diff options
| author | Juan Marín Noguera <juan@mnpi.eu> | 2025-05-16 22:18:44 +0200 |
|---|---|---|
| committer | Juan Marín Noguera <juan@mnpi.eu> | 2025-05-16 22:18:44 +0200 |
| commit | 4f670b750af5c11e1eac16d9cd8556455f89f46a (patch) | |
| tree | e0f8d7b33df2727d89150f799ee8628821fda80a /1.2.4.lyx | |
| parent | 16ccda6c459c0fd7ca2081e9d541124c28b0c556 (diff) | |
Changed layout for more manageable volumes
Diffstat (limited to '1.2.4.lyx')
| -rw-r--r-- | 1.2.4.lyx | 2433 |
1 files changed, 0 insertions, 2433 deletions
diff --git a/1.2.4.lyx b/1.2.4.lyx deleted file mode 100644 index ed3730a..0000000 --- a/1.2.4.lyx +++ /dev/null @@ -1,2433 +0,0 @@ -#LyX 2.4 created this file. For more info see https://www.lyx.org/ -\lyxformat 620 -\begin_document -\begin_header -\save_transient_properties true -\origin unavailable -\textclass book -\begin_preamble -\input defs -\end_preamble -\use_default_options true -\maintain_unincluded_children no -\language english -\language_package default -\inputencoding utf8 -\fontencoding auto -\font_roman "default" "default" -\font_sans "default" "default" -\font_typewriter "default" "default" -\font_math "auto" "auto" -\font_default_family default -\use_non_tex_fonts false -\font_sc false -\font_roman_osf false -\font_sans_osf false -\font_typewriter_osf false -\font_sf_scale 100 100 -\font_tt_scale 100 100 -\use_microtype false -\use_dash_ligatures true -\graphics default -\default_output_format default -\output_sync 0 -\bibtex_command default -\index_command default -\paperfontsize default -\spacing single -\use_hyperref false -\papersize default -\use_geometry false -\use_package amsmath 1 -\use_package amssymb 1 -\use_package cancel 1 -\use_package esint 1 -\use_package mathdots 1 -\use_package mathtools 1 -\use_package mhchem 1 -\use_package stackrel 1 -\use_package stmaryrd 1 -\use_package undertilde 1 -\cite_engine basic -\cite_engine_type default -\biblio_style plain -\use_bibtopic false -\use_indices false -\paperorientation portrait -\suppress_date false -\justification true -\use_refstyle 1 -\use_formatted_ref 0 -\use_minted 0 -\use_lineno 0 -\index Index -\shortcut idx -\color #008000 -\end_index -\secnumdepth 3 -\tocdepth 3 -\paragraph_separation indent -\paragraph_indentation default -\is_math_indent 0 -\math_numbering_side default -\quotes_style english -\dynamic_quotes 0 -\papercolumns 1 -\papersides 1 -\paperpagestyle default -\tablestyle default -\tracking_changes false -\output_changes false -\change_bars false -\postpone_fragile_content false -\html_math_output 0 -\html_css_as_file 0 -\html_be_strict false -\docbook_table_output 0 -\docbook_mathml_prefix 1 -\end_header - -\begin_body - -\begin_layout Standard -\begin_inset ERT -status open - -\begin_layout Plain Layout - - -\backslash -exerc1[00] -\end_layout - -\end_inset - -What are -\begin_inset Formula $\lfloor1.1\rfloor$ -\end_inset - -, - -\begin_inset Formula $\lfloor-1.1\rfloor$ -\end_inset - -, - -\begin_inset Formula $\lceil-1.1\rceil$ -\end_inset - -, - -\begin_inset Formula $\lfloor0.99999\rfloor$ -\end_inset - -, - and -\begin_inset Formula $\lfloor\lg35\rfloor$ -\end_inset - -? -\end_layout - -\begin_layout Standard -\begin_inset ERT -status open - -\begin_layout Plain Layout - - -\backslash -answer -\end_layout - -\end_inset - - -\begin_inset Formula $\lfloor1.1\rfloor=1$ -\end_inset - -, - -\begin_inset Formula $\lfloor-1.1\rfloor=-2$ -\end_inset - -, - -\begin_inset Formula $\lceil-1.1\rceil=-1$ -\end_inset - -, - -\begin_inset Formula $\lfloor0.99999\rfloor=0$ -\end_inset - -, - -\begin_inset Formula $\lfloor\lg35\rfloor=5$ -\end_inset - -. -\end_layout - -\begin_layout Standard -\begin_inset ERT -status open - -\begin_layout Plain Layout - - -\backslash -rexerc2[01] -\end_layout - -\end_inset - -What is -\begin_inset Formula $\lceil\lfloor x\rfloor\rceil$ -\end_inset - -? -\end_layout - -\begin_layout Standard -\begin_inset ERT -status open - -\begin_layout Plain Layout - - -\backslash -answer -\end_layout - -\end_inset - -The same as -\begin_inset Formula $\lfloor x\rfloor$ -\end_inset - -. -\end_layout - -\begin_layout Standard -\begin_inset ERT -status open - -\begin_layout Plain Layout - - -\backslash -exerc3[10] -\end_layout - -\end_inset - -Let -\begin_inset Formula $n$ -\end_inset - - be an integer, - and let -\begin_inset Formula $x$ -\end_inset - - be a real number. - Prove that -\end_layout - -\begin_layout Enumerate -\begin_inset Formula $\lfloor x\rfloor<n$ -\end_inset - - if and only if -\begin_inset Formula $x<n$ -\end_inset - -; -\end_layout - -\begin_layout Enumerate -\begin_inset Formula $n\leq\lfloor x\rfloor$ -\end_inset - - if and only if -\begin_inset Formula $n\leq x$ -\end_inset - -; -\end_layout - -\begin_layout Enumerate -\begin_inset Formula $\lceil x\rceil\leq n$ -\end_inset - - if and only if -\begin_inset Formula $x\leq n$ -\end_inset - -; -\end_layout - -\begin_layout Enumerate -\begin_inset Formula $n<\lceil x\rceil$ -\end_inset - - if and only if -\begin_inset Formula $n<x$ -\end_inset - -; -\end_layout - -\begin_layout Enumerate -\begin_inset Formula $\lfloor x\rfloor=n$ -\end_inset - - if and only if -\begin_inset Formula $x-1<n\leq x$ -\end_inset - -, - and if and only if -\begin_inset Formula $n\leq x<n+1$ -\end_inset - -. -\end_layout - -\begin_layout Enumerate -\begin_inset Formula $\lceil x\rceil=n$ -\end_inset - - if and only if -\begin_inset Formula $x\leq n<x+1$ -\end_inset - -, - and if and only if -\begin_inset Formula $n-1<x\leq n$ -\end_inset - -. -\end_layout - -\begin_layout Standard -\begin_inset ERT -status open - -\begin_layout Plain Layout - - -\backslash -answer -\end_layout - -\end_inset - - -\end_layout - -\begin_layout Enumerate -\begin_inset Note Note -status open - -\begin_layout Plain Layout - -\end_layout - -\end_inset - - -\end_layout - -\begin_deeper -\begin_layout Enumerate -\begin_inset Argument item:1 -status open - -\begin_layout Plain Layout -\begin_inset Formula $\implies]$ -\end_inset - - -\end_layout - -\end_inset - -By contraposition, - if -\begin_inset Formula $x\geq n$ -\end_inset - -, - then -\begin_inset Formula $n$ -\end_inset - - is an integer less than or equal to -\begin_inset Formula $x$ -\end_inset - - and so -\begin_inset Formula $\lfloor x\rfloor\geq n$ -\end_inset - -. -\end_layout - -\begin_layout Enumerate -\begin_inset Argument item:1 -status open - -\begin_layout Plain Layout -\begin_inset Formula $\impliedby]$ -\end_inset - - -\end_layout - -\end_inset - - -\begin_inset Formula $\lfloor x\rfloor\leq x<n$ -\end_inset - -. -\end_layout - -\end_deeper -\begin_layout Enumerate -It's the contrapositive of the previous statement. -\end_layout - -\begin_layout Enumerate -Derived from the previous statement replacing -\begin_inset Formula $x$ -\end_inset - - and -\begin_inset Formula $n$ -\end_inset - - with -\begin_inset Formula $-x$ -\end_inset - - and -\begin_inset Formula $-n$ -\end_inset - - and using that -\begin_inset Formula $\lfloor-x\rfloor=-\lceil x\rceil$ -\end_inset - -. -\end_layout - -\begin_layout Enumerate -It's the contrapositive of the previous statement. -\end_layout - -\begin_layout Enumerate -\begin_inset Note Note -status open - -\begin_layout Plain Layout - -\end_layout - -\end_inset - - -\end_layout - -\begin_deeper -\begin_layout Description -\begin_inset Formula $1\implies2]$ -\end_inset - - Obviously -\begin_inset Formula $n=\lfloor x\rfloor\leq x$ -\end_inset - -, - and if -\begin_inset Formula $x-1\geq n$ -\end_inset - - then it would be -\begin_inset Formula $x\geq n+1\in\mathbb{Z}$ -\end_inset - - and -\begin_inset Formula $\lfloor x\rfloor\geq n+1>n\#$ -\end_inset - -. -\end_layout - -\begin_layout Description -\begin_inset Formula $2\implies3]$ -\end_inset - - Multiply the inequality by -\begin_inset Formula $-1$ -\end_inset - - and add -\begin_inset Formula $x+n$ -\end_inset - - to each member. -\end_layout - -\begin_layout Description -\begin_inset Formula $3\implies1]$ -\end_inset - - -\begin_inset Formula $n\leq x$ -\end_inset - - and any -\begin_inset Formula $m\in\mathbb{Z}$ -\end_inset - - with -\begin_inset Formula $m\leq x$ -\end_inset - - has -\begin_inset Formula $m<n+1$ -\end_inset - - and therefore -\begin_inset Formula $m\leq n$ -\end_inset - -, - so -\begin_inset Formula $n=\max\{m\in\mathbb{Z}\mid m\leq x\}=\lfloor x\rfloor$ -\end_inset - -. -\end_layout - -\end_deeper -\begin_layout Enumerate -Derived from the previous statement by replacing -\begin_inset Formula $x$ -\end_inset - - and -\begin_inset Formula $n$ -\end_inset - - with -\begin_inset Formula $-x$ -\end_inset - - and -\begin_inset Formula $-n$ -\end_inset - - and using that -\begin_inset Formula $-\lceil x\rceil=\lfloor-x\rfloor$ -\end_inset - -. -\end_layout - -\begin_layout Standard -\begin_inset ERT -status open - -\begin_layout Plain Layout - - -\backslash -rexerc4[M10] -\end_layout - -\end_inset - -Using the previous exercise, - prove that -\begin_inset Formula $\lfloor-x\rfloor=-\lceil x\rceil$ -\end_inset - -. -\end_layout - -\begin_layout Standard -\begin_inset ERT -status open - -\begin_layout Plain Layout - - -\backslash -answer -\end_layout - -\end_inset - -Since that would be circular reasoning (I did the previous exercise before reading the statement of this one), - we'll prove it directly. -\end_layout - -\begin_layout Standard -\begin_inset Formula -\begin{align*} -\lfloor-x\rfloor=n & \iff\forall m\in\mathbb{Z},(m\leq-x\implies m\leq n)\\ - & \iff\forall m\in\mathbb{Z},(-m\geq x\implies-m\geq-n)\\ - & \iff\forall m\in\mathbb{Z},(m\geq x\implies m\geq-n)\iff-n=\lceil x\rceil\iff n=-\lceil x\rceil. -\end{align*} - -\end_inset - - -\end_layout - -\begin_layout Standard -\begin_inset ERT -status open - -\begin_layout Plain Layout - - -\backslash -rexerc6[20] -\end_layout - -\end_inset - -Which of the following equations are true for all positive real numbers -\begin_inset Formula $x$ -\end_inset - -? -\end_layout - -\begin_layout Enumerate -\begin_inset Formula $\left\lfloor \sqrt{\lfloor x\rfloor}\right\rfloor =\lfloor\sqrt{x}\rfloor$ -\end_inset - -; -\end_layout - -\begin_layout Enumerate -\begin_inset Formula $\left\lceil \sqrt{\lceil x\rceil}\right\rceil =\lceil\sqrt{x}\rceil$ -\end_inset - -; -\end_layout - -\begin_layout Enumerate -\begin_inset Formula $\left\lceil \sqrt{\lfloor x\rfloor}\right\rceil =\lceil\sqrt{x}\rceil$ -\end_inset - -. -\end_layout - -\begin_layout Standard -\begin_inset ERT -status open - -\begin_layout Plain Layout - - -\backslash -answer -\end_layout - -\end_inset - - -\end_layout - -\begin_layout Enumerate -True, - if -\begin_inset Formula $n=\lfloor\sqrt{x}\rfloor$ -\end_inset - -, - then -\begin_inset Formula $n\leq\sqrt{x}<n+1$ -\end_inset - -, - so -\begin_inset Formula $n^{2}\leq\lfloor x\rfloor\leq x<(n+1)^{2}$ -\end_inset - - and so -\begin_inset Formula $n\leq\sqrt{\lfloor x\rfloor}<n+1$ -\end_inset - - and -\begin_inset Formula $n=\left\lfloor \sqrt{\lfloor x\rfloor}\right\rfloor $ -\end_inset - -. -\end_layout - -\begin_layout Enumerate -True, - if -\begin_inset Formula $n=\lceil\sqrt{x}\rceil$ -\end_inset - -, - then -\begin_inset Formula $n-1<\sqrt{x}\leq n$ -\end_inset - - and -\begin_inset Formula $(n-1)^{2}<x\leq\lceil x\rceil\leq n$ -\end_inset - -, - so -\begin_inset Formula $n-1<\sqrt{\lceil x\rceil}\leq n$ -\end_inset - - and therefore -\begin_inset Formula $\left\lceil \sqrt{\lceil x\rceil}\right\rceil =n$ -\end_inset - -. -\end_layout - -\begin_layout Enumerate -False, - for example -\begin_inset Formula $\left\lceil \sqrt{\lfloor\frac{9}{2}\rfloor}\right\rceil =\lceil\sqrt{4}\rceil=2$ -\end_inset - - but -\begin_inset Formula $\lceil\sqrt{\frac{9}{2}}\rceil=3$ -\end_inset - -. -\end_layout - -\begin_layout Standard -\begin_inset ERT -status open - -\begin_layout Plain Layout - - -\backslash -exerc8[00] -\end_layout - -\end_inset - -What are -\begin_inset Formula $100\bmod3$ -\end_inset - -, - -\begin_inset Formula $100\bmod7$ -\end_inset - -, - -\begin_inset Formula $-100\bmod7$ -\end_inset - -, - -\begin_inset Formula $-100\bmod0$ -\end_inset - -? -\end_layout - -\begin_layout Standard -\begin_inset ERT -status open - -\begin_layout Plain Layout - - -\backslash -answer -\end_layout - -\end_inset - - -\begin_inset Formula $100\bmod3=1$ -\end_inset - -, - -\begin_inset Formula $100\bmod7=2$ -\end_inset - -, - -\begin_inset Formula $-100\bmod7=-2\bmod7=5$ -\end_inset - -, - -\begin_inset Formula $-100\bmod0=-100$ -\end_inset - -. -\end_layout - -\begin_layout Standard -\begin_inset ERT -status open - -\begin_layout Plain Layout - - -\backslash -exerc9[05] -\end_layout - -\end_inset - -What are -\begin_inset Formula $5\bmod-3$ -\end_inset - -, - -\begin_inset Formula $18\bmod-3$ -\end_inset - -, - -\begin_inset Formula $-2\bmod-3$ -\end_inset - -? -\end_layout - -\begin_layout Standard -\begin_inset ERT -status open - -\begin_layout Plain Layout - - -\backslash -answer -\end_layout - -\end_inset - - -\begin_inset Formula $5\bmod-3=5-(-3)\lfloor\frac{5}{-3}\rfloor=5+3(-2)=5-6=-1$ -\end_inset - -, - -\begin_inset Formula $18\bmod-3=18-(-3)(-6)=0$ -\end_inset - -, - -\begin_inset Formula $-2\bmod-3=-2-(-3)\lfloor\frac{-2}{-3}\rfloor=-2$ -\end_inset - -. -\end_layout - -\begin_layout Standard -\begin_inset ERT -status open - -\begin_layout Plain Layout - - -\backslash -rexerc10[10] -\end_layout - -\end_inset - -What are -\begin_inset Formula $1.1\bmod1$ -\end_inset - -, - -\begin_inset Formula $0.11\bmod.1$ -\end_inset - -, - -\begin_inset Formula $0.11\bmod-.1$ -\end_inset - -? -\end_layout - -\begin_layout Standard -\begin_inset ERT -status open - -\begin_layout Plain Layout - - -\backslash -answer -\end_layout - -\end_inset - - -\begin_inset Formula -\begin{eqnarray*} -1.1\bmod1 & = & 1.1-\lfloor1.1\rfloor=.1,\\ -0.11\bmod.1 & = & .11-.1\lfloor1.1\rfloor=.01,\\ -0.11\bmod-.1 & = & .11-(-.1)\lfloor-1.1\rfloor=-.09. -\end{eqnarray*} - -\end_inset - - -\end_layout - -\begin_layout Standard -\begin_inset ERT -status open - -\begin_layout Plain Layout - - -\backslash -exerc11[00] -\end_layout - -\end_inset - -What does -\begin_inset Quotes eld -\end_inset - - -\begin_inset Formula $x\equiv y\bmod0$ -\end_inset - - -\begin_inset Quotes erd -\end_inset - - mean by our conventions? -\end_layout - -\begin_layout Standard -\begin_inset ERT -status open - -\begin_layout Plain Layout - - -\backslash -answer -\end_layout - -\end_inset - -It means -\begin_inset Formula $x=x\bmod0=y\bmod0=y$ -\end_inset - -. -\end_layout - -\begin_layout Standard -\begin_inset ERT -status open - -\begin_layout Plain Layout - - -\backslash -exerc12[00] -\end_layout - -\end_inset - -What integers are relatively prime to 1? -\end_layout - -\begin_layout Standard -\begin_inset ERT -status open - -\begin_layout Plain Layout - - -\backslash -answer -\end_layout - -\end_inset - -All of them, - since -\begin_inset Formula $\gcd\{a,1\}=1$ -\end_inset - - for any -\begin_inset Formula $a\in\mathbb{Z}$ -\end_inset - -. -\end_layout - -\begin_layout Standard -\begin_inset ERT -status open - -\begin_layout Plain Layout - - -\backslash -exerc13[M00] -\end_layout - -\end_inset - -By convention, - we say that the greatest common divisor of 0 and -\begin_inset Formula $n$ -\end_inset - - is -\begin_inset Formula $|n|$ -\end_inset - -. - What integers are relatively prime to 0? -\end_layout - -\begin_layout Standard -\begin_inset ERT -status open - -\begin_layout Plain Layout - - -\backslash -answer -\end_layout - -\end_inset - -Only 1 and -\begin_inset Formula $-1$ -\end_inset - -. -\end_layout - -\begin_layout Standard -\begin_inset ERT -status open - -\begin_layout Plain Layout - - -\backslash -rexerc14[12] -\end_layout - -\end_inset - -If -\begin_inset Formula $x\bmod3=2$ -\end_inset - - and -\begin_inset Formula $x\bmod5=3$ -\end_inset - -, - what is -\begin_inset Formula $x\bmod15$ -\end_inset - -? -\end_layout - -\begin_layout Standard -\begin_inset ERT -status open - -\begin_layout Plain Layout - - -\backslash -answer -\end_layout - -\end_inset - -This is a simple Diophantine equation, - there exist -\begin_inset Formula $n,m\in\mathbb{Z}$ -\end_inset - - such that -\begin_inset Formula -\[ -x=3n+2=5m+3, -\] - -\end_inset - -so -\begin_inset Formula $3n-5m=1$ -\end_inset - - and one solution is -\begin_inset Formula $n=2$ -\end_inset - - and -\begin_inset Formula $m=1$ -\end_inset - -. - In this case -\begin_inset Formula $x\bmod15=(3n+2)\bmod15=8$ -\end_inset - -, - and the Chinese remainder theorem tells us that this is the only possibility. -\end_layout - -\begin_layout Standard -\begin_inset ERT -status open - -\begin_layout Plain Layout - - -\backslash -exerc15[10] -\end_layout - -\end_inset - -Prove that -\begin_inset Formula $z(x\bmod y)=(zx)\bmod(zy)$ -\end_inset - -. -\end_layout - -\begin_layout Standard -\begin_inset ERT -status open - -\begin_layout Plain Layout - - -\backslash -answer -\end_layout - -\end_inset - -If -\begin_inset Formula $z=0$ -\end_inset - -, - then -\begin_inset Formula $z(x\bmod y)=0=0\bmod0=(zx)\bmod(zy)$ -\end_inset - -. - If -\begin_inset Formula $y=0$ -\end_inset - -, - -\begin_inset Formula $z(x\bmod y)=zx=(zx)\bmod(zy)$ -\end_inset - -. - If -\begin_inset Formula $y,z\neq0$ -\end_inset - -, -\begin_inset Formula -\[ -(zx)\bmod(zy)=zx-zy\left\lfloor \frac{zx}{zy}\right\rfloor =zx-zy\left\lfloor \frac{x}{y}\right\rfloor =z\left(x-y\left\lfloor \frac{x}{y}\right\rfloor \right)=z(x\bmod y). -\] - -\end_inset - - -\end_layout - -\begin_layout Standard -\begin_inset ERT -status open - -\begin_layout Plain Layout - - -\backslash -exerc16[M10] -\end_layout - -\end_inset - -Assume that -\begin_inset Formula $y>0$ -\end_inset - -. - Show that if -\begin_inset Formula $(x-z)/y$ -\end_inset - - is an integer and if -\begin_inset Formula $0\leq z<y$ -\end_inset - -, - then -\begin_inset Formula $z=x\bmod y$ -\end_inset - -. -\end_layout - -\begin_layout Standard -\begin_inset ERT -status open - -\begin_layout Plain Layout - - -\backslash -answer -\end_layout - -\end_inset - -In this case, - there exists an integer -\begin_inset Formula $k$ -\end_inset - - such that -\begin_inset Formula $x-z=ky$ -\end_inset - -, - so -\begin_inset Formula $z=x-ky$ -\end_inset - - and we just have to show that -\begin_inset Formula $k=\lfloor\frac{x}{y}\rfloor$ -\end_inset - -. - But since -\begin_inset Formula $0\leq z<y$ -\end_inset - -, - -\begin_inset Formula $0\leq\frac{z}{y}<1$ -\end_inset - - and, - multiplying this formula by -\begin_inset Formula $-1$ -\end_inset - - and adding -\begin_inset Formula $\frac{x}{y}$ -\end_inset - -, - -\begin_inset Formula $\frac{x}{y}-1<\frac{x}{y}-\frac{z}{y}=k\leq\frac{x}{y}$ -\end_inset - -, - which means that -\begin_inset Formula $k=\lfloor\frac{x}{y}\rfloor$ -\end_inset - - by Exercise 3. -\end_layout - -\begin_layout Standard -\begin_inset ERT -status open - -\begin_layout Plain Layout - - -\backslash -rexerc19[M10] -\end_layout - -\end_inset - -( -\emph on -Law of inverses. -\emph default -) If -\begin_inset Formula $n\bot m$ -\end_inset - -, - there is an integer -\begin_inset Formula $n'$ -\end_inset - - such that -\begin_inset Formula $nn'\equiv1$ -\end_inset - - (modulo -\begin_inset Formula $m$ -\end_inset - -). - Prove this, - using the extension of Euclid's algorithm (Algorithm 1.2.1E). -\end_layout - -\begin_layout Standard -\begin_inset ERT -status open - -\begin_layout Plain Layout - - -\backslash -answer -\end_layout - -\end_inset - -We already know that the algorithm terminates and that returns -\begin_inset Formula $a,b\in\mathbb{Z}$ -\end_inset - - such that -\begin_inset Formula $am+bn=d\coloneqq\gcd\{n,m\}$ -\end_inset - -. - But in this case -\begin_inset Formula $d=1$ -\end_inset - -, - so -\begin_inset Formula $bn=d-am=1-am=1$ -\end_inset - - (modulo -\begin_inset Formula $m$ -\end_inset - -). -\end_layout - -\begin_layout Standard -\begin_inset ERT -status open - -\begin_layout Plain Layout - - -\backslash -rexerc22[M10] -\end_layout - -\end_inset - -Give an example to show that Law B is not always true if -\begin_inset Formula $a$ -\end_inset - - is not relatively prime to -\begin_inset Formula $m$ -\end_inset - -. -\end_layout - -\begin_layout Standard -\begin_inset ERT -status open - -\begin_layout Plain Layout - - -\backslash -answer -\end_layout - -\end_inset - -Let -\begin_inset Formula $a=b=3$ -\end_inset - -, - -\begin_inset Formula $x=2$ -\end_inset - -, - -\begin_inset Formula $y=4$ -\end_inset - -, - and -\begin_inset Formula $m=6$ -\end_inset - - in Law B, - then -\begin_inset Formula $ax=6\equiv12=by$ -\end_inset - - and -\begin_inset Formula $a=3=b$ -\end_inset - - but -\begin_inset Formula $x=2\not\equiv4=y$ -\end_inset - -. -\end_layout - -\begin_layout Standard -\begin_inset ERT -status open - -\begin_layout Plain Layout - - -\backslash -exerc23[M10] -\end_layout - -\end_inset - -Give an example to show that Law D is not always true if -\begin_inset Formula $r$ -\end_inset - - is not relatively prime to -\begin_inset Formula $s$ -\end_inset - -. -\end_layout - -\begin_layout Standard -\begin_inset ERT -status open - -\begin_layout Plain Layout - - -\backslash -answer -\end_layout - -\end_inset - -If -\begin_inset Formula $a=6$ -\end_inset - -, - -\begin_inset Formula $b=12$ -\end_inset - -, - -\begin_inset Formula $r=3$ -\end_inset - -, - and -\begin_inset Formula $s=6$ -\end_inset - -, - in Law D, - then -\begin_inset Formula $a=6\equiv12=b$ -\end_inset - - modulo -\begin_inset Formula $r=3$ -\end_inset - - and modulo -\begin_inset Formula $s=6$ -\end_inset - - but not modulo -\begin_inset Formula $rs=18$ -\end_inset - -. -\end_layout - -\begin_layout Standard -\begin_inset ERT -status open - -\begin_layout Plain Layout - - -\backslash -rexerc24[M20] -\end_layout - -\end_inset - -To what extent can Laws A, - B, - C, - and D be generalized to apply to arbitrary real numbers instead of integers? -\end_layout - -\begin_layout Standard -\begin_inset ERT -status open - -\begin_layout Plain Layout - - -\backslash -answer -\end_layout - -\end_inset - -Let's check the laws one by one. -\end_layout - -\begin_layout Description -Law -\begin_inset space ~ -\end_inset - -A If -\begin_inset Formula $a,b,x,y,m\in\mathbb{R}$ -\end_inset - -, - if -\begin_inset Formula $m=0$ -\end_inset - - the law is trivial. - If not, - we have -\begin_inset Formula $a-m\lfloor\frac{a}{m}\rfloor=b-m\lfloor\frac{b}{m}\rfloor$ -\end_inset - - and -\begin_inset Formula $x-m\lfloor\frac{x}{m}\rfloor=y-m\lfloor\frac{y}{m}\rfloor$ -\end_inset - -, - and for addition -\begin_inset Formula -\begin{multline*} -a+x-m\left\lfloor \frac{a+x}{m}\right\rfloor =b+y-m\left\lfloor \frac{b+y}{m}\right\rfloor \iff\\ -\iff m\left(\left\lfloor \frac{a+x}{m}\right\rfloor -\left\lfloor \frac{b+y}{m}\right\rfloor \right)=\\ -=a+x-b-y=m\left(\left\lfloor \frac{a}{m}\right\rfloor +\left\lfloor \frac{x}{m}\right\rfloor -\left\lfloor \frac{b}{m}\right\rfloor -\left\lfloor \frac{y}{m}\right\rfloor \right)\iff\\ -\iff\left\lfloor \frac{a+x}{m}\right\rfloor -\left\lfloor \frac{a}{m}\right\rfloor -\left\lfloor \frac{x}{m}\right\rfloor =\left\lfloor \frac{b+y}{m}\right\rfloor -\left\lfloor \frac{b}{m}\right\rfloor -\left\lfloor \frac{y}{m}\right\rfloor . -\end{multline*} - -\end_inset - -Now, -\begin_inset Formula -\[ -\left\lfloor \frac{a}{m}\right\rfloor +\left\lfloor \frac{x}{m}\right\rfloor \leq\frac{a+x}{m}<\left\lfloor \frac{a}{m}\right\rfloor +\left\lfloor \frac{x}{m}\right\rfloor +2, -\] - -\end_inset - -so -\begin_inset Formula $\left\lfloor \frac{a+x}{m}\right\rfloor $ -\end_inset - - is either -\begin_inset Formula $\left\lfloor \frac{a}{m}\right\rfloor +\left\lfloor \frac{x}{m}\right\rfloor $ -\end_inset - - or -\begin_inset Formula $\left\lfloor \frac{a}{m}\right\rfloor +\left\lfloor \frac{x}{m}\right\rfloor +1$ -\end_inset - -, - and similarly for -\begin_inset Formula $b$ -\end_inset - - and -\begin_inset Formula $y$ -\end_inset - -. - But -\begin_inset Formula -\begin{multline*} -\left\lfloor \frac{a+x}{m}\right\rfloor =\left\lfloor \frac{a}{m}\right\rfloor +\left\lfloor \frac{x}{m}\right\rfloor \iff\left\lfloor \frac{a}{m}\right\rfloor +\left\lfloor \frac{x}{m}\right\rfloor \leq\frac{a+x}{m}<\left\lfloor \frac{a}{m}\right\rfloor +\left\lfloor \frac{x}{m}\right\rfloor +1\iff\\ -\iff a+x<m\left\lfloor \frac{a}{m}\right\rfloor +m\left\lfloor \frac{x}{m}\right\rfloor +m\iff\\ -\iff(a\bmod m)+(x\bmod m)=(b\bmod m)+(x\bmod m)<m\iff\\ -\iff\left\lfloor \frac{b+y}{m}\right\rfloor =\left\lfloor \frac{b}{m}\right\rfloor +\left\lfloor \frac{y}{m}\right\rfloor , -\end{multline*} - -\end_inset - -which proves the equality in the last line of the first formula. - For subtraction, - we have to see that -\begin_inset Formula $-x\equiv-y\bmod m$ -\end_inset - - and so -\begin_inset Formula $a-x=a+(-x)\equiv a+(-y)=a-y\pmod m$ -\end_inset - -. - If -\begin_inset Formula $x\bmod m=0$ -\end_inset - -, - then -\begin_inset Formula $\frac{x}{m}\in\mathbb{Z}$ -\end_inset - -, - so -\begin_inset Formula $-\frac{x}{m}\in\mathbb{Z}$ -\end_inset - - and -\begin_inset Formula $-x\bmod m=0$ -\end_inset - -, - and similarly -\begin_inset Formula $y\bmod m=0$ -\end_inset - - and so -\begin_inset Formula $-y\bmod m=0$ -\end_inset - -. - Otherwise -\begin_inset Formula $\frac{x}{m}\notin\mathbb{Z}$ -\end_inset - -, - so -\begin_inset Formula $\lceil\frac{x}{m}\rceil=\lfloor\frac{x}{m}\rfloor+1$ -\end_inset - -, - but by Exercise 4, - -\begin_inset Formula -\begin{align*} --x\bmod m & =-x-m\left\lfloor \frac{-x}{m}\right\rfloor =-x+m\left\lceil \frac{x}{m}\right\rceil =-x+m\left\lfloor \frac{x}{m}\right\rfloor +m=\\ - & =m-(x\bmod m)=m-(y\bmod m)=-y\bmod m. -\end{align*} - -\end_inset - -For multiplication this doesn't hold; - for example, - if -\begin_inset Formula $m=2.5$ -\end_inset - -, - -\begin_inset Formula $a=0.5$ -\end_inset - -, - -\begin_inset Formula $b=-2$ -\end_inset - -, - and -\begin_inset Formula $x=y=2.2$ -\end_inset - -, - then -\begin_inset Formula $ax\bmod m=1.1\bmod2.5=1.1$ -\end_inset - - but -\begin_inset Formula $by\bmod m=-4.4\bmod2.5=0.6$ -\end_inset - -. -\end_layout - -\begin_layout Description -Law -\begin_inset space ~ -\end_inset - -B Obviously -\begin_inset Formula $a$ -\end_inset - - and -\begin_inset Formula $m$ -\end_inset - - must be integers, - otherwise the statement wouldn't make sense. - Even then, - however, - if -\begin_inset Formula $a=1$ -\end_inset - -, - -\begin_inset Formula $b=-2$ -\end_inset - -, - -\begin_inset Formula $x=\frac{4}{3}$ -\end_inset - -, - -\begin_inset Formula $y=\frac{7}{3}$ -\end_inset - -, - and -\begin_inset Formula $m=3$ -\end_inset - -, - then -\begin_inset Formula $ax=\frac{4}{3}\equiv-\frac{14}{3}=by$ -\end_inset - - and -\begin_inset Formula $a=1\equiv-2=b$ -\end_inset - -, - but -\begin_inset Formula $\frac{4}{3}\not\equiv\frac{7}{3}$ -\end_inset - -. -\end_layout - -\begin_layout Description -Law -\begin_inset space ~ -\end_inset - -C Using Exercise 15, - for -\begin_inset Formula $a,b,m,n\in\mathbb{R}$ -\end_inset - - with -\begin_inset Formula $n\neq0$ -\end_inset - -, -\begin_inset Formula -\begin{multline*} -a\equiv b\bmod m\iff a\bmod m=b\bmod m\iff\\ -\iff an\bmod mn=n(a\bmod m)=n(b\bmod m)=bn\bmod mn\iff\\ -\iff an\equiv bn\bmod mn. -\end{multline*} - -\end_inset - -Note that the second double implication would not hold in the left direction for -\begin_inset Formula $n=0$ -\end_inset - -. -\end_layout - -\begin_layout Description -Law -\begin_inset space ~ -\end_inset - -D Here -\begin_inset Formula $r$ -\end_inset - - and -\begin_inset Formula $s$ -\end_inset - - must be integers. - Then, - if -\begin_inset Formula $a,b\in\mathbb{R}$ -\end_inset - - with -\begin_inset Formula $a\equiv b$ -\end_inset - - modulo -\begin_inset Formula $r$ -\end_inset - - and -\begin_inset Formula $s$ -\end_inset - -, - if -\begin_inset Formula $r=0$ -\end_inset - - or -\begin_inset Formula $s=0$ -\end_inset - -, - the statement is obvious, - and otherwise -\begin_inset Formula $a-r\lfloor\frac{a}{r}\rfloor=b-r\lfloor\frac{b}{r}\rfloor$ -\end_inset - - and so -\begin_inset Formula $a-b=r(\lfloor\frac{a}{r}\rfloor-\lfloor\frac{b}{r}\rfloor)\eqqcolon d\in\mathbb{Z}$ -\end_inset - -. - By Law A, - since -\begin_inset Formula $a\equiv b$ -\end_inset - - and -\begin_inset Formula $b\equiv b$ -\end_inset - -, - -\begin_inset Formula $d=a-b\equiv b-b=0$ -\end_inset - - modulo both -\begin_inset Formula $r$ -\end_inset - - and -\begin_inset Formula $s$ -\end_inset - -, - so from Law D for integers we have -\begin_inset Formula $a-b\equiv0$ -\end_inset - - modulo -\begin_inset Formula $rs$ -\end_inset - - (assuming -\begin_inset Formula $r\bot s$ -\end_inset - -) and so -\begin_inset Formula $a\equiv b$ -\end_inset - - modulo -\begin_inset Formula $rs$ -\end_inset - -. -\end_layout - -\begin_layout Standard -Thus, - Law A holds for addition and subtraction, - Law C always holds, - and Law D holds if we still maintain -\begin_inset Formula $r,s\in\mathbb{Z}$ -\end_inset - -. -\end_layout - -\begin_layout Standard -\begin_inset ERT -status open - -\begin_layout Plain Layout - - -\backslash -exerc25[M02] -\end_layout - -\end_inset - -Show that, - according to Theorem F, - -\begin_inset Formula $a^{p-1}\bmod p=[a\text{ is not a multiple of }p]$ -\end_inset - -, - whenever -\begin_inset Formula $p$ -\end_inset - - is a prime number. -\end_layout - -\begin_layout Standard -\begin_inset ERT -status open - -\begin_layout Plain Layout - - -\backslash -answer -\end_layout - -\end_inset - -If -\begin_inset Formula $a$ -\end_inset - - is a multiple of -\begin_inset Formula $p$ -\end_inset - -, - then so is -\begin_inset Formula $a^{p-1}$ -\end_inset - - and -\begin_inset Formula $a^{p-1}\bmod p=0$ -\end_inset - -. - Otherwise -\begin_inset Formula $a\bot p$ -\end_inset - -, - so we can cancel out in -\begin_inset Formula $a^{p}\equiv a\pmod p$ -\end_inset - - to get -\begin_inset Formula $a^{p-1}\equiv1\pmod p$ -\end_inset - - and so -\begin_inset Formula $a^{p-1}\bmod p=1\bmod p=1$ -\end_inset - -. -\end_layout - -\begin_layout Standard -\begin_inset ERT -status open - -\begin_layout Plain Layout - - -\backslash -rexerc28[M25] -\end_layout - -\end_inset - -Show that the method used to prove Theorem F can be used to prove the following extension, - called -\emph on -Euler's theorem -\emph default -: - -\begin_inset Formula $a^{\varphi(m)}\equiv1\pmod m$ -\end_inset - -, - for -\emph on -any -\emph default - positive integer -\begin_inset Formula $m$ -\end_inset - -, - when -\begin_inset Formula $a\bot m$ -\end_inset - -. - (In particular, - the number -\begin_inset Formula $n'$ -\end_inset - - in exercise 19 may be taken to be -\begin_inset Formula $n^{\varphi(m)-1}\bmod m$ -\end_inset - -.) -\end_layout - -\begin_layout Standard -\begin_inset ERT -status open - -\begin_layout Plain Layout - - -\backslash -answer -\end_layout - -\end_inset - -First, - -\begin_inset Formula $\gcd\{x,y\}\equiv\gcd\{x+ky,y\}$ -\end_inset - - for any -\begin_inset Formula $x,y,k\in\mathbb{Z}$ -\end_inset - -, - because if -\begin_inset Formula $z\mid x$ -\end_inset - - and -\begin_inset Formula $z\mid y$ -\end_inset - - then obviously -\begin_inset Formula $z\mid x+ky$ -\end_inset - - and if -\begin_inset Formula $z\mid x+ky$ -\end_inset - - and -\begin_inset Formula $z\mid y$ -\end_inset - - then -\begin_inset Formula $z\mid x$ -\end_inset - -, - so the set of common divisors is the same. - It's also clear that if -\begin_inset Formula $x\bot z$ -\end_inset - - and -\begin_inset Formula $y\bot z$ -\end_inset - - then -\begin_inset Formula $xy\bot z$ -\end_inset - -, - since neither -\begin_inset Formula $x$ -\end_inset - - nor -\begin_inset Formula $y$ -\end_inset - - has common divisors with -\begin_inset Formula $z$ -\end_inset - - and so neither does -\begin_inset Formula $xy$ -\end_inset - -. - -\end_layout - -\begin_layout Standard -With these lemmas, - we are ready to prove the statement. - Let -\begin_inset Formula -\[ -\{x_{1},\dots,x_{\varphi(m)}\}\coloneqq\{x\in\{0,\dots,m-1\}\mid x\bot m\}, -\] - -\end_inset - - then the -\begin_inset Formula $x_{i}a\bmod m$ -\end_inset - - are all distinct, - for if -\begin_inset Formula $x_{i}a\bmod m=x_{j}a\bmod m$ -\end_inset - -, - since -\begin_inset Formula $a\bot m$ -\end_inset - -, - then -\begin_inset Formula $x_{i}=x_{i}\bmod m=x_{j}\bmod m=x_{j}$ -\end_inset - -. - Since -\begin_inset Formula $x_{i},a\bot m$ -\end_inset - -, - -\begin_inset Formula $x_{i}a\bot m$ -\end_inset - - and also -\begin_inset Formula $(x_{i}a\bmod m)\bot m$ -\end_inset - -, - so all the -\begin_inset Formula $x_{i}a\bmod m$ -\end_inset - - are different and relatively prime to -\begin_inset Formula $m$ -\end_inset - - and therefore -\begin_inset Formula $\{x_{i}a\bmod m\}_{i}=\{x_{i}\}_{i}$ -\end_inset - -. - Thus -\begin_inset Formula -\[ -\prod_{i}x_{i}\equiv\prod_{i}(x_{i}a\bmod m)\equiv\prod_{i}x_{i}a\equiv a^{\varphi(m)}\prod_{i}x_{i}\pmod m, -\] - -\end_inset - -and therefore using Law B with the fact that -\begin_inset Formula $\prod_{i}x_{i}\bot m$ -\end_inset - - gives us the result. -\end_layout - -\begin_layout Standard -\begin_inset ERT -status open - -\begin_layout Plain Layout - - -\backslash -rexerc34[M21] -\end_layout - -\end_inset - -What conditions on the real number -\begin_inset Formula $b>1$ -\end_inset - - are necessary and sufficient to guarantee that -\begin_inset Formula $\lfloor\log_{b}x\rfloor=\left\lfloor \log_{b}\lfloor x\rfloor\right\rfloor $ -\end_inset - - for all real -\begin_inset Formula $x\geq1$ -\end_inset - -? -\end_layout - -\begin_layout Standard -\begin_inset ERT -status open - -\begin_layout Plain Layout - - -\backslash -answer -\end_layout - -\end_inset - -It happens if and only if -\begin_inset Formula $b\in\mathbb{Z}$ -\end_inset - -. - To prove this, - observe that, - since the logarithm in base -\begin_inset Formula $b>1$ -\end_inset - - is strictly increasing, - -\begin_inset Formula $\log_{b}\lfloor x\rfloor<\log_{b}x$ -\end_inset - -, - so -\begin_inset Formula $\lfloor\log_{b}x\rfloor\neq\left\lfloor \log_{b}\lfloor x\rfloor\right\rfloor $ -\end_inset - - if and only if -\begin_inset Formula $\left\lfloor \log_{b}\lfloor x\rfloor\right\rfloor <\lfloor\log_{b}x\rfloor$ -\end_inset - -, - that is, - if there exists an integer -\begin_inset Formula $k$ -\end_inset - - (namely -\begin_inset Formula $\lfloor\log_{b}x\rfloor$ -\end_inset - -) such that -\begin_inset Formula $\log_{b}\lfloor x\rfloor<k\leq\log_{b}x$ -\end_inset - -, - if and only if -\begin_inset Formula $\lfloor x\rfloor<b^{k}\leq x$ -\end_inset - -. -\end_layout - -\begin_layout Standard -If -\begin_inset Formula $b\in\mathbb{Z}$ -\end_inset - -, - -\begin_inset Formula $b^{k}\in\mathbb{Z}$ -\end_inset - - as well, - so that would mean that -\begin_inset Formula $\lfloor x\rfloor+1\leq b^{k}\leq x\#$ -\end_inset - -. -\end_layout - -\begin_layout Standard -If -\begin_inset Formula $b\notin\mathbb{Z}$ -\end_inset - -, - we just have to set -\begin_inset Formula $x=b$ -\end_inset - - and -\begin_inset Formula $k=1$ -\end_inset - -. -\end_layout - -\begin_layout Standard -\begin_inset ERT -status open - -\begin_layout Plain Layout - - -\backslash -rexerc35[M20] -\end_layout - -\end_inset - -Given that -\begin_inset Formula $m$ -\end_inset - - and -\begin_inset Formula $n$ -\end_inset - - are integers and -\begin_inset Formula $n>0$ -\end_inset - -, - prove that -\begin_inset Formula -\[ -\lfloor(x+m)/n\rfloor=\left\lfloor (\lfloor x\rfloor+m)/n\right\rfloor -\] - -\end_inset - -for all real -\begin_inset Formula $x$ -\end_inset - -. - (When -\begin_inset Formula $m=0$ -\end_inset - -, - we have an important special case.) Does an analogous result hold for the ceiling function? -\end_layout - -\begin_layout Standard -\begin_inset ERT -status open - -\begin_layout Plain Layout - - -\backslash -answer -\end_layout - -\end_inset - -Clearly -\begin_inset Formula $\left\lfloor \frac{\lfloor x\rfloor+m}{n}\right\rfloor \leq\left\lfloor \frac{x+m}{n}\right\rfloor $ -\end_inset - -. - If this inequality were strict, - however, - there would be an integer -\begin_inset Formula $k$ -\end_inset - - such that -\begin_inset Formula $\frac{\lfloor x\rfloor+m}{n}<k\leq\frac{x+m}{n}$ -\end_inset - -, - and so -\begin_inset Formula $\lfloor x\rfloor<nk-m\leq x$ -\end_inset - -, - but this is impossible because -\begin_inset Formula $nk-m\in\mathbb{Z}$ -\end_inset - -. -\end_layout - -\begin_layout Standard -For the ceiling, - clearly -\begin_inset Formula $\left\lceil \frac{\lceil x\rceil+m}{n}\right\rceil \geq\left\lceil \frac{x+m}{n}\right\rceil $ -\end_inset - -, - but if this inequality were strict, - there would be an integer -\begin_inset Formula $k$ -\end_inset - - (namely -\begin_inset Formula $\left\lceil \frac{x+m}{n}\right\rceil $ -\end_inset - -) such that -\begin_inset Formula $\frac{x+m}{n}\leq k<\frac{\lceil x\rceil+m}{n}$ -\end_inset - -, - and so -\begin_inset Formula $x\leq nk-m<\lceil x\rceil$ -\end_inset - -, - an absurdity because -\begin_inset Formula $nk-m\in\mathbb{Z}$ -\end_inset - -. -\end_layout - -\end_body -\end_document |
