitraria de cerrados es un cerrado y la + unión finita de cerrados es un cerrado. +\end_layout + +\begin_layout Standard +Dado +\begin_inset Formula $X\neq\emptyset$ +\end_inset + +, llamamos +\series bold +topología trivial +\series default + o +\series bold +indiscreta +\series default + a +\begin_inset Formula ${\cal T}_{\text{ind}}:=\{\emptyset,X\}$ +\end_inset + + y +\series bold +topología discreta +\series default + a +\begin_inset Formula ${\cal T}_{\text{dis}}:={\cal P}(X)$ +\end_inset + +. + Llamamos +\series bold +espacio indiscreto +\series default + a +\begin_inset Formula $(X,{\cal T}_{\text{ind}})$ +\end_inset + + y +\series bold +espacio discreto +\series default + a +\begin_inset Formula $(X,{\cal T}_{\text{dis}})$ +\end_inset + +. +\end_layout + +\begin_layout Section +Interior y clausura +\end_layout + +\begin_layout Standard +Sean +\begin_inset Formula $(X,{\cal T})$ +\end_inset + + un espacio topológico y +\begin_inset Formula $S\subseteq X$ +\end_inset + +, llamamos +\series bold +interior +\series default + de +\begin_inset Formula $S$ +\end_inset + +, +\begin_inset Formula $\text{int}S$ +\end_inset + + o +\begin_inset Formula $\mathring{S}$ +\end_inset + + al mayor abierto contenido en +\begin_inset Formula $S$ +\end_inset + +, que es la unión de todos ellos, y +\series bold +clausura +\series default + de +\begin_inset Formula $S$ +\end_inset + +, +\begin_inset Formula $\text{cl}S$ +\end_inset + + o +\begin_inset Formula $\overline{S}$ +\end_inset + + al menor cerrado que lo contiene, que es la intersección de todos ellos. + Así, +\begin_inset Formula $\mathring{S}\subseteq S\subseteq\overline{S}$ +\end_inset + +, y +\begin_inset Formula $S$ +\end_inset + + es abierto si y sólo si +\begin_inset Formula $S=\mathring{S}$ +\end_inset + + y cerrado si y sólo si +\begin_inset Formula $S=\overline{S}$ +\end_inset + +. +\end_layout + +\begin_layout Standard +Un +\series bold +entorno +\series default + de +\begin_inset Formula $x\in X$ +\end_inset + + es un elemento de +\begin_inset Formula ${\cal E}(x):=\{U\in{\cal T}:x\in{\cal U}\}$ +\end_inset + +. + Entonces +\begin_inset Formula $x\in\mathring{S}$ +\end_inset + + si y sólo si existe un entorno de +\begin_inset Formula $x$ +\end_inset + + contenido en +\begin_inset Formula $S$ +\end_inset + +, y +\begin_inset Formula $x\in\overline{S}$ +\end_inset + + si y sólo si todo entorno de +\begin_inset Formula $x$ +\end_inset + + interseca con +\begin_inset Formula $S$ +\end_inset + +. +\end_layout + +\begin_layout Section +Espacios métricos +\end_layout + +\begin_layout Standard +Una +\series bold +distancia +\series default + en un conjunto +\begin_inset Formula $X$ +\end_inset + + es una función +\begin_inset Formula $d:X\times X\to\mathbb{R}$ +\end_inset + + tal que para cada +\begin_inset Formula $x,y,z\in X$ +\end_inset + +, +\begin_inset Formula $0\leq d(x,y)=d(y,x)\leq d(x,z)+d(z,y)$ +\end_inset + +. + Decimos entonces que +\begin_inset Formula $(X,d)$ +\end_inset + + es un +\series bold +espacio métrico +\series default +. + +\end_layout + +\begin_layout Standard +En +\begin_inset Formula $\mathbb{R}$ +\end_inset + + tenemos la distancia usual +\begin_inset Formula $d_{u}(x,y):=|x-y|$ +\end_inset + +. + Dado un espacio métrico en +\begin_inset Formula $(X,d)$ +\end_inset + +, definimos en +\begin_inset Formula $X^{n}$ +\end_inset + + la distancia +\begin_inset Formula +\[ +d_{p}(x,y):=\left(\sum_{k=1}^{n}d(x_{k},y_{k})^{p}\right)^{\frac{1}{p}} +\] + +\end_inset + + para +\begin_inset Formula $p\in\mathbb{N}^{*}$ +\end_inset + +, y +\begin_inset Formula $d_{\infty}(x,y):=\max_{k=1}^{n}d(x_{k},y_{k})$ +\end_inset + +. + Llamamos +\series bold +distancia Manhattan +\series default + o +\series bold +del taxi +\series default + a +\begin_inset Formula $d_{1}$ +\end_inset + +, +\series bold +distancia euclídea +\series default + a +\begin_inset Formula $d_{2}$ +\end_inset + + y +\series bold +distancia del ajedrez +\series default + a +\begin_inset Formula $d_{\infty}$ +\end_inset + +. + Además, en un conjunto +\begin_inset Formula $X$ +\end_inset + + definimos la +\series bold +distancia discreta +\series default + como +\begin_inset Formula +\[ +d_{D}(x,y):=\left\{ \begin{aligned}1 & \text{si }x\neq y,\\ +0 & \text{si }x=y. +\end{aligned} +\right. +\] + +\end_inset + + +\end_layout + +\begin_layout Standard +Sean +\begin_inset Formula $(X,d)$ +\end_inset + + un espacio métrico, +\begin_inset Formula $x\in X$ +\end_inset + + y +\begin_inset Formula $\delta>0$ +\end_inset + +, llamamos +\series bold +bola +\series default + ( +\series bold +abierta +\series default +) en la distancia +\begin_inset Formula $d$ +\end_inset + + de centro +\begin_inset Formula $x$ +\end_inset + + y radio +\begin_inset Formula $\delta$ +\end_inset + + a +\begin_inset Formula +\[ +B_{d}(x,\delta):=\{y\in X:d(x,y)<\varepsilon\}. +\] + +\end_inset + +Llamamos +\series bold +topología +\series default + ( +\series bold +métrica +\series default +) +\series bold +inducida +\series default + por +\begin_inset Formula $d$ +\end_inset + + en +\begin_inset Formula $X$ +\end_inset + + a la topología +\begin_inset Formula ${\cal T}_{d}:=\{A\in X:\forall x\in A,\exists\delta>0:B_{d}(x,\delta)\subseteq A\}$ +\end_inset + +. + Las bolas son abiertas en la topología inducida, por lo que en esta los + abiertos son uniones de bolas. +\end_layout + +\begin_layout Standard +La distancia discreta induce la topología discreta, y las distancias del + taxi, euclídea y del ajedrez sobre +\begin_inset Formula $\mathbb{R}^{n}$ +\end_inset + + con la distancia usual en +\begin_inset Formula $\mathbb{R}$ +\end_inset + + inducen una misma topología que llamamos +\series bold +topología usual +\series default + en +\begin_inset Formula $\mathbb{R}^{n}$ +\end_inset + + ( +\begin_inset Formula $n\geq1$ +\end_inset + +). + En +\begin_inset Formula $\mathbb{R}$ +\end_inset + +, los abiertos de esta topología son las uniones de intervalos abiertos. +\end_layout + +\begin_layout Section +Subespacios topológicos +\end_layout + +\begin_layout Standard +Dados un espacio topológico +\begin_inset Formula $(X,{\cal T})$ +\end_inset + + e +\begin_inset Formula $Y\subseteq X$ +\end_inset + +, +\begin_inset Formula ${\cal T}_{Y}:=\{U\cap Y\}_{U\in{\cal T}}$ +\end_inset + + es una topología sobre +\begin_inset Formula $Y$ +\end_inset + +, la +\series bold +topología del subespacio +\series default + o +\series bold +inducida +\series default + sobre +\begin_inset Formula $Y$ +\end_inset + +. + Algunos subespacios topológicos importantes: +\end_layout + +\begin_layout Enumerate +\begin_inset Formula $\mathbb{Z}\subseteq\mathbb{R}$ +\end_inset + +. + En este caso, la topología inducida por la usual es la discreta. +\end_layout + +\begin_layout Enumerate +La +\series bold + +\begin_inset Formula $n$ +\end_inset + +-esfera +\series default +, +\begin_inset Formula $\mathbb{S}^{n}(r):=\{(x_{1},\dots,x_{n+1})\in\mathbb{R}^{n+1}:x_{1}^{2}+\dots+x_{n+1}^{2}=r^{2}\}$ +\end_inset + +. +\end_layout + +\begin_layout Enumerate +El +\series bold +plano agujereado +\series default + +\begin_inset Formula $\mathbb{R}^{2}\setminus\{0\}\subseteq\mathbb{R}^{2}$ +\end_inset + + y el +\series bold +espacio agujereado +\series default + +\begin_inset Formula $\mathbb{R}^{n}\setminus\{0\}\subseteq\mathbb{R}^{n}$ +\end_inset + +. +\end_layout + +\begin_layout Enumerate +El +\series bold +intervalo cerrado +\series default + +\begin_inset Formula $I:=[0,1]\subseteq\mathbb{R}$ +\end_inset + + o el +\series bold +cuadrado unidad +\series default + +\begin_inset Formula $I\times I\subseteq\mathbb{R}^{2}$ +\end_inset + +. +\end_layout + +\begin_layout Enumerate +El +\series bold +cilindro +\series default +, +\begin_inset Formula $C:=\{(x,y,z)\in\mathbb{R}^{3}:x^{2}+y^{2}=1,0\leq z\leq1\}$ +\end_inset + +, cono de rotación sobre el eje +\begin_inset Formula $z$ +\end_inset + + de +\begin_inset Formula $\{(1,0,s)\}_{s\in[0,1]}$ +\end_inset + +, esto es, +\begin_inset Formula $C=\{R_{\theta}(1,0,s)\}_{\theta\in[0,2\pi],s\in[0,1]}$ +\end_inset + + con +\begin_inset Formula +\[ +R_{\theta}:=\left(\begin{array}{ccc} +\cos\theta & -\sin\theta & 0\\ +\sin\theta & \cos\theta & 0\\ +0 & 0 & 1 +\end{array}\right). +\] + +\end_inset + + +\end_layout + +\begin_layout Enumerate +El +\series bold +toro +\series default +, +\begin_inset Formula $\mathbb{T}:=\{(x,y,z)\in\mathbb{R}^{3}:x^{2}+y^{2}+z^{2}-4\sqrt{x^{2}+y^{2}}+3=0\}$ +\end_inset + +, cono de rotación sobre el eje +\begin_inset Formula $z$ +\end_inset + + de +\begin_inset Formula $\{(x,0,z):(x-2)^{2}+z^{2}=1\}$ +\end_inset + +. +\end_layout + +\begin_deeper +\begin_layout Enumerate +\begin_inset Argument item:1 +status open + +\begin_layout Plain Layout +\begin_inset Formula $\supseteq]$ +\end_inset + + +\end_layout + +\end_inset + +Tenemos +\begin_inset Formula $\{(x,0,z):(x-2)^{2}+z^{2}=1\}=\{\alpha(s):=(\cos s+2,0,\sin s)\}_{s\in[0,2\pi]}$ +\end_inset + +, luego el cono de rotación es +\begin_inset Formula $\{(\cos\theta(\cos s+2),\sin\theta(\cos s+2),\sin s)\}_{s,\theta\in[0,2\pi]}$ +\end_inset + +. + Sustituyendo en la ecuación implícita y teniendo en cuenta que +\begin_inset Formula $x^{2}+y^{2}=(\cos s+2)^{2}$ +\end_inset + +, tenemos +\begin_inset Formula +\begin{multline*} +(\cos s+2)^{2}+\sin^{2}s-4(\cos s+2)+3=\\ +=\cos^{2}s+4\cos s+4+\sin^{2}s-4\cos s-8+3=0. +\end{multline*} + +\end_inset + + +\end_layout + +\begin_layout Enumerate +\begin_inset Argument item:1 +status open + +\begin_layout Plain Layout +\begin_inset Formula $\subseteq]$ +\end_inset + + +\end_layout + +\end_inset + +Dado +\begin_inset Formula $(x,y,z)\in\mathbb{T}$ +\end_inset + +, sea +\begin_inset Formula $s$ +\end_inset + + tal que +\begin_inset Formula $\sin s=z$ +\end_inset + +, concretamente, +\begin_inset Formula $s\in[0,\frac{\pi}{2}]\cup[\frac{3\pi}{2},2\pi]$ +\end_inset + + si +\begin_inset Formula $x^{2}+y^{2}\geq4$ +\end_inset + + o +\begin_inset Formula $s\in[\frac{\pi}{2},\frac{3\pi}{2}]$ +\end_inset + + en caso contrario. + Esto es válido porque, si +\begin_inset Formula $z^{2}>1$ +\end_inset + +, entonces +\begin_inset Formula $x^{2}+y^{2}-4\sqrt{x^{2}+y^{2}}+4<0$ +\end_inset + +, pero +\begin_inset Formula $x^{2}+y^{2}-4\sqrt{x^{2}+y^{2}}+4=(x^{2}+y^{2}-2)^{2}\geq0\#$ +\end_inset + +. + Entonces +\begin_inset Formula $x^{2}+y^{2}+\sin^{2}s-4\sqrt{x^{2}+y^{2}}+3=0\iff\sqrt{x^{2}+y^{2}}=\frac{4\pm\sqrt{16-4\sin^{2}s-12}}{2}=2\pm\sqrt{1-\sin^{2}s}=2\pm\cos s$ +\end_inset + +, luego +\begin_inset Formula $x^{2}+y^{2}=(2\pm\cos s)^{2}$ +\end_inset + +, y por cómo hemos elegido +\begin_inset Formula $s$ +\end_inset + +, es +\begin_inset Formula $x^{2}+y^{2}=(2+\cos s)^{2}$ +\end_inset + +. + Entonces basta tomar +\begin_inset Formula $\theta$ +\end_inset + + tal que +\begin_inset Formula $\cos\theta=\frac{x}{\sqrt{x^{2}+y^{2}}}=\frac{x}{\cos s+2}$ +\end_inset + + (es claro que +\begin_inset Formula $\cos s+2\neq0$ +\end_inset + +) y +\begin_inset Formula $\sin\theta=\frac{y}{\sqrt{x^{2}+y^{2}}}=\frac{y}{\cos s+2}$ +\end_inset + +. + +\end_layout + +\end_deeper +\begin_layout Enumerate +La +\series bold +cinta de Möbius +\series default +, +\begin_inset Formula $M:=\{(\cos\theta(3-t\sin\frac{\theta}{2}),\sin\theta(3-t\sin\frac{\theta}{2}),t\cos\frac{\theta}{2})\}_{\theta\in[0,2\pi],t\in[-1,1]}$ +\end_inset + +. + La idea es tener una varilla inicialmente paralela al eje +\begin_inset Formula $Z$ +\end_inset + + a longitud 3 que va girando alrededor del eje a la vez que gira alrededor + de su punto medio a la mitad de velocidad angular de forma perpendicular + al eje. +\end_layout + +\begin_layout Enumerate +El +\series bold +grupo lineal general +\series default + +\begin_inset Formula ${\cal GL}(n,\mathbb{R})\subseteq{\cal M}_{n}(\mathbb{R})$ +\end_inset + +, compuesto por las matrices invertibles, con la topología para +\begin_inset Formula ${\cal M}_{n}(\mathbb{R})$ +\end_inset + + dada por isomorfismo lineal con +\begin_inset Formula $\mathbb{R}^{n^{2}}$ +\end_inset + +. +\end_layout + +\begin_layout Enumerate +El +\series bold +grupo ortogonal +\series default + +\begin_inset Formula ${\cal O}(n)\subseteq{\cal GL}(n,\mathbb{R})$ +\end_inset + +, formado por las matrices cuya inversa es su traspuesta. +\end_layout + +\begin_layout Enumerate +El +\series bold +grupo ortogonal especial +\series default + +\begin_inset Formula ${\cal SO}(n)\subseteq{\cal O}(n)$ +\end_inset + +, formado por las matrices ortogonales con determinante 1. +\end_layout + +\begin_layout Section +Continuidad +\end_layout + +\begin_layout Standard +Dados dos espacios topológicos +\begin_inset Formula $(X,{\cal T}_{X})$ +\end_inset + + e +\begin_inset Formula $(Y,{\cal T}_{Y})$ +\end_inset + +, +\begin_inset Formula $f:X\to Y$ +\end_inset + +, o +\begin_inset Formula $f:(X,{\cal T}_{X})\to(Y,{\cal T}_{Y})$ +\end_inset + + si queremos resaltar la dependencia de las topologías, es +\series bold +continua +\series default + si +\begin_inset Formula $\forall V\in{\cal T}_{Y},f^{-1}(V)\in{\cal T}_{X}$ +\end_inset + +. +\end_layout + +\begin_layout Standard +Dados dos espacios topológicos +\begin_inset Formula $X_{1}$ +\end_inset + + y +\begin_inset Formula $X_{2}$ +\end_inset + + y +\begin_inset Formula $f:X_{1}\to X_{2}$ +\end_inset + + continua, si +\begin_inset Formula $Y_{1}\subseteq X_{1}$ +\end_inset + +, +\begin_inset Formula $f|_{Y_{1}}:Y_{1}\to X_{2}$ +\end_inset + + es continua, por lo que en particular la inclusión +\begin_inset Formula $i:Y_{1}\to X_{1}$ +\end_inset + + es continua, y si +\begin_inset Formula $f(X_{1})\subseteq Y_{2}\subseteq X_{2}$ +\end_inset + +, la +\series bold +restricción del rango +\series default + +\begin_inset Formula $f':X_{1}\to Y_{2}$ +\end_inset + +, dada por +\begin_inset Formula $f'(x):=f(x)$ +\end_inset + +, es continua. + Además, si +\begin_inset Formula $X_{2}$ +\end_inset + + es un subespacio topológico de +\begin_inset Formula $X'$ +\end_inset + +, la +\series bold +extensión de la imagen +\series default + +\begin_inset Formula $f':X_{1}\to X'$ +\end_inset + + es continua. +\end_layout + +\begin_layout Standard +Son funciones continuas: +\end_layout + +\begin_layout Enumerate +Las de forma +\begin_inset Formula $f:(X,{\cal T}_{\text{dis}})\to Y$ +\end_inset + + o +\begin_inset Formula $f:X\to(Y,{\cal T}_{\text{ind}})$ +\end_inset + +. + +\end_layout + +\begin_layout Enumerate +Las constantes. +\end_layout + +\begin_layout Enumerate +La composición de aplicaciones continuas. + No obstante, dadas +\begin_inset Formula $f:X\to Y$ +\end_inset + + y +\begin_inset Formula $g:Y\to Z$ +\end_inset + +, que +\begin_inset Formula $g\circ f$ +\end_inset + + sea continua no significa que lo sean +\begin_inset Formula $f$ +\end_inset + + y +\begin_inset Formula $g$ +\end_inset + +, pues por ejemplo, si tomamos +\begin_inset Formula $g$ +\end_inset + + constante, +\begin_inset Formula $g\circ f$ +\end_inset + + es continua aun si +\begin_inset Formula $f$ +\end_inset + + es discontinua. + +\end_layout + +\begin_layout Enumerate +La +\series bold +suma +\series default + +\begin_inset Formula $s:\mathbb{R}^{2}\to\mathbb{R}$ +\end_inset + +, +\begin_inset Formula $s(x,y):=x+y$ +\end_inset + +, con la topología usual. +\end_layout + +\begin_deeper +\begin_layout Enumerate +Como los abiertos en +\begin_inset Formula $\mathbb{R}$ +\end_inset + + son uniones de intervalos abiertos, basta ver que, dado +\begin_inset Formula $(a,b)\subseteq\mathbb{R}$ +\end_inset + +, +\begin_inset Formula $s^{-1}((a,b))=\{(x,y):a<s(x,y)=x+y<b\}=\{(x,y):a-x<y<b-x\}$ +\end_inset + +. + Sean +\begin_inset Formula $(x_{0},y_{0})\in s^{-1}((a,b))$ +\end_inset + +, +\begin_inset Formula $t:=s(x_{0},y_{0})$ +\end_inset + + y +\begin_inset Formula $\delta>0$ +\end_inset + + tal que +\begin_inset Formula $B(t,\delta)\subseteq(a,b)$ +\end_inset + +, para +\begin_inset Formula $(x,y)\in B_{d_{1}}((x_{0},y_{0}),\delta)$ +\end_inset + +, +\begin_inset Formula +\[ +d(s(x,y),s(x_{0},y_{0}))=|x+y-x_{0}-y_{0}|=|(x-x_{0})-(y-y_{0})|\leq\delta +\] + +\end_inset + +y por tanto +\begin_inset Formula $s(x,y)\in(a,b)$ +\end_inset + + y +\begin_inset Formula $(x,y)\in s^{-1}((a,b))$ +\end_inset + +, con lo que +\begin_inset Formula $B_{d_{1}}((x_{0},y_{0}),\delta)\subseteq s^{-1}((a,b))$ +\end_inset + + y +\begin_inset Formula $s^{-1}((a,b))$ +\end_inset + + es abierto. +\end_layout + +\end_deeper +\begin_layout Enumerate +El +\series bold +producto +\series default + +\begin_inset Formula $p:\mathbb{R}^{2}\to\mathbb{R}$ +\end_inset + +, +\begin_inset Formula $p(x,y):=xy$ +\end_inset + +, con la topología usual. +\end_layout + +\begin_deeper +\begin_layout Enumerate +Dado +\begin_inset Formula $(a,b)\subseteq\mathbb{R}$ +\end_inset + +, queremos ver que +\begin_inset Formula $p^{-1}((a,b))=\{(x,y):a<p(x,y)=xy<b\}$ +\end_inset + + es abierto. + Sean +\begin_inset Formula $(x_{0},y_{0})\in p^{-1}((a,b))$ +\end_inset + +, +\begin_inset Formula $t:=p(x_{0},y_{0})$ +\end_inset + +, +\begin_inset Formula $r>0$ +\end_inset + + tal que +\begin_inset Formula $B(t,\delta)\subseteq(a,b)$ +\end_inset + + y +\begin_inset Formula $\delta:=\min\{1,\frac{r}{|x_{0}|+|y_{0}|+1}\}$ +\end_inset + +, para +\begin_inset Formula $(x,y)\in B_{d_{\infty}}((x_{0},y_{0}),\delta)$ +\end_inset + +, +\begin_inset Formula +\begin{multline*} +|p(x,y)-p(x_{0},y_{0})|=|xy-x_{0}y_{0}|=|xy-xy_{0}+xy_{0}-x_{0}y_{0}|\leq\\ +\leq|x||y-y_{0}|+|x-x_{0}||y_{0}|\leq(|x_{0}|+\delta)\delta+|y_{0}|\delta=\delta(|x_{0}|+|y_{0}|+\delta)\leq\\ +\leq\delta(|x_{0}|+|y_{0}|+1)\leq r, +\end{multline*} + +\end_inset + +con lo que +\begin_inset Formula $B_{d_{\infty}}((x_{0},y_{0}),\delta)\subseteq p^{-1}((a,b))$ +\end_inset + + y +\begin_inset Formula $p^{-1}((a,b))$ +\end_inset + + es abierto. +\end_layout + +\end_deeper +\begin_layout Enumerate +La +\series bold +diagonal +\series default + +\begin_inset Formula $d:\mathbb{R}\to\mathbb{R}^{n}$ +\end_inset + +, +\begin_inset Formula $d(x):=(x,\dots,x)$ +\end_inset + +, con la topología usual. +\end_layout + +\begin_deeper +\begin_layout Enumerate +Basta ver que, dada una bola +\begin_inset Formula $B_{\infty}(y,r)$ +\end_inset + + con +\begin_inset Formula $y\in\mathbb{R}^{n}$ +\end_inset + +, su inversa es un abierto. + Tenemos +\begin_inset Formula $d^{-1}(B_{d_{\infty}}(y,r))=\{x:d_{\infty}((x,\dots,x),y)<r\}=\{t:|x-y_{1}|,\dots,|x-y_{n}|<r\}$ +\end_inset + +, pero +\begin_inset Formula $|x-y_{k}|<r\iff-r<x-y_{k}<r\iff y_{k}-r<x<y_{k}+r\iff x\in B(y_{k},r)$ +\end_inset + +, luego +\begin_inset Formula $d^{-1}(B_{d_{\infty}}((x,y),r))=\bigcap_{k=1}^{n}B(y_{k},r)$ +\end_inset + +, que es abierto. +\end_layout + +\end_deeper +\begin_layout Enumerate +Los polinomios reales, con la topología usual. +\end_layout + +\begin_layout Enumerate +El determinante +\begin_inset Formula $\det:{\cal M}_{n}(\mathbb{R})\to\mathbb{R}$ +\end_inset + +. +\end_layout + +\begin_deeper +\begin_layout Standard +Es un polinomio. +\end_layout + +\end_deeper +\begin_layout Enumerate +La inversa matricial +\begin_inset Formula $\text{inv}:GL(n,\mathbb{R})\to GL(n,\mathbb{R})$ +\end_inset + +. +\end_layout + +\begin_deeper +\begin_layout Standard +Es una función racional en cada componente. +\end_layout + +\end_deeper +\begin_layout Enumerate +\begin_inset CommandInset label +LatexCommand label +name "enu:angle" + +\end_inset + +La aplicación +\begin_inset Formula $f:\mathbb{S}^{3}\to{\cal SO}(3)$ +\end_inset + + dada por +\begin_inset Formula +\[ +f(w,x,y,z):=\left(\begin{array}{ccc} +w^{2}+x^{2}-y^{2}-z^{2} & 2(xy-wz) & 2(wy+xz)\\ +2(xy+wz) & w^{2}-x^{2}+y^{2}-z^{2} & 2(yz-wx)\\ +2(xz-wy) & 2(yz+wx) & w^{2}-x^{2}-y^{2}+z^{2} +\end{array}\right), +\] + +\end_inset + +que asocia a +\begin_inset Formula $(\cos\theta,x,y,z)\in\mathbb{S}^{3}$ +\end_inset + + la rotación de ángulo +\begin_inset Formula $2\theta$ +\end_inset + + alrededor de la recta +\begin_inset Formula $\langle(x,y,z)\rangle$ +\end_inset + +. +\end_layout + +\begin_deeper +\begin_layout Standard +La función es continua porque lo es en cada componente, al serlo la suma + y el producto. + Dado +\begin_inset Formula $u:=(\cos\theta,x,y,z)$ +\end_inset + +, sean +\begin_inset Formula $v:=(x,y,z)$ +\end_inset + + y +\begin_inset Formula $n:=\Vert v\Vert$ +\end_inset + +. + Si +\begin_inset Formula $n=0$ +\end_inset + +, la matriz es la identidad, que es lo que tendría sentido ya que el ángulo + sería de +\begin_inset Formula $2\theta=2k\pi$ +\end_inset + + con +\begin_inset Formula $k\in\mathbb{Z}$ +\end_inset + +, aunque realmente es un caso degenerado porque no hay recta. + Supongamos +\begin_inset Formula $n\neq0$ +\end_inset + +. + +\end_layout + +\begin_layout Enumerate +Rotamos sobre el eje +\begin_inset Formula $Z$ +\end_inset + + para situar a +\begin_inset Formula $u$ +\end_inset + + en el plano +\begin_inset Formula $XZ$ +\end_inset + +. + El ángulo es aquel entre la proyección de +\begin_inset Formula $v$ +\end_inset + + en el plano +\begin_inset Formula $XY$ +\end_inset + + y el eje +\begin_inset Formula $X$ +\end_inset + +, que es un +\begin_inset Formula $\alpha$ +\end_inset + + tal que +\begin_inset Formula $(1,0,0)\cdot(x,y,0)=|(1,0,0)||(x,y,0)|\cos\alpha\iff x=\sqrt{x^{2}+y^{2}}\cos\alpha\iff x,y=0\lor\cos\alpha=\frac{x}{\sqrt{x^{2}+y^{2}}}$ +\end_inset + +. + Tenemos +\begin_inset Formula +\[ +\sin\alpha=\pm\sqrt{1-\cos^{2}\alpha}=\pm\sqrt{1-\frac{x^{2}}{x^{2}+y^{2}}}=\pm\sqrt{\frac{y^{2}}{x^{2}+y^{2}}}=\frac{\pm y}{\sqrt{x^{2}+y^{2}}}, +\] + +\end_inset + + pero como +\begin_inset Formula $\alpha<0$ +\end_inset + + cuando +\begin_inset Formula $y>0$ +\end_inset + +, +\begin_inset Formula $\sin\alpha=-\frac{y}{\sqrt{x^{2}+y^{2}}}$ +\end_inset + + y la rotación es +\begin_inset Formula +\[ +A:=\left(\begin{array}{ccc} +\frac{x}{\sqrt{x^{2}+y^{2}}} & \frac{y}{\sqrt{x^{2}+y^{2}}}\\ +-\frac{y}{\sqrt{x^{2}+y^{2}}} & \frac{x}{\sqrt{x^{2}+y^{2}}}\\ + & & 1 +\end{array}\right). +\] + +\end_inset + +Para +\begin_inset Formula $(x,y)=(0,0)$ +\end_inset + +, esta matriz no está definida, pero entonces no es necesaria la rotación. + Tras la transformación, +\begin_inset Formula $x\geq0$ +\end_inset + +. +\end_layout + +\begin_layout Enumerate +Rotamos sobre el eje +\begin_inset Formula $Y$ +\end_inset + + para situar a +\begin_inset Formula $u$ +\end_inset + + en el eje +\begin_inset Formula $Z$ +\end_inset + +. + El ángulo es aquel entre el nuevo valor de +\begin_inset Formula $u$ +\end_inset + + y el eje +\begin_inset Formula $Z$ +\end_inset + +, un +\begin_inset Formula $\alpha$ +\end_inset + + tal que +\begin_inset Formula $(0,0,1)\cdot Au=|(0,0,1)||Av|\cos\alpha=|v|\cos\alpha\iff z=n\cos\alpha\iff\cos\alpha=\frac{z}{n}$ +\end_inset + +. + Tenemos +\begin_inset Formula +\[ +\sin\alpha=\pm\sqrt{1-\cos^{2}\alpha}=\pm\sqrt{\frac{n^{2}-z^{2}}{n^{2}}}=\pm\frac{\sqrt{x^{2}+y^{2}}}{n}, +\] + +\end_inset + + pero como +\begin_inset Formula $\alpha<0$ +\end_inset + +, +\begin_inset Formula $\sin\alpha=-\frac{\sqrt{x^{2}+y^{2}}}{n}$ +\end_inset + +, y la rotación es +\begin_inset Formula +\[ +B:=\left(\begin{array}{ccc} +\frac{z}{n} & & -\frac{\sqrt{x^{2}+y^{2}}}{n}\\ + & 1\\ +\frac{\sqrt{x^{2}+y^{2}}}{n} & & \frac{z}{n} +\end{array}\right). +\] + +\end_inset + + +\end_layout + +\begin_layout Enumerate +Hacemos la rotación de ángulo +\begin_inset Formula $2\theta$ +\end_inset + + sobre el eje +\begin_inset Formula $Z$ +\end_inset + +. + Tenemos +\begin_inset Formula +\begin{eqnarray*} +\cos(2\theta) & = & \cos^{2}\theta-\sin^{2}\theta=2\cos^{2}\theta-1=2w^{2}-1,\\ +\sin(2\theta) & = & 2\sin\theta\cos\theta=2w\sqrt{1-w^{2}}=2w\sqrt{x^{2}+y^{2}+z^{2}}=2wn, +\end{eqnarray*} + +\end_inset + +luego la rotación es +\begin_inset Formula +\[ +C:=\left(\begin{array}{ccc} +2w^{2}-1 & -2wn\\ +2wn & 2w^{2}-1\\ + & & 1 +\end{array}\right). +\] + +\end_inset + + +\end_layout + +\begin_layout Enumerate +Revertimos las dos rotaciones anteriores. + Sea +\begin_inset Formula $t:=\sqrt{x^{2}+y^{2}}$ +\end_inset + +, +\begin_inset Formula +\[ +BA=\left(\begin{array}{ccc} +\frac{z}{n} & & -\frac{t}{n}\\ + & 1\\ +\frac{t}{n} & & \frac{z}{n} +\end{array}\right)\left(\begin{array}{ccc} +\frac{x}{t} & \frac{y}{t}\\ +-\frac{y}{t} & \frac{x}{t}\\ + & & 1 +\end{array}\right)=\left(\begin{array}{ccc} +\frac{xz}{nt} & \frac{yz}{nt} & -\frac{t}{n}\\ +-\frac{y}{t} & \frac{x}{t}\\ +\frac{x}{n} & \frac{y}{n} & \frac{z}{n} +\end{array}\right). +\] + +\end_inset + +Ahora bien, como todas estas matrices son rotaciones y por tanto son ortonormale +s especiales, su inversa es su traspuesta, +\begin_inset Formula +\[ +D:=(BA)^{-1}=(BA)^{t}=\left(\begin{array}{ccc} +\frac{xz}{nt} & -\frac{y}{t} & \frac{x}{n}\\ +\frac{yz}{nt} & \frac{x}{t} & \frac{y}{n}\\ +-\frac{t}{n} & & \frac{z}{n} +\end{array}\right). +\] + +\end_inset + + +\end_layout + +\begin_layout Standard +Multiplicando todo, la matriz es +\begin_inset Formula +\begin{eqnarray*} +DCBA & = & \left(\begin{array}{ccc} +\frac{xz}{nt} & -\frac{y}{t} & \frac{x}{n}\\ +\frac{yz}{nt} & \frac{x}{t} & \frac{y}{n}\\ +-\frac{t}{n} & & \frac{z}{n} +\end{array}\right)\left(\begin{array}{ccc} +2w^{2}-1 & -2wn\\ +2wn & 2w^{2}-1\\ + & & 1 +\end{array}\right)\left(\begin{array}{ccc} +\frac{xz}{nt} & \frac{yz}{nt} & -\frac{t}{n}\\ +-\frac{y}{t} & \frac{x}{t}\\ +\frac{x}{n} & \frac{y}{n} & \frac{z}{n} +\end{array}\right)\\ + & \overset{\text{Maxima}}{=} & \left(\begin{array}{ccc} +1-2y^{2}-2z^{2} & 2(xy-wz) & 2(wy+xz)\\ +2(xy+wz) & 1-2x^{2}-2z^{2} & 2(yz-wx)\\ +2(xz-wy) & 2(yz-wx) & 1-2x^{2}-2y^{2} +\end{array}\right)\\ + & = & \left(\begin{array}{ccc} +w^{2}+x^{2}-y^{2}-z^{2} & 2(xy-wz) & 2(wy+xz)\\ +2(xy+wz) & w^{2}-x^{2}+y^{2}-z^{2} & 2(yz-wx)\\ +2(xz-wy) & 2(yz-wx) & w^{2}-x^{2}-y^{2}+z^{2} +\end{array}\right). +\end{eqnarray*} + +\end_inset + +Claramente esta matriz es ortogonal especial por ser producto de matrices + ortogonales especiales. + Vemos que, cuando +\begin_inset Formula $(x,y)=(0,0)$ +\end_inset + +, +\begin_inset Formula $z^{2}=n^{2}$ +\end_inset + + y tenemos la matriz +\begin_inset Formula $C$ +\end_inset + +, que también es ortogonal especial. +\end_layout + +\end_deeper +\begin_layout Enumerate +La aplicación +\begin_inset Formula $f:\mathbb{S}^{2}\to{\cal SO}(3)$ +\end_inset + + dada por +\begin_inset Formula +\[ +f(x,y,z):=\left(\begin{array}{ccc} +2x^{2}-1 & 2xy & 2xz\\ +2xy & 2y^{2}-1 & 2yz\\ +2xz & 2yz & 2z^{2}-1 +\end{array}\right), +\] + +\end_inset + +que asocia a cada punto de la esfera la rotación de +\begin_inset Formula $180^{\text{o}}$ +\end_inset + + alrededor de la recta que genera. +\end_layout + +\begin_deeper +\begin_layout Standard +Se obtiene tomando +\begin_inset Formula $w=0$ +\end_inset + + en el punto +\begin_inset CommandInset ref +LatexCommand ref +reference "enu:angle" +plural "false" +caps "false" +noprefix "false" + +\end_inset + + y simplificando. +\end_layout + +\end_deeper +\begin_layout Section +Base de una topología +\end_layout + +\begin_layout Standard +Dado un espacio topológico +\begin_inset Formula $(X,{\cal T})$ +\end_inset + +, +\begin_inset Formula ${\cal B}\subseteq{\cal T}$ +\end_inset + + es una +\series bold +base +\series default + para +\begin_inset Formula ${\cal T}$ +\end_inset + + si +\begin_inset Formula $\forall A\in{\cal T},\exists{\cal A}\subseteq{\cal B}:A=\bigcup{\cal A}$ +\end_inset + +, en cuyo caso llamamos +\series bold +elementos básicos +\series default + a los elementos de +\begin_inset Formula ${\cal B}$ +\end_inset + +. + Vemos que +\begin_inset Formula ${\cal B}$ +\end_inset + + es una base para +\begin_inset Formula ${\cal T}$ +\end_inset + + si y sólo si +\begin_inset Formula $\forall U\in{\cal T},\forall x\in U,\exists B\in{\cal B}:x\in B\subseteq U$ +\end_inset + +, y entonces, si +\begin_inset Formula ${\cal B}_{Y}$ +\end_inset + + es base de +\begin_inset Formula ${\cal T}_{Y}$ +\end_inset + +, +\begin_inset Formula $f:(X,{\cal T}_{X})\to(Y,{\cal T}_{Y})$ +\end_inset + + es continua si y solo si +\begin_inset Formula $\forall B\in{\cal B}_{Y},f^{-1}(B)\in{\cal T}_{X}$ +\end_inset + +. +\end_layout + +\begin_layout Standard +Dadas dos topologías +\begin_inset Formula ${\cal T}$ +\end_inset + + y +\begin_inset Formula ${\cal T}'$ +\end_inset + + sobre +\begin_inset Formula $X$ +\end_inset + +, decimos que +\begin_inset Formula ${\cal T}'$ +\end_inset + + es +\series bold +más fina +\series default + o +\series bold +más grande +\series default + que +\begin_inset Formula ${\cal T}$ +\end_inset + +, y que +\begin_inset Formula ${\cal T}$ +\end_inset + + es +\series bold +más gruesa +\series default + o +\series bold +más pequeña +\series default + que +\begin_inset Formula ${\cal T}'$ +\end_inset + +, si +\begin_inset Formula ${\cal T}\subseteq{\cal T}'$ +\end_inset + +. + Si la inclusión es estricta, decimos que +\begin_inset Formula ${\cal T}'$ +\end_inset + + es +\series bold +estrictamente más fina +\series default + o +\series bold +estrictamente más grande +\series default + que +\begin_inset Formula ${\cal T}$ +\end_inset + + y que +\begin_inset Formula ${\cal T}$ +\end_inset + + es +\series bold +estrictamente más gruesa +\series default + o +\series bold +estrictamente más pequeña +\series default + que +\begin_inset Formula ${\cal T}'$ +\end_inset + +. + +\begin_inset Formula ${\cal T}$ +\end_inset + + y +\begin_inset Formula ${\cal T}'$ +\end_inset + + son +\series bold +comparables +\series default + si +\begin_inset Formula ${\cal T}\subseteq{\cal T}'$ +\end_inset + + o +\begin_inset Formula ${\cal T}'\subseteq{\cal T}$ +\end_inset + +. +\end_layout + +\begin_layout Standard +Sean +\begin_inset Formula ${\cal B}$ +\end_inset + + y +\begin_inset Formula ${\cal B}'$ +\end_inset + + bases respectivas para las topologías +\begin_inset Formula ${\cal T}$ +\end_inset + + y +\begin_inset Formula ${\cal T}'$ +\end_inset + + sobre +\begin_inset Formula $X$ +\end_inset + +, +\begin_inset Formula ${\cal T}\subseteq{\cal T}'$ +\end_inset + + si y sólo si +\begin_inset Formula ${\cal B}\subseteq{\cal T}'$ +\end_inset + +, si y sólo si +\begin_inset Formula $\forall B\in{\cal B},\forall x\in B,\exists B'\in{\cal B}':x\in B'\subseteq B$ +\end_inset + +. +\end_layout + +\begin_layout Description +\begin_inset Formula $[1\implies2]$ +\end_inset + + Obvio. +\end_layout + +\begin_layout Description +\begin_inset Formula $[2\implies3]$ +\end_inset + + Como +\begin_inset Formula $B\in{\cal T}'$ +\end_inset + +, +\begin_inset Formula $B$ +\end_inset + + se puede expresar como unión de elementos de +\begin_inset Formula ${\cal B}'$ +\end_inset + +. +\end_layout + +\begin_layout Description +\begin_inset Formula $[3\implies1]$ +\end_inset + + Todo +\begin_inset Formula $A\in{\cal T}$ +\end_inset + + se puede expresar como unión de elementos +\begin_inset Formula $B\in{\cal B}$ +\end_inset + +. + Si para +\begin_inset Formula $x\in B$ +\end_inset + + llamamos +\begin_inset Formula $B_{x}$ +\end_inset + + a un elemento +\begin_inset Formula $B'\in{\cal B}'$ +\end_inset + + con +\begin_inset Formula $x\in B'\subseteq B$ +\end_inset + +, entonces +\begin_inset Formula +\[ +A=\bigcup_{\begin{subarray}{c} +B\in{\cal B}\\ +B\subseteq A +\end{subarray}}\bigcup_{x\in B}B_{x}, +\] + +\end_inset + +una unión de elementos de +\begin_inset Formula ${\cal B}'\subseteq{\cal T}'$ +\end_inset + +, luego +\begin_inset Formula $A\in{\cal T}'$ +\end_inset + +. +\end_layout + +\begin_layout Standard +\begin_inset Formula ${\cal B}\subseteq{\cal P}(X)$ +\end_inset + + es una +\series bold +base +\series default + para una topología sobre +\begin_inset Formula $X$ +\end_inset + + si +\begin_inset Formula $\forall x\in X,\exists B\in{\cal B}:x\in B$ +\end_inset + + y +\begin_inset Formula $\forall B_{1},B_{2}\in{\cal B},\forall x\in B_{1}\cap B_{2},\exists B_{3}\in{\cal B}:x\in B_{3}\subseteq B_{1}\cap B_{2}$ +\end_inset + +. + En tal caso, llamamos +\series bold +topología generada +\series default + por +\begin_inset Formula ${\cal B}$ +\end_inset + + a +\begin_inset Formula ${\cal T}_{{\cal B}}:=\{U\subseteq X:\forall x\in U,\exists B\in{\cal B}:x\in B\subseteq U\}$ +\end_inset + +, y se tiene que +\begin_inset Formula ${\cal T}_{{\cal B}}$ +\end_inset + + es una topología y +\begin_inset Formula ${\cal B}$ +\end_inset + + es base para +\begin_inset Formula ${\cal T}_{{\cal B}}$ +\end_inset + +. +\end_layout + +\begin_layout Standard +Llamamos +\series bold +topología del límite inferior +\series default +, +\begin_inset Formula ${\cal T}_{\ell i}$ +\end_inset + +, a la topología +\begin_inset Formula ${\cal T}_{\ell i}$ +\end_inset + + generada por la base +\begin_inset Formula ${\cal B}_{\ell i}:=\{[a,b)\}_{a,b\in\mathbb{R};a<b}$ +\end_inset + +. + Para indicar que +\begin_inset Formula $\mathbb{R}$ +\end_inset + + está equipado con esta topología, escribimos +\begin_inset Formula $\mathbb{R}_{\ell i}$ +\end_inset + +. + Esta topología es estrictamente más fina que la topología usual de +\begin_inset Formula $\mathbb{R}$ +\end_inset + +. + En efecto, +\begin_inset Formula $[a,b)$ +\end_inset + + no es abierto con la topología usual de +\begin_inset Formula $\mathbb{R}$ +\end_inset + +, pero tomando la base +\begin_inset Formula ${\cal B}_{u}:=\{(a,b)\}_{a,b\in\mathbb{R},a<b}$ +\end_inset + + de la topología usual de +\begin_inset Formula $\mathbb{R}$ +\end_inset + +, dado +\begin_inset Formula $(a,b)\subseteq{\cal B}_{u}$ +\end_inset + + y +\begin_inset Formula $x\in(a,b)$ +\end_inset + +, +\begin_inset Formula $[x,b)\in{\cal B}_{\ell i}$ +\end_inset + + cumple +\begin_inset Formula $x\in[x,b)\subseteq(a,b)$ +\end_inset + +. +\end_layout + +\begin_layout Section +Axiomas de numerabilidad +\end_layout + +\begin_layout Standard +\begin_inset Formula $(X,{\cal T})$ +\end_inset + + cumple el +\series bold +segundo axioma de numerabilidad +\series default + o es +\begin_inset Formula $\mathbf{2A\mathbb{N}}$ +\end_inset + + si +\begin_inset Formula ${\cal T}$ +\end_inset + + admite una base numerable. + Ejemplos: +\end_layout + +\begin_layout Enumerate +Si +\begin_inset Formula $X$ +\end_inset + + es finito, toda topología es 2A +\begin_inset Formula $\mathbb{N}$ +\end_inset + +, pues +\begin_inset Formula ${\cal T}$ +\end_inset + + es base finita de +\begin_inset Formula ${\cal T}$ +\end_inset + +. +\end_layout + +\begin_layout Enumerate +\begin_inset Formula $(X,{\cal T}_{\text{dis}})$ +\end_inset + + es 2A +\begin_inset Formula $\mathbb{N}$ +\end_inset + + si y sólo si +\begin_inset Formula $X$ +\end_inset + + es numerable, y +\begin_inset Formula $(X,{\cal T}_{\text{ind}})$ +\end_inset + + siempre es 2A +\begin_inset Formula $\mathbb{N}$ +\end_inset + +. +\end_layout + +\begin_layout Enumerate +\begin_inset Formula $\mathbb{R}$ +\end_inset + + es 2A +\begin_inset Formula $\mathbb{N}$ +\end_inset + +. +\end_layout + +\begin_deeper +\begin_layout Standard +Tomamos la base +\begin_inset Formula $\{(p,q)\}_{p,q\in\mathbb{Q},p<q}$ +\end_inset + +. + En efecto, la base usual es +\begin_inset Formula $\{(a,b)\}_{a,b\in\mathbb{R},a<b}$ +\end_inset + +, pero dado +\begin_inset Formula $(a,b)$ +\end_inset + +, sean +\begin_inset Formula $n_{0}$ +\end_inset + + tal que +\begin_inset Formula $b-a>\frac{2}{n_{0}}$ +\end_inset + +, +\begin_inset Formula $(p_{n}:=\frac{\lceil an\rceil}{n})_{n\geq n_{0}}$ +\end_inset + + y +\begin_inset Formula $(q_{n}:=\frac{\lfloor bn\rfloor}{n})_{n\geq n_{0}}$ +\end_inset + +, +\begin_inset Formula $p_{n}<a+\frac{1}{n}\leq a+\frac{1}{n_{0}}<b-\frac{1}{n_{0}}\leq b-\frac{1}{n}\leq q_{n}$ +\end_inset + +, luego +\begin_inset Formula $((p_{n},q_{n}))_{n\geq n_{0}}$ +\end_inset + + es una sucesión de intervalos de extremos racionales cuya unión es +\begin_inset Formula $(a,b)$ +\end_inset + +. +\end_layout + +\end_deeper +\begin_layout Enumerate +\begin_inset Formula $\mathbb{R}_{\ell i}$ +\end_inset + + no es 2A +\begin_inset Formula $\mathbb{N}$ +\end_inset + +. +\end_layout + +\begin_deeper +\begin_layout Standard +Sea +\begin_inset Formula ${\cal B}$ +\end_inset + + una base de +\begin_inset Formula $\mathbb{R}_{\ell i}$ +\end_inset + +. + Para +\begin_inset Formula $x\in\mathbb{R}$ +\end_inset + +, sea +\begin_inset Formula $U_{x}:=[x,x+1)\in{\cal T}_{\ell i}$ +\end_inset + +, existe +\begin_inset Formula $B_{x}\in{\cal B}$ +\end_inset + + con +\begin_inset Formula $x\in B_{x}\subseteq U_{x}$ +\end_inset + + y por tanto +\begin_inset Formula $\inf B_{x}=x$ +\end_inset + +. + Así, para +\begin_inset Formula $x\neq y$ +\end_inset + +, +\begin_inset Formula $\inf B_{x}=x\neq y=\inf B_{y}$ +\end_inset + + y por tanto +\begin_inset Formula $B_{x}\neq B_{y}$ +\end_inset + +, luego hay al menos tantos elementos básicos como números reales y la base + no es numerable. +\end_layout + +\end_deeper +\begin_layout Standard +Dados +\begin_inset Formula $(X,{\cal T})$ +\end_inset + + y +\begin_inset Formula $x\in X$ +\end_inset + +, +\begin_inset Formula ${\cal B}_{x}\subseteq{\cal E}(x)$ +\end_inset + + es una +\series bold +base de entornos +\series default + de +\begin_inset Formula $x$ +\end_inset + + si +\begin_inset Formula $\forall U\in{\cal E}(x),\exists B\in{\cal B}_{x}:B\subseteq U$ +\end_inset + +, en cuyo caso llamamos +\series bold +entornos básicos +\series default + en +\begin_inset Formula $x$ +\end_inset + + a los elementos de +\begin_inset Formula ${\cal B}_{x}$ +\end_inset + +. + +\begin_inset Formula $(X,{\cal T})$ +\end_inset + + satisface el +\series bold +primer axioma de numerabilidad +\series default + o es +\begin_inset Formula ${\bf 1A\mathbb{N}}$ +\end_inset + + si todo +\begin_inset Formula $x\in X$ +\end_inset + + tiene una base de entornos numerable. + Ejemplos: +\end_layout + +\begin_layout Enumerate +\begin_inset Formula $\mathbb{R}_{\ell i}$ +\end_inset + +. +\end_layout + +\begin_deeper +\begin_layout Standard +\begin_inset Formula ${\cal B}_{x}:=\{[x,x+\frac{1}{n})\}_{n\in\mathbb{N}^{*}}$ +\end_inset + +. +\end_layout + +\end_deeper +\begin_layout Enumerate +Todo espacio métrico +\begin_inset Formula $(X,d)$ +\end_inset + +. +\end_layout + +\begin_deeper +\begin_layout Standard +\begin_inset Formula ${\cal B}_{x}:=\{B_{d}(x-\frac{1}{n},x+\frac{1}{n})\}_{n\in\mathbb{N}^{*}}$ +\end_inset + +. +\end_layout + +\end_deeper +\begin_layout Enumerate +Todo espacio 2A +\begin_inset Formula $\mathbb{N}$ +\end_inset + +. +\end_layout + +\begin_deeper +\begin_layout Standard +Dada una base +\begin_inset Formula ${\cal B}$ +\end_inset + + numerable, +\begin_inset Formula ${\cal B}_{x}:=\{B\in{\cal B}:x\in B\}$ +\end_inset + + es base de entornos de +\begin_inset Formula $x$ +\end_inset + +, pues todo +\begin_inset Formula $U\in{\cal E}(x)$ +\end_inset + + puede expresarse como unión de elementos de +\begin_inset Formula ${\cal B}$ +\end_inset + + y basta tomar el elemento de esta unión que contenga a +\begin_inset Formula $x$ +\end_inset + +, que estará en +\begin_inset Formula ${\cal B}_{x}$ +\end_inset + +. +\end_layout + +\end_deeper +\end_body +\end_document |
