1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
|
#LyX 2.3 created this file. For more info see http://www.lyx.org/
\lyxformat 544
\begin_document
\begin_header
\save_transient_properties true
\origin unavailable
\textclass book
\begin_preamble
\input{../defs}
\end_preamble
\use_default_options true
\maintain_unincluded_children false
\language spanish
\language_package default
\inputencoding auto
\fontencoding global
\font_roman "default" "default"
\font_sans "default" "default"
\font_typewriter "default" "default"
\font_math "auto" "auto"
\font_default_family default
\use_non_tex_fonts false
\font_sc false
\font_osf false
\font_sf_scale 100 100
\font_tt_scale 100 100
\use_microtype false
\use_dash_ligatures true
\graphics default
\default_output_format default
\output_sync 0
\bibtex_command default
\index_command default
\paperfontsize default
\spacing single
\use_hyperref false
\papersize default
\use_geometry false
\use_package amsmath 1
\use_package amssymb 1
\use_package cancel 1
\use_package esint 1
\use_package mathdots 1
\use_package mathtools 1
\use_package mhchem 1
\use_package stackrel 1
\use_package stmaryrd 1
\use_package undertilde 1
\cite_engine basic
\cite_engine_type default
\biblio_style plain
\use_bibtopic false
\use_indices false
\paperorientation portrait
\suppress_date false
\justification true
\use_refstyle 1
\use_minted 0
\index Index
\shortcut idx
\color #008000
\end_index
\secnumdepth 3
\tocdepth 3
\paragraph_separation indent
\paragraph_indentation default
\is_math_indent 0
\math_numbering_side default
\quotes_style french
\dynamic_quotes 0
\papercolumns 1
\papersides 1
\paperpagestyle default
\tracking_changes false
\output_changes false
\html_math_output 0
\html_css_as_file 0
\html_be_strict false
\end_header
\begin_body
\begin_layout Standard
Definimos
\begin_inset Formula
\begin{align*}
\mathtt{true} & \coloneqq\lambda x\,y.x,\\
\mathtt{false} & \coloneqq\lambda x\,y.y,\\
\mathtt{cond} & \coloneqq\lambda i\,t\,e.i\,t\,e=\lambda x.x,\\
\mathtt{and} & \coloneqq\lambda x\,y.x\,y\,\mathtt{false},\\
\mathtt{or} & \coloneqq\lambda x\,y.x\,\mathtt{true}\,y=\lambda x.x\,\mathtt{true},
\end{align*}
\end_inset
y escribimos
\begin_inset Formula $\mathtt{if}\,i\,\mathtt{then}\,t\,\mathtt{else}\,e\coloneqq\mathtt{cond}\,i\,t\,e$
\end_inset
,
\begin_inset Formula $a\land b\coloneqq\mathtt{and}\,a\,b$
\end_inset
,
\begin_inset Formula $a\lor b\coloneqq\mathtt{or}\,a\,b$
\end_inset
y
\begin_inset Formula $\neg a\coloneqq a\,\mathtt{false}\,\mathtt{true}$
\end_inset
.
\end_layout
\begin_layout Standard
Dado un tipo de dato
\begin_inset Formula $(X_{11}\times\dots\times X_{1k_{1}})\sqcup\dots\sqcup(X_{m1}\times\dots\times X_{mk_{m}})$
\end_inset
, podemos representar
\begin_inset Formula $(x_{1},\dots,x_{k_{i}})\in X_{i1}\times\dots\times X_{ik_{i}}$
\end_inset
como
\begin_inset Formula $\lambda f_{1}\,\cdots\,f_{m}.f_{i}\,x_{1}\,\dots\,x_{k_{i}}$
\end_inset
.
Así se definen los pares ordenados:
\begin_inset Formula
\begin{align*}
(E_{1},E_{2}) & \coloneqq\lambda f.f\,E_{1}\,E_{2}.
\end{align*}
\end_inset
Podemos acceder a los miembros con los
\series bold
destructores
\series default
\begin_inset Formula
\begin{align*}
\mathtt{fst} & \coloneqq\lambda p.p\,\mathtt{true},\\
\mathtt{snd} & \coloneqq\lambda p.p\,\mathtt{false}.
\end{align*}
\end_inset
Representamos una tupla de
\begin_inset Formula $n\geq2$
\end_inset
elementos como
\begin_inset Formula
\[
(E_{1},\dots,E_{n})\coloneqq(E_{1},(E_{2},\cdots(E_{n-1},E_{n})\cdots)),
\]
\end_inset
y las
\series bold
proyecciones
\series default
\begin_inset Formula
\begin{align*}
(p)_{1} & \coloneqq\mathtt{fst}\,p,\\
(p)_{n} & \coloneqq\mathtt{snd}^{n-1}\,p,\\
(p)_{i} & \coloneqq\mathtt{fst}(\mathtt{snd}^{i-1}\,p), & 2 & \leq i<n,
\end{align*}
\end_inset
donde
\begin_inset Formula $f^{0}\coloneqq\lambda x.x$
\end_inset
y, para
\begin_inset Formula $n>0$
\end_inset
,
\begin_inset Formula $f^{n}\coloneqq\lambda x.f(f^{n-1}\,x)$
\end_inset
.
\end_layout
\begin_layout Standard
Para
\begin_inset Formula $n\geq2$
\end_inset
,
\begin_inset Formula
\begin{align*}
\mathtt{CURRY}_{n}f & \coloneqq\lambda x_{1}\,\cdots\,x_{n}.f(x_{1},\dots,x_{n}),\\
\mathtt{UNCURRY}_{n}f & \coloneqq\lambda p.g\,(p)_{1}\,\cdots\,(p)_{n},
\end{align*}
\end_inset
y escribimos
\begin_inset Formula $\lambda(x_{1},\dots,x_{n}).T\coloneqq\mathtt{UNCURRY}_{n}(\lambda x_{1}\,\cdots\,x_{n}.T)$
\end_inset
.
La
\series bold
\begin_inset Formula $\beta$
\end_inset
-conversión generalizada
\series default
afirma que
\begin_inset Formula $(\lambda(x_{1},\dots,x_{n}).T[x_{1},\dots,x_{n}])(t_{1},\dots,t_{n})=T[t_{1},\dots,t_{n}]$
\end_inset
.
\begin_inset Foot
status open
\begin_layout Plain Layout
Y lo hace pese a que no hemos definido las sustituciones con varias variables,
qué curioso.
\end_layout
\end_inset
\end_layout
\begin_layout Standard
Representamos
\begin_inset Formula $n\in\mathbb{N}$
\end_inset
con el
\series bold
número
\series default
o
\series bold
entero de Church
\series default
\begin_inset Formula $n\coloneqq\lambda f.f^{n}$
\end_inset
.
\begin_inset Formula
\begin{align*}
\mathtt{succ} & \coloneqq\lambda n\,f\,x.n\,f(f\,x)=\lambda n\,f\,x.f(n\,f\,x),\\
\mathtt{iszero} & \coloneqq\lambda n.n(\lambda x.\mathtt{false})\mathtt{true},\\
(+) & \coloneqq\lambda m\,n\,f\,x.m\,f(n\,f\,x),\\
(\cdot) & \coloneqq\lambda m\,n\,f.m(n\,f),\\
(\mathcircumflex) & \coloneqq\lambda m\,n.n\,m,
\end{align*}
\end_inset
y escribimos
\begin_inset Formula $a+b\coloneqq(+)a\,b$
\end_inset
,
\begin_inset Formula $a\cdot b\coloneqq(\cdot)a\,b$
\end_inset
y
\begin_inset Formula $a^{b}\coloneqq(\mathcircumflex)a\,b$
\end_inset
.
\end_layout
\begin_layout Standard
\begin_inset ERT
status open
\begin_layout Plain Layout
\backslash
begin{sloppypar}
\end_layout
\end_inset
Igual que
\begin_inset Formula $\text{\texttt{succ}}$
\end_inset
es la función sucesor, la función predecesor es
\begin_inset Formula
\begin{align*}
\mathtt{pred} & \coloneqq\lambda n\,f\,x.\mathtt{snd}(n(\lambda p.(\mathtt{false},\mathtt{fst}\,p(\mathtt{snd}\,p)(f(\mathtt{snd}\,p))))(\mathtt{true},x)),
\end{align*}
\end_inset
que cumple
\begin_inset Formula $\mathtt{pred}\,0=0$
\end_inset
y, para
\begin_inset Formula $n>0$
\end_inset
,
\begin_inset Formula $\mathtt{pred}\,n=n-1$
\end_inset
.
\begin_inset Note Comment
status open
\begin_layout Plain Layout
En efecto, sea
\begin_inset Formula $\mathtt{pref}\coloneqq\lambda p.(\mathtt{false},\mathtt{fst}\,p\,(\mathtt{snd}\,p)\,(f\,(\mathtt{snd}\,p)))$
\end_inset
,
\begin_inset Formula $\mathtt{pref}\,(\mathtt{true},x)=(\mathtt{false},x)$
\end_inset
y
\begin_inset Formula $\mathtt{pref}(\mathtt{false},x)=(\mathtt{false},f\,x)$
\end_inset
, luego
\begin_inset Formula $0\,\mathtt{pre}\,(\mathtt{true},x)=(\mathtt{true},x)$
\end_inset
,
\begin_inset Formula $1\,\mathtt{pre}(\mathtt{true},x)=(\mathtt{false},x)$
\end_inset
y por inducción, para
\begin_inset Formula $n\geq1$
\end_inset
,
\begin_inset Formula $(\mathtt{succ}\,n)\,\mathtt{pre}\,(\mathtt{true},x)=\mathtt{pre}\,(n\,\mathtt{pre}(\mathtt{true},x))=\mathtt{pre}(\mathtt{false},f^{n-1}x)=(\mathtt{false},f^{n}x)$
\end_inset
, luego
\begin_inset Formula $\mathtt{pred}\,0\,f\,x=x$
\end_inset
y
\begin_inset Formula $\mathtt{pred}\,n\,f\,x=f^{n-1}x$
\end_inset
para
\begin_inset Formula $n\geq1$
\end_inset
.
\end_layout
\end_inset
\begin_inset ERT
status open
\begin_layout Plain Layout
\backslash
end{sloppypar}
\end_layout
\end_inset
\end_layout
\begin_layout Standard
Para iterar en cálculo
\begin_inset Formula $\lambda$
\end_inset
se usan funciones recursivas, pero como las funciones no tienen nombre,
hace falta algún mecanismo para que una función se llame a sí misma sin
tener que usar su nombre.
\end_layout
\begin_layout Standard
Un
\series bold
punto fijo
\series default
de una función
\begin_inset Formula $f$
\end_inset
es una función
\begin_inset Formula $F$
\end_inset
tal que
\begin_inset Formula $F=f\,F$
\end_inset
.
Llamamos
\series bold
combinador paradójico
\series default
,
\series bold
de punto fijo
\series default
u
\series bold
operador de búsqueda del punto fijo
\series default
a un combinador
\series bold
Y
\series default
tal que, para toda función
\begin_inset Formula $f$
\end_inset
,
\begin_inset Formula ${\bf Y}\,f$
\end_inset
es un punto fijo de
\begin_inset Formula $f$
\end_inset
.
El primero lo encontró Curry,
\begin_inset Formula
\begin{align*}
{\bf Y} & \coloneqq\lambda g.(\lambda x.g(x\,x))(\lambda x.g(x\,x)),
\end{align*}
\end_inset
pues
\begin_inset Formula ${\bf Y}f=(\lambda x.f(x\,x))(\lambda x.f(x\,x))=f((\lambda x.f(x\,x))(\lambda x.f(x\,x)))=f({\bf Y}f)$
\end_inset
.
Con este podemos crear funciones recursivas, pues si
\begin_inset Formula $f=\lambda F\,x.E$
\end_inset
,
\begin_inset Formula ${\bf Y}\,f=f({\bf Y}\,f)=\lambda x.E[{\bf Y}\,f/F]$
\end_inset
.
Por ejemplo,
\begin_inset Formula
\begin{align*}
\mathtt{factorial} & \coloneqq{\bf Y}(\lambda f\,x.\mathtt{iszero}\,x\,1(x\cdot f(\mathtt{pred}\,x))).
\end{align*}
\end_inset
El nombre de combinador paradójico tiene que ver con la paradoja de Russell,
en tanto que si
\begin_inset Formula $R\coloneqq\lambda x.\neg(x\,x)$
\end_inset
entonces
\begin_inset Formula $R\,R=\neg(R\,R)$
\end_inset
e
\begin_inset Formula ${\bf Y}(\lambda f\,x.\neg(f\,x))E$
\end_inset
no es normalizable para ningún
\begin_inset Formula $E$
\end_inset
.
\end_layout
\begin_layout Standard
Escribimos
\begin_inset Formula
\begin{align*}
\mathtt{let\ }x=E\mathtt{\ in\ }T & \coloneqq(\lambda x.T)E,
\end{align*}
\end_inset
y permitimos las
\series bold
ligaduras paralelas
\series default
\begin_inset Formula
\begin{align*}
\mathtt{let\ }x_{1}=E_{1}\mathtt{\ and\ }\cdots\mathtt{\ and\ }x_{n}=E_{n}\mathtt{\ in\ }T & \coloneqq(\lambda(x_{1},\dots,x_{n}).T)(E_{1},\dots,E_{n}).
\end{align*}
\end_inset
Una ligadura
\begin_inset Formula $x=\lambda b_{1}\,\dots\,b_{n}.E$
\end_inset
se puede sustituir por
\begin_inset Formula $x\,b_{1}\,\dots\,b_{n}=E$
\end_inset
,
\begin_inset Formula $x={\bf Y}(\lambda x.E)$
\end_inset
por
\begin_inset Formula $\mathtt{rec\ }x=E$
\end_inset
y
\begin_inset Formula $x={\bf Y}(\lambda x\,b_{1}\,\dots\,b_{n}.E)$
\end_inset
por
\begin_inset Formula $\mathtt{rec\ }x\,b_{1}\,\dots\,b_{n}=E$
\end_inset
, donde los
\begin_inset Formula $b_{i}$
\end_inset
son símbolos o tuplas de símbolos.
Finalmente,
\begin_inset Formula $E\mathtt{\ where\ }\text{<<bindings>>}$
\end_inset
significa
\begin_inset Formula $\mathtt{let\ }\text{<<bindings>>}\mathtt{\ in\ }E$
\end_inset
.
\end_layout
\begin_layout Standard
Generalmente en un programa funcional se extraen expresiones comunes como
construcciones
\family typewriter
let
\family default
, con lo que un programa se mira como una serie de definiciones seguida
por una expresión principal.
\end_layout
\end_body
\end_document
|