1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
|
#LyX 2.3 created this file. For more info see http://www.lyx.org/
\lyxformat 544
\begin_document
\begin_header
\save_transient_properties true
\origin unavailable
\textclass book
\begin_preamble
\input{../defs}
\usepackage{blkarray}
\end_preamble
\use_default_options true
\begin_modules
algorithm2e
\end_modules
\maintain_unincluded_children false
\language spanish
\language_package default
\inputencoding auto
\fontencoding global
\font_roman "default" "default"
\font_sans "default" "default"
\font_typewriter "default" "default"
\font_math "auto" "auto"
\font_default_family default
\use_non_tex_fonts false
\font_sc false
\font_osf false
\font_sf_scale 100 100
\font_tt_scale 100 100
\use_microtype false
\use_dash_ligatures true
\graphics default
\default_output_format default
\output_sync 0
\bibtex_command default
\index_command default
\paperfontsize default
\spacing single
\use_hyperref false
\papersize default
\use_geometry false
\use_package amsmath 1
\use_package amssymb 1
\use_package cancel 1
\use_package esint 1
\use_package mathdots 1
\use_package mathtools 1
\use_package mhchem 1
\use_package stackrel 1
\use_package stmaryrd 1
\use_package undertilde 1
\cite_engine basic
\cite_engine_type default
\biblio_style plain
\use_bibtopic false
\use_indices false
\paperorientation portrait
\suppress_date false
\justification true
\use_refstyle 1
\use_minted 0
\index Index
\shortcut idx
\color #008000
\end_index
\secnumdepth 3
\tocdepth 3
\paragraph_separation indent
\paragraph_indentation default
\is_math_indent 0
\math_numbering_side default
\quotes_style french
\dynamic_quotes 0
\papercolumns 1
\papersides 1
\paperpagestyle default
\tracking_changes false
\output_changes false
\html_math_output 0
\html_css_as_file 0
\html_be_strict false
\end_header
\begin_body
\begin_layout Section
Iteración de punto fijo
\end_layout
\begin_layout Standard
\begin_inset ERT
status open
\begin_layout Plain Layout
\backslash
sremember{CN}
\end_layout
\end_inset
\end_layout
\begin_layout Standard
Dado un espacio métrico
\begin_inset Formula $(X,d)$
\end_inset
,
\begin_inset Formula $f:X\to X$
\end_inset
es
\series bold
contractiva
\series default
si existe
\begin_inset Formula $c\in(0,1)$
\end_inset
tal que
\begin_inset Formula $\forall x,y\in X,d(f(x),f(y))\leq cd(x,y)$
\end_inset
, y decimos que
\begin_inset Formula $c$
\end_inset
es una
\series bold
constante de contractividad
\series default
de
\begin_inset Formula $f$
\end_inset
.
[...]
\series bold
Teorema del punto fijo de Banach:
\series default
Si
\begin_inset Formula $(X,d)$
\end_inset
es completo y
\begin_inset Formula $f:X\to X$
\end_inset
es contractiva con constante
\begin_inset Formula $c$
\end_inset
, existe un único punto fijo
\begin_inset Formula $\xi\in X$
\end_inset
y la sucesión dada por
\begin_inset Formula $x_{0}$
\end_inset
arbitrario y
\begin_inset Formula $x_{n+1}=f(x)$
\end_inset
converge a
\begin_inset Formula $\xi$
\end_inset
con
\begin_inset Formula
\[
d(x_{n},\xi)\leq\frac{c^{n}}{1-c}d(x_{0},x_{1}).
\]
\end_inset
\end_layout
\begin_layout Standard
\begin_inset ERT
status open
\begin_layout Plain Layout
\backslash
eremember
\end_layout
\end_inset
\end_layout
\begin_layout Standard
\begin_inset ERT
status open
\begin_layout Plain Layout
\backslash
sremember{FVV1}
\end_layout
\end_inset
\end_layout
\begin_layout Standard
Definimos la norma de una aplicación
\begin_inset Formula $L:(E,\Vert\cdot\Vert)\rightarrow(F,\Vert\cdot\Vert')$
\end_inset
como
\begin_inset Formula
\[
\Vert L\Vert:=\text{[...]}\sup\{\Vert L(x)\Vert'\}_{x\in E,\Vert x\Vert\leq1}
\]
\end_inset
[...] El
\series bold
teorema del incremento finito
\series default
afirma que, sean
\begin_inset Formula $f:\Omega\subseteq\mathbb{R}^{m}\rightarrow\mathbb{R}^{n}$
\end_inset
,
\begin_inset Formula $a,b\in\Omega$
\end_inset
con el segmento
\begin_inset Formula $[a,b]\subseteq\Omega$
\end_inset
y
\begin_inset Formula $M>0$
\end_inset
, si
\begin_inset Formula $\Vert df(x)\Vert\leq M$
\end_inset
para todo
\begin_inset Formula $x\in[a,b]$
\end_inset
se tiene
\begin_inset Formula $\Vert f(b)-f(a)\Vert\leq M\Vert b-a\Vert$
\end_inset
.
\end_layout
\begin_layout Standard
\begin_inset ERT
status open
\begin_layout Plain Layout
\backslash
eremember
\end_layout
\end_inset
\end_layout
\begin_layout Standard
Sean
\begin_inset Formula $\Omega\subseteq\mathbb{R}^{n}$
\end_inset
abierto,
\begin_inset Formula $f:\Omega\to\mathbb{R}^{n}$
\end_inset
\begin_inset Formula ${\cal C}^{1}$
\end_inset
y
\begin_inset Formula $x\in\Omega$
\end_inset
un punto fijo de
\begin_inset Formula $f$
\end_inset
con
\begin_inset Formula $\Vert df(x)\Vert<1$
\end_inset
, existe
\begin_inset Formula $\delta>0$
\end_inset
tal que
\begin_inset Formula $f(\overline{B}(x,\delta))\subseteq\Omega$
\end_inset
, y toda sucesión
\begin_inset Formula $(x_{n})_{n}$
\end_inset
dada por
\begin_inset Formula $x_{0}\in\overline{B}(x,\delta)$
\end_inset
y
\begin_inset Formula $x_{k+1}\coloneqq f(x_{k})$
\end_inset
converge.
\end_layout
\begin_layout Standard
\begin_inset ERT
status open
\begin_layout Plain Layout
\backslash
begin{samepage}
\end_layout
\end_inset
\end_layout
\begin_layout Standard
Sean
\begin_inset Formula $R\coloneqq [a_{1},b_{1}]\times\dots\times[a_{n},b_{n}]$
\end_inset
,
\begin_inset Formula $f:R\to R$
\end_inset
diferenciable y
\begin_inset Formula $K\in(0,1)$
\end_inset
tal que
\begin_inset Formula
\[
\left|\frac{\partial f_{i}}{\partial x_{j}}(x)\right|\leq\frac{K}{n}
\]
\end_inset
para cada
\begin_inset Formula $x\in R$
\end_inset
e
\begin_inset Formula $i,j\in\{1,\dots,n\}$
\end_inset
, entonces
\begin_inset Formula $\Vert df\Vert_{\infty}\leq K$
\end_inset
.
\end_layout
\begin_layout Standard
\begin_inset ERT
status open
\begin_layout Plain Layout
\backslash
end{samepage}
\end_layout
\end_inset
\end_layout
\begin_layout Standard
La
\series bold
aceleración de Gauss-Seidel
\series default
de una iteración de punto fijo consiste en considerar, en vez de
\begin_inset Formula $x_{k+1}\coloneqq g(x_{k})$
\end_inset
,
\begin_inset Formula
\begin{eqnarray*}
x_{(k+1)1} & := & g_{1}(x_{k1},\dots,x_{kn}),\\
x_{(k+1)2} & := & g_{2}(x_{(k+1)1},x_{k2},\dots,x_{kn}),\\
& \vdots\\
x_{(k+1)n} & := & g_{n}(x_{(k+1)1},\dots,x_{(k+1)(n-1)},x_{kn}).
\end{eqnarray*}
\end_inset
\end_layout
\begin_layout Section
Método de Newton
\end_layout
\begin_layout Standard
Consideremos una ecuación
\begin_inset Formula $f(x)=0$
\end_inset
con
\begin_inset Formula $f:\mathbb{R}^{n}\to\mathbb{R}^{n}$
\end_inset
diferenciable.
Sustituyendo
\begin_inset Formula $f$
\end_inset
por su polinomio de Taylor de primer orden en
\begin_inset Formula $x_{0}$
\end_inset
tenemos
\begin_inset Formula $f(x_{0})+df(x_{0})(x-x_{0})=0$
\end_inset
, lo que nos da una aproximación de
\begin_inset Formula $x$
\end_inset
.
\end_layout
\begin_layout Standard
Como
\series bold
teorema
\series default
, si
\begin_inset Formula $f:\Omega\subseteq\mathbb{R}^{n}\to\mathbb{R}^{n}$
\end_inset
es
\begin_inset Formula ${\cal C}^{2}$
\end_inset
,
\begin_inset Formula $\xi\in\Omega$
\end_inset
es un cero de
\begin_inset Formula $f$
\end_inset
y
\begin_inset Formula $df(\xi)$
\end_inset
es no singular, existe
\begin_inset Formula $r>0$
\end_inset
tal que, para todo
\begin_inset Formula $x\in B(\xi,r)$
\end_inset
, la sucesión dada por
\begin_inset Formula $x_{0}\coloneqq x$
\end_inset
y
\begin_inset Formula $x_{k+1}\coloneqq x_{k}-df(x_{k})^{-1}f(x_{k})$
\end_inset
converge a
\begin_inset Formula $\xi$
\end_inset
, y existe
\begin_inset Formula $M>0$
\end_inset
tal que
\begin_inset Formula
\[
\Vert x_{k+1}-\xi\Vert\leq M\Vert x_{k}-\xi\Vert^{2}.
\]
\end_inset
\end_layout
\begin_layout Standard
\series bold
Demostración
\series default
para
\begin_inset Formula $n=2$
\end_inset
\series bold
:
\series default
Queremos ver que
\begin_inset Formula $g(x)\coloneqq x-df(x)^{-1}f(x)$
\end_inset
es contractiva cerca de
\begin_inset Formula $\xi$
\end_inset
, para lo que basta ver que es
\begin_inset Formula ${\cal C}^{1}$
\end_inset
y que
\begin_inset Formula $dg(\xi)=0$
\end_inset
.
Como
\begin_inset Formula $f$
\end_inset
es
\begin_inset Formula ${\cal C}^{2}$
\end_inset
,
\begin_inset Formula $\det\circ df$
\end_inset
es continua y diferenciable en
\begin_inset Formula $\Omega$
\end_inset
, y en particular, en un entorno de
\begin_inset Formula $\xi$
\end_inset
, las diferenciales tienen inversa
\begin_inset Formula
\[
df(x)^{-1}\equiv\frac{1}{\det df(x)}\begin{pmatrix}\frac{\partial f_{2}}{\partial x_{2}}(x) & -\frac{\partial f_{1}}{\partial x_{2}}(x)\\
\frac{\partial f_{2}(x)}{\partial x_{1}}(x) & \frac{\partial f_{1}(x)}{\partial x_{1}}(x)
\end{pmatrix}=:\begin{pmatrix}a_{11}(x) & a_{12}(x)\\
a_{21}(x) & a_{22}(x)
\end{pmatrix},
\]
\end_inset
y
\begin_inset Formula $a_{11},a_{12},a_{21},a_{22}$
\end_inset
son
\begin_inset Formula ${\cal C}^{1}$
\end_inset
.
Entonces
\begin_inset Formula
\[
g(x,y):=\begin{pmatrix}x-a_{11}(x,y)f_{1}(x,y)-a_{12}(x,y)f_{2}(x,y)\\
y-a_{21}(x,y)f_{1}(x,y)-a_{22}(x,y)f_{2}(x,y)
\end{pmatrix}.
\]
\end_inset
Las derivadas parciales de
\begin_inset Formula $g_{1}$
\end_inset
son
\begin_inset Formula
\begin{eqnarray*}
\frac{\partial g_{1}}{\partial x_{1}}(x) & = & 1-\frac{\partial a_{11}}{\partial x_{1}}(x)f_{1}(x)-a_{11}(x)\frac{\partial f_{1}}{\partial x_{1}}(x)-\frac{\partial a_{12}}{\partial x_{1}}(x)f_{2}(x)-a_{12}(x)\frac{\partial f_{2}}{\partial x_{1}}(x),\\
\frac{\partial g_{1}}{\partial x_{2}}(x) & = & -\frac{\partial a_{11}}{\partial x_{2}}(x)f_{1}(x)-a_{11}(x)\frac{\partial f_{1}}{\partial x_{2}}(x)-\frac{\partial a_{12}}{\partial x_{2}}(x)f_{2}(x)-a_{12}(x)\frac{\partial f_{2}}{\partial x_{2}}(x).
\end{eqnarray*}
\end_inset
Así, como
\begin_inset Formula $f(\xi)=0$
\end_inset
,
\begin_inset Formula
\begin{eqnarray*}
\frac{\partial g_{1}}{\partial x_{1}}(\xi) & = & 1-a_{11}(\xi)\frac{\partial f_{1}}{\partial x_{1}}(\xi)-a_{12}(\xi)\frac{\partial f_{2}}{\partial x_{1}}(\xi)\\
& = & 1-\frac{1}{\det df(x)}\left(\frac{\partial f_{2}}{\partial x_{2}}(\xi)\frac{\partial f_{1}}{\partial x_{1}}(\xi)-\frac{\partial f_{1}}{\partial x_{2}}(\xi)\frac{\partial f_{2}}{\partial x_{1}}(\xi)\right)=1-1=0;\\
\frac{\partial g_{1}}{\partial x_{2}}(\xi) & = & -a_{11}(\xi)\frac{\partial f_{1}}{\partial x_{2}}(\xi)-a_{12}(\xi)\frac{\partial f_{2}}{\partial x_{2}}(\xi)\\
& = & -\frac{1}{\det df(x)}\left(\frac{\partial f_{2}}{\partial x_{2}}(\xi)\frac{\partial f_{1}}{\partial x_{2}}(\xi)-\frac{\partial f_{1}}{\partial x_{2}}(\xi)\frac{\partial f_{2}}{\partial x_{2}}(\xi)\right)=0.
\end{eqnarray*}
\end_inset
Para
\begin_inset Formula $g_{2}$
\end_inset
es análogo, y solo queda ver el orden de convergencia.
Dados un abierto conexo
\begin_inset Formula $C\subseteq\mathbb{R}^{n}$
\end_inset
y
\begin_inset Formula $f:C\to\mathbb{R}^{n}$
\end_inset
, si existe
\begin_inset Formula $K>0$
\end_inset
tal que para
\begin_inset Formula $x,y\in C$
\end_inset
,
\begin_inset Formula $\Vert df(x)-df(y)\Vert\leq K\Vert x-y\Vert$
\end_inset
, entonces, para
\begin_inset Formula $x,y\in C$
\end_inset
,
\begin_inset Formula
\[
\Vert f(x)-f(y)-df(y)(x-y)\Vert\leq\frac{K}{2}\Vert x-y\Vert^{2}.
\]
\end_inset
En efecto, sea
\begin_inset Formula $\varphi:[0,1]\to C$
\end_inset
dada por
\begin_inset Formula $\varphi(t)\coloneqq f(y+t(x-y))$
\end_inset
, por la regla de la cadena,
\begin_inset Formula $\varphi'(t)=df(y+t(x-y))(x-y)$
\end_inset
, por lo que
\begin_inset Formula
\begin{align*}
\Vert\varphi'(t)-\varphi'(0)\Vert & =\Vert(df(y+t(x-y))-df(y))(x-y)\Vert\leq\\
& \leq\Vert df(y+t(x-y))-df(y)\Vert\Vert x-y\Vert\leq Kt\Vert x-y\Vert^{2},
\end{align*}
\end_inset
y como además
\begin_inset Formula
\[
\Delta:=f(x)-f(y)-df(y)(x-y)=\varphi(1)-\varphi(0)-\varphi'(0)=\int_{0}^{1}(\varphi'(t)-\varphi'(0))dt,
\]
\end_inset
queda
\begin_inset Formula
\[
\Vert\Delta\Vert\leq\int_{0}^{1}\Vert\varphi'(t)-\varphi'(0)\Vert dt\leq K\Vert x-y\Vert^{2}\int_{0}^{1}t\,dt=\frac{K}{2}\Vert x-y\Vert^{2}.
\]
\end_inset
Cuando esto se cumple,
\begin_inset Formula
\begin{align*}
\Vert x_{k+1}-\xi\Vert & =\Vert(x_{k}-\xi)-df(x_{k})^{-1}f(x_{k})\Vert=\Vert df(x_{k})^{-1}(df(x_{k})(x_{k}-\xi)-f(x_{k}))\Vert\leq\\
& \leq\Vert df(x_{k})^{-1}\Vert\Vert df(x_{k})(x_{k}-\xi)-f(x_{k})\Vert\overset{f(\xi)=0}{=}\\
& =\Vert df(x_{k})^{-1}\Vert\Vert f(\xi)-f(x_{k})-df(x_{k})(\xi-x_{k})\Vert\leq\Vert df(x_{k})^{-1}\Vert\frac{K}{2}\Vert x_{k}-\xi\Vert^{2},
\end{align*}
\end_inset
y tomando
\begin_inset Formula $M\coloneqq \frac{K}{2}\sup_{x\in B(\xi,r)}\Vert df(x)^{-1}\Vert$
\end_inset
se obtiene la acotación.
\end_layout
\begin_layout Section
Método de Broyden
\end_layout
\begin_layout Standard
El método de Newton requiere calcular la matriz diferencial en cada iteración
(
\begin_inset Formula $\Theta(n^{2})$
\end_inset
si se usa derivación numérica y evaluar
\begin_inset Formula $f$
\end_inset
en un punto es
\begin_inset Formula $\Theta(1)$
\end_inset
) y resolver un sistema lineal (
\begin_inset Formula $\Theta(n^{3})$
\end_inset
).
Para reducir el orden de complejidad, podemos aproximar la diferencial
con una matriz
\begin_inset Formula $A_{k}$
\end_inset
tal que
\begin_inset Formula $A_{k}(x_{k}-x_{k-1})=f(x_{k})-f(x_{k-1})$
\end_inset
, con lo que solo necesitamos la diferencial para obtener
\begin_inset Formula $x_{1}$
\end_inset
.
A cambio, pasamos de orden de convergencia cuadrático a supralineal.
\end_layout
\begin_layout Standard
Podemos usar
\begin_inset Formula
\[
A_{k}:=A_{k-1}+\frac{1}{\Vert x_{k}-x_{k-1}\Vert_{2}^{2}}f(x_{k})(x_{k}-x_{k-1})^{t},
\]
\end_inset
tomando
\begin_inset Formula $A_{0}\coloneqq df(x_{0})$
\end_inset
.
En efecto, como
\begin_inset Formula $x_{k}=x_{k-1}-A_{k-1}^{-1}f(x_{k-1})$
\end_inset
, tenemos
\begin_inset Formula $A_{k-1}(x_{k}-x_{k-1})=f(x_{k-1})$
\end_inset
, y por tanto
\begin_inset Formula
\begin{multline*}
\left(A_{k-1}+\frac{1}{\Vert x_{k}-x_{k-1}\Vert_{2}^{2}}f(x_{k})(x_{k}-x_{k-1})^{t}\right)(x_{k}-x_{k-1})=\\
=A_{k-1}(x_{k}-x_{k-1})+f(x_{k})=f(x_{k})-f(x_{k-1}).
\end{multline*}
\end_inset
\end_layout
\begin_layout Standard
Para calcular la inversa de
\begin_inset Formula $A_{k}$
\end_inset
podemos usar la
\series bold
fórmula de Sherman-Morrison
\series default
,
\begin_inset Formula
\[
(A+vy^{t})^{-1}=A^{-1}-\frac{1}{1+y^{t}A^{-1}v}(A^{-1}v)(y^{t}A^{-1}),
\]
\end_inset
suponiendo que
\begin_inset Formula $y^{t}A^{-1}x\neq-1$
\end_inset
.
Esto reduce el orden de complejidad de cada iteración a
\begin_inset Formula $\Theta(n^{2})$
\end_inset
en el caso general, asumiendo que evaluar
\begin_inset Formula $f$
\end_inset
en un punto es
\begin_inset Formula $O(n^{2})$
\end_inset
.
\end_layout
\begin_layout Section
Método del descenso rápido
\end_layout
\begin_layout Standard
\begin_inset Float algorithm
wide false
sideways false
status open
\begin_layout Plain Layout
\begin_inset ERT
status open
\begin_layout Plain Layout
\backslash
Entrada{Función $f:
\backslash
mathbb{R}^n
\backslash
to
\backslash
mathbb{R}^n$, aproximación inicial $x
\backslash
in
\backslash
mathbb{R}^n$, margen de error $e>0$ y tolerancia $t>0$.}
\end_layout
\begin_layout Plain Layout
\backslash
Salida{$x$ tal que $f(x)
\backslash
approx 0$, o error indicando que no se puede mejorar la aproximación.}
\end_layout
\begin_layout Plain Layout
Definir $g(x):=
\backslash
sum_{k=1}^n f_k(x)^2$
\backslash
;
\end_layout
\begin_layout Plain Layout
\backslash
Mientras{$g(x)>e$}{
\end_layout
\begin_layout Plain Layout
$u
\backslash
gets{
\backslash
nabla g(x)
\backslash
over
\backslash
Vert
\backslash
nabla g(x)
\backslash
Vert}$
\backslash
;
\end_layout
\begin_layout Plain Layout
$
\backslash
alpha
\backslash
gets 1$
\backslash
;
\end_layout
\begin_layout Plain Layout
\backslash
lMientras{$g(x-
\backslash
alpha u) > g(x)$}{$
\backslash
alpha
\backslash
gets
\backslash
frac12
\backslash
alpha$}
\end_layout
\begin_layout Plain Layout
\backslash
lSSi{$|
\backslash
alpha|<t$}{
\backslash
Devolver error}
\end_layout
\begin_layout Plain Layout
\backslash
tcp{{
\backslash
rm Interpolar en $(0,g(x)),(
\backslash
frac
\backslash
alpha2,g(x+
\backslash
frac
\backslash
alpha2u)),(
\backslash
alpha,g(x+
\backslash
alpha u))$.}}
\end_layout
\begin_layout Plain Layout
$g_0
\backslash
gets g(x)$
\backslash
;
\end_layout
\begin_layout Plain Layout
$g_1
\backslash
gets g(x+
\backslash
frac
\backslash
alpha2u)$
\backslash
;
\end_layout
\begin_layout Plain Layout
$g_2
\backslash
gets g(x+
\backslash
alpha u)$
\backslash
;
\end_layout
\begin_layout Plain Layout
$h_0
\backslash
gets {2(g_1 - g_0)
\backslash
over
\backslash
alpha}$
\end_layout
\begin_layout Plain Layout
\backslash
tcp*{{
\backslash
rm Usamos diferencias divididas de Newton.}}
\end_layout
\begin_layout Plain Layout
$h_1
\backslash
gets {2(g_2 - g_1)
\backslash
over
\backslash
alpha}$
\backslash
;
\end_layout
\begin_layout Plain Layout
$h_{01}
\backslash
gets {h_2 - h_1
\backslash
over
\backslash
alpha}$
\backslash
;
\end_layout
\begin_layout Plain Layout
\backslash
tcp{{
\backslash
rm Obtener y usar el vértice de la parábola resultante.}}
\end_layout
\begin_layout Plain Layout
$
\backslash
alpha_0
\backslash
gets
\backslash
frac12 (
\backslash
frac
\backslash
alpha2 -
\backslash
frac{h_0}{h_{01}})$
\backslash
;
\end_layout
\begin_layout Plain Layout
\backslash
lSSi{$g(x+
\backslash
alpha_0u) < g_2$}{$x
\backslash
gets x +
\backslash
alpha_0u$}
\end_layout
\begin_layout Plain Layout
\backslash
lEnOtroCaso{$x
\backslash
gets x +
\backslash
alpha u$}
\end_layout
\begin_layout Plain Layout
}
\end_layout
\end_inset
\end_layout
\begin_layout Plain Layout
\begin_inset Caption Standard
\begin_layout Plain Layout
\begin_inset CommandInset label
LatexCommand label
name "alg:steepest-descent"
\end_inset
Método del descenso rápido.
\end_layout
\end_inset
\end_layout
\end_inset
\end_layout
\begin_layout Standard
El método del descenso rápido o
\emph on
\lang english
steepest descent
\emph default
\lang spanish
es el algoritmo
\begin_inset CommandInset ref
LatexCommand ref
reference "alg:steepest-descent"
plural "false"
caps "false"
noprefix "false"
\end_inset
, y consiste en minimizar la función
\begin_inset Formula $g(x)\coloneqq \Vert f(x)\Vert_{2}^{2}$
\end_inset
desplazándonos, en cada iteración, en la dirección de mayor descenso en
esta función.
No es un método muy rápido, pero permite una estimación inicial más lejana
que los métodos de Newton y Broyden, por lo que se suele usar para obtener
una aproximación no muy fina que a su vez se usa como punto de partida
para estos métodos.
\end_layout
\end_body
\end_document
|