1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
|
#LyX 2.3 created this file. For more info see http://www.lyx.org/
\lyxformat 544
\begin_document
\begin_header
\save_transient_properties true
\origin unavailable
\textclass book
\begin_preamble
\input{../defs}
\usepackage[x11names, svgnames, rgb]{xcolor}
\usepackage[utf8]{inputenc}
\usepackage{tikz}
\usetikzlibrary{snakes,arrows,shapes}
\end_preamble
\use_default_options true
\maintain_unincluded_children false
\language spanish
\language_package default
\inputencoding auto
\fontencoding global
\font_roman "default" "default"
\font_sans "default" "default"
\font_typewriter "default" "default"
\font_math "auto" "auto"
\font_default_family default
\use_non_tex_fonts false
\font_sc false
\font_osf false
\font_sf_scale 100 100
\font_tt_scale 100 100
\use_microtype false
\use_dash_ligatures true
\graphics default
\default_output_format default
\output_sync 0
\bibtex_command default
\index_command default
\paperfontsize default
\spacing single
\use_hyperref false
\papersize default
\use_geometry false
\use_package amsmath 1
\use_package amssymb 1
\use_package cancel 1
\use_package esint 1
\use_package mathdots 1
\use_package mathtools 1
\use_package mhchem 1
\use_package stackrel 1
\use_package stmaryrd 1
\use_package undertilde 1
\cite_engine basic
\cite_engine_type default
\biblio_style plain
\use_bibtopic false
\use_indices false
\paperorientation portrait
\suppress_date false
\justification true
\use_refstyle 1
\use_minted 0
\index Index
\shortcut idx
\color #008000
\end_index
\secnumdepth 3
\tocdepth 3
\paragraph_separation indent
\paragraph_indentation default
\is_math_indent 0
\math_numbering_side default
\quotes_style french
\dynamic_quotes 0
\papercolumns 1
\papersides 1
\paperpagestyle default
\tracking_changes false
\output_changes false
\html_math_output 0
\html_css_as_file 0
\html_be_strict false
\end_header
\begin_body
\begin_layout Standard
En 1928, David Hilbert planteó el
\series bold
problema de decisión
\series default
o
\series bold
\emph on
\lang ngerman
Entscheidungsproblem
\series default
\emph default
\lang spanish
, consistente en encontrar un proceso mecánico para determinar, en una cantidad
finita de pasos, si una proposición lógica de primer orden es un teorema
o no.
Hilbert asumía que tal proceso existía, pero en 1936, Alonzo Church en
\lang english
Princeton
\lang spanish
y Alan Turing en
\lang english
Cambridge
\lang spanish
probaron, de forma independiente, que no.
Para ello tuvieron que definir formalmente este tipo de procesos, llamados
algoritmos.
Church a partir de su
\series bold
cálculo
\series default
\begin_inset Formula $\lambda$
\end_inset
, un lenguaje formal para escribir funciones computables, y Turing a partir
de sus
\series bold
\emph on
\lang english
computing machines
\series default
\emph default
\lang spanish
o
\series bold
máquinas de Turing
\series default
, una extensión de los autómatas de pila que permite moverse a través de
la memoria.
\end_layout
\begin_layout Section
Máquinas de Turing
\end_layout
\begin_layout Standard
Un
\series bold
modelo de computación
\series default
\begin_inset Formula $\text{MOD}$
\end_inset
es una clase de autómatas en la que cada uno tiene asociado un alfabeto
\begin_inset Formula $\Sigma$
\end_inset
y dos conjuntos disjuntos
\begin_inset Formula $L_{\text{A}},L_{\text{R}}\in\Sigma^{*}$
\end_inset
de cadenas que
\series bold
acepta
\series default
y que
\series bold
rechaza
\series default
, respectivamente.
\end_layout
\begin_layout Standard
Una
\series bold
máquina de Turing
\series default
(MT) es una tupla
\begin_inset Formula ${\cal M}=(Q,\Sigma,\Gamma,\delta,q_{0},q_{\text{F}})$
\end_inset
formada por un conjunto finito de
\series bold
estados
\series default
\begin_inset Formula $Q$
\end_inset
, un alfabeto de la
\series bold
entrada
\series default
\begin_inset Formula $\Sigma$
\end_inset
que no contiene al
\series bold
símbolo blanco
\series default
\begin_inset Formula $\text{B}$
\end_inset
, un alfabeto de la
\series bold
cinta
\series default
\begin_inset Formula $\Gamma\supseteq\Sigma\cup\{\text{B}\}$
\end_inset
, una
\series bold
función de transición
\series default
\begin_inset Formula $\delta:D\subseteq(Q\times\Gamma)\to Q\times\Gamma\times\{\text{L},\text{R}\}$
\end_inset
, un
\series bold
estado inicial
\series default
\begin_inset Formula $q_{0}$
\end_inset
y un
\series bold
estado final
\series default
o
\series bold
de aceptación
\series default
\begin_inset Formula $q_{\text{F}}$
\end_inset
.
La representación gráfica es similar a la de una PDA, representando una
transición
\begin_inset Formula $\delta(q,x)=(r,y,d)$
\end_inset
con la línea
\begin_inset Quotes cld
\end_inset
\begin_inset Formula $x:y,d$
\end_inset
\begin_inset Quotes crd
\end_inset
sobre una flecha de
\begin_inset Formula $q$
\end_inset
a
\begin_inset Formula $r$
\end_inset
.
\end_layout
\begin_layout Standard
Una
\series bold
configuración
\series default
de
\begin_inset Formula ${\cal M}$
\end_inset
es una tupla
\begin_inset Formula $(c,q,p)$
\end_inset
formada por el
\series bold
contenido de la cinta
\series default
\begin_inset Formula $c\in\Gamma^{\mathbb{N}}$
\end_inset
, el
\series bold
estado actual
\series default
\begin_inset Formula $q\in Q$
\end_inset
y la
\series bold
posición de la cabeza de lectura/escritura
\series default
\begin_inset Formula $p\in\mathbb{N}$
\end_inset
, y tal que casi todos los
\begin_inset Formula $c_{i}=\text{B}$
\end_inset
.
Podemos representar una configuración
\begin_inset Formula $(c_{0}\cdots c_{n}\text{BB}\cdots\text{B}\cdots,q,k)$
\end_inset
, donde
\begin_inset Formula $k\leq n$
\end_inset
y solo se da
\begin_inset Formula $c_{n}=\text{B}$
\end_inset
si
\begin_inset Formula $c_{j}=\text{B}$
\end_inset
para todo
\begin_inset Formula $c_{j}\geq k$
\end_inset
, como
\begin_inset Quotes cld
\end_inset
\begin_inset Formula $c_{0}\cdots c_{k-1}qc_{k}\cdots c_{n}$
\end_inset
\begin_inset Quotes crd
\end_inset
.
\end_layout
\begin_layout Standard
La
\series bold
configuración inicial
\series default
para una
\begin_inset Formula $w\in\Sigma^{*}$
\end_inset
es
\begin_inset Formula $(c,q_{0},0)$
\end_inset
con
\begin_inset Formula $c_{0},\dots,c_{|w|-1}=w$
\end_inset
y
\begin_inset Formula $c_{k}=\text{B}$
\end_inset
para
\begin_inset Formula $k\geq|w|$
\end_inset
.
Sean
\begin_inset Formula $a,b,c\in\Gamma$
\end_inset
,
\begin_inset Formula $u,v\in\Gamma^{*}$
\end_inset
y
\begin_inset Formula $q,r\in Q$
\end_inset
, la configuración
\begin_inset Formula $uaqbv$
\end_inset
lleva a
\begin_inset Formula $uqacv$
\end_inset
si
\begin_inset Formula $\delta(q,b)=(q,c,\text{L})$
\end_inset
, y la configuración
\begin_inset Formula $uqbv$
\end_inset
lleva a
\begin_inset Formula $ucqv$
\end_inset
si
\begin_inset Formula $\delta(q,c)=(q,c,\text{R})$
\end_inset
.
Una
\series bold
configuración final
\series default
,
\series bold
aceptante
\series default
o
\series bold
de aceptación
\series default
es una con estado
\begin_inset Formula $q_{\text{F}}$
\end_inset
.
La secuencia de configuraciones de
\begin_inset Formula $w$
\end_inset
es la que empieza por su configuración inicial y, desde cada configuración
no final, la siguiente es la configuración a la que esta lleva.
Esta termina en la primera configuración final, en cuyo caso la MT
\series bold
acepta
\series default
\begin_inset Formula $w$
\end_inset
, o la primera que no lleva a ninguna, en cuyo caso la MT
\series bold
rechaza
\series default
\begin_inset Formula $w$
\end_inset
, o bien no termina.
\end_layout
\begin_layout Standard
Una versión equivalente termina solo cuando la configuración no lleva a
ninguna otra, y entonces acepta la cadena si dicha configuración tiene
un estado en un conjunto de estados finales
\begin_inset Formula $F\subseteq Q$
\end_inset
y la rechaza en otro caso.
Otra tiene, en vez de
\begin_inset Formula $q_{\text{F}}$
\end_inset
, dos estados
\begin_inset Formula $q_{\text{accept}}$
\end_inset
y
\begin_inset Formula $q_{\text{reject}}$
\end_inset
, de modo que
\begin_inset Formula $\delta:Q\times\Gamma\to Q\times\Gamma\times\{\text{L},\text{R}\}$
\end_inset
es total y la MT termina aceptando si llega a
\begin_inset Formula $q_{\text{accept}}$
\end_inset
o rechazando si termina en
\begin_inset Formula $q_{\text{reject}}$
\end_inset
.
Otra variación equivalente, compatible con las otras, consiste en tener
una cinta que se extiende infinitamente a ambos lados, no solo a uno, con
lo que si
\begin_inset Formula $\delta(q,b)=(q,c,\text{L})$
\end_inset
, la configuración
\begin_inset Formula $qbv$
\end_inset
lleva a
\begin_inset Formula $q\text{B}cv$
\end_inset
.
\end_layout
\begin_layout Standard
Es común describir una MT de forma algorítmica, con instrucciones de más
alto nivel, pudiendo usar una instrucción de alto nivel si se puede implementar
en una MT.
Son instrucciones de alto nivel:
\end_layout
\begin_layout Enumerate
Una secuencia de instrucciones.
\end_layout
\begin_deeper
\begin_layout Standard
Para terminar una instrucción, se establece el estado al de inicio de la
siguiente.
\end_layout
\end_deeper
\begin_layout Enumerate
Moverse sin escribir.
\end_layout
\begin_deeper
\begin_layout Standard
Se escribe lo mismo que se leyó.
\end_layout
\end_deeper
\begin_layout Enumerate
Escribir un símbolo y quedarse en la misma posición.
\end_layout
\begin_deeper
\begin_layout Standard
Escribir y moverse a la derecha, luego moverse incondicionalmente a la izquierda.
\end_layout
\end_deeper
\begin_layout Enumerate
Ejecutar una u otra instrucción, o ninguna, según el símbolo leído.
\end_layout
\begin_deeper
\begin_layout Standard
Para estos símbolos, se mueve al inicio de la instrucción correspondiente,
que termina en el inicio de la siguiente.
Para los que no se hace ninguna, se pasa directamente al inicio de la siguiente.
\end_layout
\end_deeper
\begin_layout Enumerate
Ejecutar una u otra instrucción según el símbolo leído y los
\begin_inset Formula $n$
\end_inset
anteriores para cierto
\begin_inset Formula $n$
\end_inset
.
\end_layout
\begin_deeper
\begin_layout Standard
Se mueve
\begin_inset Formula $n$
\end_inset
veces a la izquierda.
Si se lee
\begin_inset Formula $x_{1}$
\end_inset
, se mueve a la derecha y se pasa a un cierto estado
\begin_inset Formula $\overline{x_{1}}$
\end_inset
, desde el que si se lee
\begin_inset Formula $x_{2}$
\end_inset
, se mueve a la derecha y se pasa a
\begin_inset Formula $\overline{x_{1}x_{2}}$
\end_inset
, etc., hasta llegar a la posición inicial en el estado
\begin_inset Formula $\overline{x_{1}\cdots x_{n}}$
\end_inset
.
\end_layout
\end_deeper
\begin_layout Enumerate
Ejecutar una instrucción mientras el símbolo leído cumpla una condición.
\end_layout
\begin_deeper
\begin_layout Standard
Para estos símbolos, pasar a la instrucción, que termina volviendo a la
comprobación.
Para el resto, pasar a la siguiente.
\end_layout
\end_deeper
\begin_layout Enumerate
Detectar el límite izquierdo de la cinta.
\end_layout
\begin_deeper
\begin_layout Standard
Se añade un nuevo estado inicial
\begin_inset Formula $q_{\text{i}}$
\end_inset
y el símbolo
\begin_inset Formula $\$$
\end_inset
al alfabeto de la cinta.
Desde
\begin_inset Formula $q_{\text{i}}$
\end_inset
se escribe
\begin_inset Formula $\$$
\end_inset
y, en bucle, se mueve a la derecha y se escribe el símbolo en la posición
anterior, hasta que este sea B.
Entonces se va moviendo a la izquierda hasta encontrar
\begin_inset Formula $\$$
\end_inset
, y luego una posición a la derecha y se pasa a
\begin_inset Formula $q_{0}$
\end_inset
.
Esto mueve la cadena una posición a la derecha y escribe
\begin_inset Formula $\$$
\end_inset
al principio, de modo que detectar el límite izquierdo de la cinta es detectar
\begin_inset Formula $\$$
\end_inset
.
\end_layout
\end_deeper
\begin_layout Enumerate
Volver al principio de la cinta.
\end_layout
\begin_deeper
\begin_layout Standard
Una vez hecho lo anterior, ir a la izquierda hasta que se lea
\begin_inset Formula $\$$
\end_inset
.
\end_layout
\end_deeper
\begin_layout Enumerate
Recorrer una cadena detectando una de cada
\begin_inset Formula $n\in\mathbb{N}^{*}$
\end_inset
apariciones de un cierto símbolo.
\end_layout
\begin_deeper
\begin_layout Standard
Se usan
\begin_inset Formula $n$
\end_inset
estados en ciclo.
Mientras no se lea B, se pasa al estado siguiente si se lee el símbolo
o al mismo en otro caso, y se mueve a la derecha.
En el último estado, antes de hacer esto, si se detecta el símbolo se hace
la acción a realizar cada
\begin_inset Formula $n$
\end_inset
apariciones.
\end_layout
\end_deeper
\begin_layout Enumerate
Ejecutar una instrucción u otra según el número de apariciones de cierto
símbolo módulo un
\begin_inset Formula $n\in\mathbb{N}^{*}$
\end_inset
fijo.
\end_layout
\begin_deeper
\begin_layout Standard
Se hace un ciclo como el anterior y, cuando se lee B, se ejecuta una u otra
instrucción según el estado.
\end_layout
\end_deeper
\begin_layout Enumerate
Contar el número de apariciones de un cierto símbolo hasta un límite
\begin_inset Formula $n$
\end_inset
.
\end_layout
\begin_deeper
\begin_layout Standard
Se usan los estados
\begin_inset Formula $c_{0},\dots,c_{n}$
\end_inset
en ciclo.
En
\begin_inset Formula $c_{i}$
\end_inset
, si se lee B, se realiza la acción para
\begin_inset Formula $i$
\end_inset
apariciones; si se lee el símbolo, se pasa a
\begin_inset Formula $c_{i+1}$
\end_inset
y se mueve a la derecha o, si
\begin_inset Formula $i=n$
\end_inset
, se ejecuta la acción para más de
\begin_inset Formula $n$
\end_inset
apariciones; en otro caso se mueve a la derecha.
\end_layout
\end_deeper
\begin_layout Section
Tesis de Church-Turing
\end_layout
\begin_layout Standard
Un modelo de computación
\begin_inset Formula $\text{MOD}$
\end_inset
\series bold
decide
\series default
un lenguaje
\begin_inset Formula $L$
\end_inset
si existe un
\begin_inset Formula ${\cal M}\in\text{MOD}$
\end_inset
con
\begin_inset Formula $L_{\text{A}}=L$
\end_inset
y
\begin_inset Formula $L_{\text{R}}=\overline{L}$
\end_inset
, y
\series bold
enumera
\series default
\begin_inset Formula $L$
\end_inset
si existe un
\begin_inset Formula ${\cal M}\in\text{MOD}$
\end_inset
con
\begin_inset Formula $L_{\text{R}}=\overline{L}$
\end_inset
.
Claramente
\begin_inset Formula $\text{MOD}$
\end_inset
enumera todas las cadenas que decide.
\end_layout
\begin_layout Standard
Dados dos modelos de computación
\begin_inset Formula $\text{MOD}_{1}$
\end_inset
y
\begin_inset Formula $\text{MOD}_{2}$
\end_inset
,
\begin_inset Formula $\text{MOD}_{1}$
\end_inset
es
\series bold
menos expresivo
\series default
que
\begin_inset Formula $\text{MOD}_{2}$
\end_inset
,
\begin_inset Formula $\text{MOD}_{1}\preceq\text{MOD}_{2}$
\end_inset
, si
\begin_inset Formula $\text{MOD}_{2}$
\end_inset
enumera todo lenguaje enumerado por
\begin_inset Formula $\text{MOD}_{1}$
\end_inset
y decide todo lenguaje decidido por
\begin_inset Formula $\text{MOD}_{1}$
\end_inset
;
\series bold
equivalente
\series default
a
\begin_inset Formula $\text{MOD}_{2}$
\end_inset
,
\begin_inset Formula $\text{MOD}_{1}\equiv\text{MOD}_{2}$
\end_inset
, si
\begin_inset Formula $\text{MOD}_{1}\preceq\text{MOD}_{2}$
\end_inset
y
\begin_inset Formula $\text{MOD}_{2}\preceq\text{MOD}_{1}$
\end_inset
, y
\series bold
estrictamente menos expresivo
\series default
que
\begin_inset Formula $\text{MOD}_{2}$
\end_inset
,
\begin_inset Formula $\text{MOD}_{1}\prec\text{MOD}_{2}$
\end_inset
, si
\begin_inset Formula $\text{MOD}_{1}\preceq\text{MOD}_{2}$
\end_inset
pero
\begin_inset Formula $\text{MOD}_{2}\npreceq\text{MOD}_{1}$
\end_inset
.
\end_layout
\begin_layout Standard
Son equivalentes a
\begin_inset Formula $\text{MT}$
\end_inset
:
\end_layout
\begin_layout Enumerate
Las
\series bold
máquinas de Turing con
\emph on
\lang english
stay
\series default
\emph default
\lang spanish
(
\begin_inset Formula $\text{SMT}$
\end_inset
), como las
\begin_inset Formula $\text{MT}$
\end_inset
pero con función de transición de la forma
\begin_inset Formula $\delta:Q\times\Gamma\to Q\times\Gamma\times\{\text{L},\text{R},\text{S}\}$
\end_inset
, donde S corresponde a no moverse en la cinta, es decir, si
\begin_inset Formula $q,r\in Q$
\end_inset
,
\begin_inset Formula $a,b\in\Gamma$
\end_inset
,
\begin_inset Formula $u\in\Gamma^{*}$
\end_inset
y
\begin_inset Formula $v\in\Gamma^{\mathbb{N}}$
\end_inset
,
\begin_inset Formula $uqav$
\end_inset
lleva a
\begin_inset Formula $urbv$
\end_inset
si
\begin_inset Formula $\delta(q,a)=(r,b,\text{S})$
\end_inset
.
\end_layout
\begin_deeper
\begin_layout Standard
Claramente
\begin_inset Formula $\text{MT}\subseteq\text{SMT}$
\end_inset
, y toda
\begin_inset Formula $\text{SMT}$
\end_inset
se puede convertir en una
\begin_inset Formula $\text{MT}$
\end_inset
sustituyendo una transición con S con una que primero se mueve a la derecha
y luego a la izquierda.
\end_layout
\end_deeper
\begin_layout Enumerate
Las
\series bold
máquinas de Turing con
\emph on
\lang english
return
\series default
\emph default
\lang spanish
(
\begin_inset Formula $\text{RMT}$
\end_inset
), como las
\begin_inset Formula $\text{MT}$
\end_inset
pero con función de transición de la forma
\begin_inset Formula $\delta:Q\times\Gamma\to Q\times\Gamma\times\{\text{E},\text{R}\}$
\end_inset
, donde E corresponde a volver al principio de la cinta, es decir, si
\begin_inset Formula $q,r\in Q$
\end_inset
,
\begin_inset Formula $a,b\in\Gamma$
\end_inset
,
\begin_inset Formula $u\in\Gamma^{*}$
\end_inset
y
\begin_inset Formula $v\in\Gamma^{\mathbb{N}}$
\end_inset
,
\begin_inset Formula $uqav$
\end_inset
lleva a
\begin_inset Formula $rubv$
\end_inset
si
\begin_inset Formula $\delta(q,a)=(r,u,\text{E})$
\end_inset
.
\begin_inset Note Comment
status open
\begin_layout Plain Layout
Sabemos que en las
\begin_inset Formula $\text{MT}$
\end_inset
es posible volver al principio de la cinta.
Para lo contrario, añadimos símbolos
\begin_inset Formula $\#$
\end_inset
y
\begin_inset Formula $\$$
\end_inset
al alfabeto de la cinta de modo que, para simular una transición
\begin_inset Formula $\delta(q,a)=(r,b,\text{L})$
\end_inset
, primero guardamos
\begin_inset Formula $a$
\end_inset
como parte del estado (añadiendo
\begin_inset Formula $|\Gamma|$
\end_inset
estados), lo cambiamos por
\begin_inset Formula $\#$
\end_inset
y vamos al principio.
Si en el principio leemos
\begin_inset Formula $\#$
\end_inset
, rechazamos (no podemos ir a la izquierda); si en la posición 1 leemos
\begin_inset Formula $\#$
\end_inset
, lo cambiamos por el valor guardado, vamos al principio de la cinta y pasamos
a
\begin_inset Formula $r$
\end_inset
; en otro caso, vamos al principio de la cinta, guardamos el símbolo leído
en el estado, lo cambiamos por
\begin_inset Formula $\$$
\end_inset
volviendo al principio de la cinta y ejecutamos lo siguiente en bucle:
moverse hasta encontrar
\begin_inset Formula $\$$
\end_inset
, moverse 2 posiciones a la derecha, y entonces, si se lee
\begin_inset Formula $\#$
\end_inset
, cambiarlo por el valor guardado y volver al principio, moverse hasta encontrar
\begin_inset Formula $\$$
\end_inset
, cambiarlo por el valor guardado y moverse a la derecha pasando a
\begin_inset Formula $r$
\end_inset
, y en otro caso volver al principio, moverse hasta encontrar
\begin_inset Formula $\$$
\end_inset
, cambiarlo por el valor guardado y moverse a la derecha, guardar el valor
en esa posición y cambiarlo por
\begin_inset Formula $\$$
\end_inset
volviendo al principio.
\end_layout
\end_inset
\end_layout
\begin_layout Enumerate
Las
\series bold
máquinas de Turing multicinta
\series default
,
\begin_inset Formula $k\text{-MT}$
\end_inset
para cierto
\begin_inset Formula $k\in\mathbb{N}^{*}$
\end_inset
, como las
\begin_inset Formula $\text{MT}$
\end_inset
pero con función de transición
\begin_inset Formula $\delta:Q\times\Gamma^{k}\to Q\times(\Gamma\times\{\text{L},\text{R}\})^{k}$
\end_inset
y configuraciones en
\begin_inset Formula $Q\times(\Gamma^{\mathbb{N}}\times\mathbb{N})^{k}$
\end_inset
, de modo que hay
\begin_inset Formula $k$
\end_inset
cintas cada una con su propio lector independiente y en cada transición
se puede escribir y mover en cada una de las cintas.
La configuración inicial para una entrada
\begin_inset Formula $w\in\Sigma^{*}$
\end_inset
es
\begin_inset Formula $(q_{0},w\text{B}\cdots,(\text{B}\cdots)^{k-1})$
\end_inset
.
Definiendo
\begin_inset Formula $\nu:(\Gamma^{\mathbb{N}}\times\mathbb{N})\times(\Gamma\times\{\text{L},\text{R}\})\to\Gamma^{\mathbb{N}}\times\mathbb{N}$
\end_inset
de forma que, para
\begin_inset Formula $a,b\in\Gamma$
\end_inset
,
\begin_inset Formula $n\in\mathbb{N}$
\end_inset
,
\begin_inset Formula $u\in\Gamma^{n}$
\end_inset
y
\begin_inset Formula $v\in\Gamma^{\mathbb{N}}$
\end_inset
,
\begin_inset Formula $\nu((uav,n),(b,\text{R}))=(ubv,n+1)$
\end_inset
y, si
\begin_inset Formula $n>0$
\end_inset
,
\begin_inset Formula $\nu((uav,n),(b,\text{L}))=(ubv,n-1)$
\end_inset
, una configuración
\begin_inset Formula $(q,(u_{1},n_{1}),\dots,(u_{k},n_{k}))$
\end_inset
lleva a otra
\begin_inset Formula $(r,(v_{1},m_{1}),\dots,(v_{k},m_{k}))$
\end_inset
dada por
\begin_inset Formula $\delta(q,u_{1n_{1}},u_{2n_{2}},\dots,u_{kn_{k}})=(r,t_{1},\dots,t_{k})$
\end_inset
y
\begin_inset Formula $(v_{i},m_{i})=\nu((u_{i},n_{i}),t_{i})$
\end_inset
para cada
\begin_inset Formula $i$
\end_inset
.
\end_layout
\begin_deeper
\begin_layout Standard
Claramente una
\begin_inset Formula $\text{MT}$
\end_inset
puede ser simulada por una
\begin_inset Formula $k\text{-MT}$
\end_inset
que en todas las cintas salvo la primera simplemente se mueve a la derecha.
Una
\begin_inset Formula $k\text{-MT}$
\end_inset
\begin_inset Formula $(Q,\Sigma,\Gamma,\delta,q_{0},q_{\text{F}})$
\end_inset
puede ser simulada por una
\begin_inset Formula $\text{MT}$
\end_inset
con alfabeto de la cinta
\begin_inset Formula $\Gamma\sqcup\Gamma\sqcup\{\#\}$
\end_inset
, donde un símbolo
\begin_inset Formula $x$
\end_inset
del segundo
\begin_inset Formula $\Gamma$
\end_inset
lo representamos por
\begin_inset Formula $\dot{x}$
\end_inset
.
La idea es que cada cinta con contenido
\begin_inset Formula $u\text{B}\cdots$
\end_inset
se representa por
\begin_inset Formula $\#u$
\end_inset
pero sustituyendo el símbolo
\begin_inset Formula $x$
\end_inset
apuntado en esa cinta por
\begin_inset Formula $\dot{x}$
\end_inset
.
Al inicio, la
\begin_inset Formula $\text{MT}$
\end_inset
sustituye la entrada
\begin_inset Formula $w$
\end_inset
por
\begin_inset Formula $\#w(\#\dot{\text{B}})^{k-1}$
\end_inset
, vuelve al principio y pasa a
\begin_inset Formula $q_{0}$
\end_inset
.
En un estado
\begin_inset Formula $q\in Q$
\end_inset
, hace lo siguiente:
\end_layout
\begin_layout Enumerate
Ir al principio e ir moviéndose a la derecha guardando en el estado las
\begin_inset Formula $k$
\end_inset
primeras apariciones de símbolos del segundo
\begin_inset Formula $\Gamma$
\end_inset
,
\begin_inset Formula $\dot{a}_{1},\dots,\dot{a}_{k}$
\end_inset
, volviendo al principio al llegar a la
\begin_inset Formula $k$
\end_inset
-ésima.
\end_layout
\begin_layout Enumerate
Si
\begin_inset Formula $\delta(q,a_{1},\dots,a_{k})=(r,(s_{1},d_{1}),\dots,(s_{k},d_{k}))$
\end_inset
, para
\begin_inset Formula $i$
\end_inset
de 1 a
\begin_inset Formula $k$
\end_inset
: Mientras no se lea
\begin_inset Formula $\#$
\end_inset
, ir a la derecha.
Mientras no se lea
\begin_inset Formula $\dot{a}_{i}$
\end_inset
, ir a la derecha.
Cambiar
\begin_inset Formula $\dot{a}_{i}$
\end_inset
por
\begin_inset Formula $a_{i}$
\end_inset
.
Si
\begin_inset Formula $d_{i}=\text{L}$
\end_inset
, ir a la izquierda, y si
\begin_inset Formula $d_{i}=\text{R}$
\end_inset
, ir a la derecha.
Leer
\begin_inset Formula $x$
\end_inset
y cambiarlo por
\begin_inset Formula $\dot{x}$
\end_inset
.
\end_layout
\begin_layout Enumerate
Pasar al estado
\begin_inset Formula $r$
\end_inset
.
\end_layout
\end_deeper
\begin_layout Enumerate
Las
\series bold
máquinas de Turing no deterministas
\series default
(
\begin_inset Formula $\text{MTND}$
\end_inset
), como las máquinas de Turing pero con función de transición
\begin_inset Formula $\delta:Q\times\Gamma\to{\cal P}(Q\times\Gamma\times\{L,R\})$
\end_inset
.
Para
\begin_inset Formula $a,b,c\in\Gamma$
\end_inset
,
\begin_inset Formula $u,v\in\Gamma^{*}$
\end_inset
y
\begin_inset Formula $q,r\in Q$
\end_inset
, la configuración
\begin_inset Formula $uaqbv$
\end_inset
lleva a
\begin_inset Formula $uqacv$
\end_inset
si
\begin_inset Formula $(q,c,\text{L})\in\delta(q,b)$
\end_inset
, y la configuración
\begin_inset Formula $uqbv$
\end_inset
lleva a
\begin_inset Formula $ucqv$
\end_inset
si
\begin_inset Formula $(q,c,r)\in\delta(q,c)$
\end_inset
.
La
\begin_inset Formula $\text{MTND}$
\end_inset
acepta una cadena
\begin_inset Formula $w$
\end_inset
si, de todas las secuencias de configuraciones que empiezan con la configuració
n inicial para dicha cadena y cada configuración de la secuencia lleva a
la siguiente, existe una finita que acaba en
\begin_inset Formula $q_{\text{F}}$
\end_inset
, y la rechaza si toda secuencia de este tipo es finita y no acaba en
\begin_inset Formula $q_{\text{F}}$
\end_inset
.
\end_layout
\begin_deeper
\begin_layout Standard
Toda
\begin_inset Formula $\text{MT}$
\end_inset
es equivalente a una
\begin_inset Formula $\text{MTND}$
\end_inset
con función de transición
\begin_inset Formula $\delta'$
\end_inset
dada por
\begin_inset Formula $\delta'(q,a)=\{n\}$
\end_inset
si
\begin_inset Formula $(q,a)\in D$
\end_inset
y
\begin_inset Formula $\delta(q,a)=n$
\end_inset
y
\begin_inset Formula $\delta'(q,a)=\emptyset$
\end_inset
si
\begin_inset Formula $(q,a)\notin D$
\end_inset
.
Para el recíproco, consideramos una
\begin_inset Formula $\text{MTND}$
\end_inset
\begin_inset Formula $(Q,\Sigma,\Gamma,\delta,q_{0},q_{\text{F}})$
\end_inset
e intentamos convertirla en una 3-MT, que guardará la entrada en la cinta
1, simulará la
\begin_inset Formula $\text{MTND}$
\end_inset
en la cinta 2 recorriendo en anchura el árbol de posibilidades y guardará
en la cinta 3 el camino actual en dicho árbol.
Sea
\begin_inset Formula $b\coloneqq\max_{q\in Q}^{a\in\Gamma}|\delta(q,a)|$
\end_inset
, el alfabeto de la cinta será
\begin_inset Formula $\Gamma\sqcup\{p_{1},\dots,p_{b}\}\sqcup\{\$,\#\}$
\end_inset
, y hará lo siguiente:
\end_layout
\begin_layout Enumerate
Escribir
\begin_inset Formula $\$p_{1}$
\end_inset
en la cinta 3 y guardar
\begin_inset Formula $c\gets\text{FALSE}$
\end_inset
en el estado del 3-MT.
\end_layout
\begin_layout Enumerate
\begin_inset CommandInset label
LatexCommand label
name "enu:begin-step"
\end_inset
Copiar la cinta 1 en la cinta 2, escribiendo
\begin_inset Formula $\#$
\end_inset
tras el final de la cadena, y volver al principio en ambas, usando
\begin_inset Formula $\$$
\end_inset
como marca de inicio.
Guardar
\begin_inset Formula $q\gets q_{0}$
\end_inset
en el estado del 3-MT.
\end_layout
\begin_layout Enumerate
Si
\begin_inset Formula $q=q_{\text{F}}$
\end_inset
, aceptar.
Leer
\begin_inset Formula $a$
\end_inset
de la cinta 2 y
\begin_inset Formula $p_{i}$
\end_inset
de la 3.
Si
\begin_inset Formula $a=\#$
\end_inset
,
\begin_inset Formula $a\coloneqq\text{B}$
\end_inset
, escribir B, ir a la derecha, escribir
\begin_inset Formula $\#$
\end_inset
e ir a la izquierda.
Si
\begin_inset Formula $p_{i}=\text{B}$
\end_inset
, hacer
\begin_inset Formula $c\gets\text{TRUE}$
\end_inset
(indicando que existe una rama por la que se puede seguir si se da un paso
más), moverse a la izquierda en la cinta 3 e ir al paso
\begin_inset CommandInset ref
LatexCommand ref
reference "enu:next-step"
plural "false"
caps "false"
noprefix "false"
\end_inset
.
Si
\begin_inset Formula $i>|\delta(q,a)|$
\end_inset
, escribir B y moverse a la izquierda en la cinta 3 e ir al paso
\begin_inset CommandInset ref
LatexCommand ref
reference "enu:next-step"
plural "false"
caps "false"
noprefix "false"
\end_inset
.
Si
\begin_inset Formula $i\leq|\delta(q,a)|$
\end_inset
, sea
\begin_inset Formula $(r,b,d)$
\end_inset
el
\begin_inset Formula $i$
\end_inset
-ésimo elemento de
\begin_inset Formula $\delta(q,a)$
\end_inset
, escribir
\begin_inset Formula $b$
\end_inset
en la cinta 2, moverla en la dirección
\begin_inset Formula $d$
\end_inset
, guardar
\begin_inset Formula $q\coloneqq r$
\end_inset
y, si se lee
\begin_inset Formula $\$$
\end_inset
, ir al paso
\begin_inset CommandInset ref
LatexCommand ref
reference "enu:next-step"
plural "false"
caps "false"
noprefix "false"
\end_inset
, y si no mover la cinta 3 a la derecha y repetir este paso.
\end_layout
\begin_layout Enumerate
\begin_inset CommandInset label
LatexCommand label
name "enu:next-step"
\end_inset
Si en la cinta 3 se lee
\begin_inset Formula $p_{b}$
\end_inset
, escribir B, moverse a la izquierda y repetir este paso.
Si se lee
\begin_inset Formula $\$$
\end_inset
, si
\begin_inset Formula $c=\text{TRUE}$
\end_inset
, hacer
\begin_inset Formula $c\gets\text{FALSE}$
\end_inset
, ir a la izquierda y escribir
\begin_inset Formula $p_{1}$
\end_inset
hasta que se lea B, sobrescribiendo la primera B, y si
\begin_inset Formula $c=\text{FALSE}$
\end_inset
, rechazar.
Si se lee
\begin_inset Formula $p_{i}$
\end_inset
con
\begin_inset Formula $i<b$
\end_inset
, cambiar por
\begin_inset Formula $p_{i+1}$
\end_inset
.
Volver al principio de la cinta (sin contar
\begin_inset Formula $\$$
\end_inset
) e ir al paso
\begin_inset CommandInset ref
LatexCommand ref
reference "enu:begin-step"
plural "false"
caps "false"
noprefix "false"
\end_inset
.
\end_layout
\end_deeper
\begin_layout Standard
En su artículo sobre el cálculo
\begin_inset Formula $\lambda$
\end_inset
, Church probó que este es equivalente a las
\series bold
funciones recursivas
\series default
, propuestas por
\lang ngerman
Kurt Gödel
\lang spanish
en 1931, y Turing, cuyo artículo salió después, probó que las
\begin_inset Formula $\text{MT}$
\end_inset
son equivalentes al cálculo
\begin_inset Formula $\lambda$
\end_inset
.
Esto llevó a la
\series bold
tesis de Church-Turing
\series default
, que afirma que esta definición de algoritmo se corresponde con la noción
intuitiva, o la máquina de Turing es el modelo de computación más expresivo
posible y todos los modelos suficientemente expresivos son equivalentes
a este.
\end_layout
\begin_layout Standard
Posteriormente aparecieron otras definiciones formales de algoritmo, como
las
\series bold
funciones parciales
\series default
, las
\series bold
máquinas con infinitos registros
\series default
o el
\series bold
lenguaje S
\series default
(simple), todas equivalentes a las máquinas de Turing.
Un lenguaje de programación es
\series bold
Turing completo
\series default
si es equivalente a las máquinas de Turing.
\end_layout
\begin_layout Section
Lenguajes decidibles y enumerables
\end_layout
\begin_layout Standard
Un lenguaje es
\series bold
decidible
\series default
o
\series bold
recursivo
\series default
si lo decide
\begin_inset Formula $\text{MT}$
\end_inset
, y es
\series bold
Turing-reconocible
\series default
,
\series bold
recursivamente enumerable
\series default
o
\series bold
enumerado
\series default
si lo enumera
\begin_inset Formula $\text{MT}$
\end_inset
.
Llamamos
\begin_inset Formula ${\cal DEC}$
\end_inset
a la clase de lenguajes decidibles y
\begin_inset Formula ${\cal RE}$
\end_inset
a la de lenguajes recursivamente numerables.
\end_layout
\begin_layout Standard
Algunos lenguajes decidibles:
\end_layout
\begin_layout Enumerate
\begin_inset Formula $\{0^{2^{n}}\}_{n\in\mathbb{N}}$
\end_inset
.
\end_layout
\begin_deeper
\begin_layout Standard
Si se lee B, rechazar (longitud 0).
En bucle:
\end_layout
\begin_layout Enumerate
Si solo hay un 0, se acepta.
Se vuelve al principio.
\end_layout
\begin_layout Enumerate
Si 0 aparece un número de veces impar, rechazar.
\end_layout
\begin_layout Enumerate
Marcar con
\begin_inset Formula $\#$
\end_inset
uno de cada 2 ceros, reduciendo el número de ceros a la mitad.
\end_layout
\end_deeper
\begin_layout Enumerate
\begin_inset Formula $\{a^{n}b^{n}c^{n}\}_{n\in\mathbb{N}}$
\end_inset
.
\end_layout
\begin_deeper
\begin_layout Standard
Se va leyendo la cadena de izquierda a derecha y, si hay una
\begin_inset Formula $a$
\end_inset
después de una
\begin_inset Formula $b$
\end_inset
o
\begin_inset Formula $c$
\end_inset
o una
\begin_inset Formula $b$
\end_inset
después de una
\begin_inset Formula $c$
\end_inset
, se rechaza.
Se vuelve al principio.
En bucle, primero se comprueba si hay alguna
\begin_inset Formula $a$
\end_inset
,
\begin_inset Formula $b$
\end_inset
o
\begin_inset Formula $c$
\end_inset
, aceptando si no hay ninguno, se vuelve al principio de la cinta, se marca
con
\begin_inset Formula $\#$
\end_inset
la primera
\begin_inset Formula $a$
\end_inset
, luego la primera
\begin_inset Formula $b$
\end_inset
y luego la primera
\begin_inset Formula $c$
\end_inset
, rechazando si alguna de las 3 no existe, y se vuelve al principio.
\end_layout
\end_deeper
\begin_layout Standard
Dados
\begin_inset Formula $L_{1},L_{2}\in{\cal DEC}$
\end_inset
:
\end_layout
\begin_layout Enumerate
\begin_inset Formula $L_{1}\cup L_{2}\in{\cal DEC}$
\end_inset
.
\end_layout
\begin_deeper
\begin_layout Standard
Sean
\begin_inset Formula $(Q_{1},\Sigma,\Gamma_{1},\delta_{1},q_{01},q_{\text{F}1})$
\end_inset
y
\begin_inset Formula $(Q_{2},\Sigma,\Gamma_{2},\delta_{2},q_{02},q_{\text{F}2})$
\end_inset
\begin_inset Formula $\text{MTs}$
\end_inset
que deciden
\begin_inset Formula $L_{1}$
\end_inset
y
\begin_inset Formula $L_{2}$
\end_inset
, respectivamente,
\begin_inset Formula $(Q_{1}\sqcup Q_{2}\sqcup\{q_{0}\}\sqcup\{q_{\text{F}}\},\Sigma,\Gamma_{1}\cup\Gamma_{2},\delta',q_{0},q_{\text{F}})$
\end_inset
con las transiciones de
\begin_inset Formula $\delta_{1}$
\end_inset
y
\begin_inset Formula $\delta_{2}$
\end_inset
más una de
\begin_inset Formula $q_{0}$
\end_inset
a
\begin_inset Formula $q_{01}$
\end_inset
y
\begin_inset Formula $q_{02}$
\end_inset
de forma no determinista y una de
\begin_inset Formula $q_{\text{F}1}$
\end_inset
y otra de
\begin_inset Formula $q_{\text{F}2}$
\end_inset
a
\begin_inset Formula $q_{\text{F}}$
\end_inset
decide
\begin_inset Formula $L_{1}\cup L_{2}$
\end_inset
.
\end_layout
\end_deeper
\begin_layout Enumerate
\begin_inset Formula $L_{1}L_{2}\in{\cal DEC}$
\end_inset
.
\end_layout
\begin_deeper
\begin_layout Standard
Hacemos una 2-MT que, para cada posición en la cadena de la cinta 1 y la
primera B en esta, marcando la posición actual de algún modo, copia la
subcadena desde el principio a la posición anterior a la actual en la cinta
2, ejecuta una
\begin_inset Formula $\text{MT}$
\end_inset
que reconoce
\begin_inset Formula $L_{1}$
\end_inset
en dicha cinta y, si acepta, hace lo propio con una
\begin_inset Formula $\text{MT}$
\end_inset
que reconoce
\begin_inset Formula $L_{2}$
\end_inset
y la subcadena que empieza en la posición actual y termina al final, usando
\begin_inset Formula $\#$
\end_inset
como en la demostración de equivalencia de las
\begin_inset Formula $\text{MTND}$
\end_inset
.
\end_layout
\end_deeper
\begin_layout Enumerate
\begin_inset Formula $L_{1}^{*}\in{\cal DEC}$
\end_inset
.
\end_layout
\begin_layout Enumerate
\begin_inset Formula $L_{1}\cap L_{2}\in{\cal DEC}$
\end_inset
.
\end_layout
\begin_layout Enumerate
\begin_inset Formula $\overline{L_{1}}\in{\cal DEC}$
\end_inset
.
\end_layout
\begin_layout Enumerate
\begin_inset Formula $L_{1}\setminus L_{2}\in{\cal DEC}$
\end_inset
.
\end_layout
\begin_layout Standard
Como
\series bold
teorema
\series default
,
\begin_inset Formula ${\cal CF}\subsetneq{\cal DEC}\subsetneq{\cal RE}$
\end_inset
.
\end_layout
\begin_layout Description
\begin_inset Formula $1\subseteq2]$
\end_inset
Un DFA lo puede simular una
\begin_inset Formula $2\text{-MT}$
\end_inset
usando la cinta 1 para leer de la cadena y la cinta 2 para la pila.
\end_layout
\begin_layout Description
\begin_inset Formula $2\nsubseteq1]$
\end_inset
\begin_inset Formula $\{a^{n}b^{n}c^{n}\}_{n\in\mathbb{N}}\in{\cal DEC}\setminus{\cal CF}$
\end_inset
.
\end_layout
\begin_layout Description
\begin_inset Formula $2\subseteq3]$
\end_inset
Trivial.
\end_layout
\begin_layout Section
Algoritmos
\end_layout
\begin_layout Standard
Las máquinas de Turing y mecanismos generales no solo permiten reconocer
cadenas, sino ejecutar algoritmos en general.
La entrada siempre es una cadena, por lo que para que otro tipo de objeto
actúe de entrada hay que representarla como una cadena y la máquina de
Turing debe decodificar esta representación.
Dado un objeto
\begin_inset Formula $O$
\end_inset
, llamamos
\begin_inset Formula $\langle O\rangle$
\end_inset
a la cadena que codifica
\begin_inset Formula $O$
\end_inset
, y dados objetos
\begin_inset Formula $O_{1},\dots,O_{n}$
\end_inset
, llamamos
\begin_inset Formula $\langle O_{1},\dots,O_{n}\rangle$
\end_inset
a la cadena que codifica
\begin_inset Formula $(O_{1},\dots,O_{n})$
\end_inset
, en cierta representación.
La
\begin_inset Formula $\text{MT}$
\end_inset
comprobará la entrada y rechazará si no tiene un formato válido.
La salida podría escribirla como cadena al principio de la cinta.
\end_layout
\end_body
\end_document
|