diff options
| author | Juan Marín Noguera <juan@mnpi.eu> | 2025-05-16 22:18:44 +0200 |
|---|---|---|
| committer | Juan Marín Noguera <juan@mnpi.eu> | 2025-05-16 22:18:44 +0200 |
| commit | 4f670b750af5c11e1eac16d9cd8556455f89f46a (patch) | |
| tree | e0f8d7b33df2727d89150f799ee8628821fda80a /1.2.5.lyx | |
| parent | 16ccda6c459c0fd7ca2081e9d541124c28b0c556 (diff) | |
Changed layout for more manageable volumes
Diffstat (limited to '1.2.5.lyx')
| -rw-r--r-- | 1.2.5.lyx | 1097 |
1 files changed, 0 insertions, 1097 deletions
diff --git a/1.2.5.lyx b/1.2.5.lyx deleted file mode 100644 index d379269..0000000 --- a/1.2.5.lyx +++ /dev/null @@ -1,1097 +0,0 @@ -#LyX 2.4 created this file. For more info see https://www.lyx.org/ -\lyxformat 620 -\begin_document -\begin_header -\save_transient_properties true -\origin unavailable -\textclass book -\begin_preamble -\input defs -\end_preamble -\use_default_options true -\maintain_unincluded_children no -\language english -\language_package default -\inputencoding utf8 -\fontencoding auto -\font_roman "default" "default" -\font_sans "default" "default" -\font_typewriter "default" "default" -\font_math "auto" "auto" -\font_default_family default -\use_non_tex_fonts false -\font_sc false -\font_roman_osf false -\font_sans_osf false -\font_typewriter_osf false -\font_sf_scale 100 100 -\font_tt_scale 100 100 -\use_microtype false -\use_dash_ligatures true -\graphics default -\default_output_format default -\output_sync 0 -\bibtex_command default -\index_command default -\paperfontsize default -\spacing single -\use_hyperref false -\papersize default -\use_geometry false -\use_package amsmath 1 -\use_package amssymb 1 -\use_package cancel 1 -\use_package esint 1 -\use_package mathdots 1 -\use_package mathtools 1 -\use_package mhchem 1 -\use_package stackrel 1 -\use_package stmaryrd 1 -\use_package undertilde 1 -\cite_engine basic -\cite_engine_type default -\biblio_style plain -\use_bibtopic false -\use_indices false -\paperorientation portrait -\suppress_date false -\justification true -\use_refstyle 1 -\use_formatted_ref 0 -\use_minted 0 -\use_lineno 0 -\index Index -\shortcut idx -\color #008000 -\end_index -\secnumdepth 3 -\tocdepth 3 -\paragraph_separation indent -\paragraph_indentation default -\is_math_indent 0 -\math_numbering_side default -\quotes_style english -\dynamic_quotes 0 -\papercolumns 1 -\papersides 1 -\paperpagestyle default -\tablestyle default -\tracking_changes false -\output_changes false -\change_bars false -\postpone_fragile_content false -\html_math_output 0 -\html_css_as_file 0 -\html_be_strict false -\docbook_table_output 0 -\docbook_mathml_prefix 1 -\end_header - -\begin_body - -\begin_layout Standard -\begin_inset ERT -status open - -\begin_layout Plain Layout - - -\backslash -exerc1[00] -\end_layout - -\end_inset - -How many ways are there to shuffle a 52-card deck? -\end_layout - -\begin_layout Standard -\begin_inset ERT -status open - -\begin_layout Plain Layout - - -\backslash -answer -\end_layout - -\end_inset - - -\begin_inset Formula $52!=80658175170943878571660636856403766975289505440883277824000000000000$ -\end_inset - -. -\end_layout - -\begin_layout Standard -\begin_inset ERT -status open - -\begin_layout Plain Layout - - -\backslash -exerc2[10] -\end_layout - -\end_inset - -In the notation of Eq. - (2), - show that -\begin_inset Formula $p_{n(n-1)}=p_{nn}$ -\end_inset - -, - and explain why this happens. -\end_layout - -\begin_layout Standard -\begin_inset ERT -status open - -\begin_layout Plain Layout - - -\backslash -answer -\end_layout - -\end_inset - - -\begin_inset Formula $p_{n(n-1)}=n(n-1)\cdots(n-(n-1)+1)=n(n-1)\cdots2=n(n-1)\cdots1=p_{nn}$ -\end_inset - -. - This is because -\begin_inset Formula $p_{n(n-1)}$ -\end_inset - - is the number of ways to take and arrange -\begin_inset Formula $n-1$ -\end_inset - - objects out -\begin_inset Formula $n$ -\end_inset - - and -\begin_inset Formula $p_{nn}$ -\end_inset - - is the number of ways to take and arrange the -\begin_inset Formula $n$ -\end_inset - - objects, - which consists of first arranging -\begin_inset Formula $n-1$ -\end_inset - - objects out of the -\begin_inset Formula $n$ -\end_inset - - objects and then adding the one remaining. -\end_layout - -\begin_layout Standard -\begin_inset ERT -status open - -\begin_layout Plain Layout - - -\backslash -exerc3[10] -\end_layout - -\end_inset - -What permutations of -\begin_inset Formula $\{1,2,3,4,5\}$ -\end_inset - - would be constructed from the permutation -\begin_inset Formula $3\,1\,2\,4$ -\end_inset - - using Methods 1 and 2, - respectively? -\end_layout - -\begin_layout Standard -\begin_inset ERT -status open - -\begin_layout Plain Layout - - -\backslash -answer -\end_layout - -\end_inset - - -\end_layout - -\begin_layout Enumerate - -\series bold -Method 1: - -\series default - -\begin_inset Formula $5\,3\,1\,2\,4$ -\end_inset - -, - -\begin_inset Formula $3\,5\,1\,2\,4$ -\end_inset - -, - -\begin_inset Formula $3\,1\,5\,2\,4$ -\end_inset - -, - -\begin_inset Formula $3\,1\,2\,5\,4$ -\end_inset - -, - -\begin_inset Formula $3\,1\,2\,4\,5$ -\end_inset - -. -\end_layout - -\begin_layout Enumerate - -\series bold -Method 2: - -\series default - -\begin_inset Formula $4\,2\,3\,5\,1$ -\end_inset - -, - -\begin_inset Formula $4\,1\,3\,5\,2$ -\end_inset - -, - -\begin_inset Formula $4\,1\,2\,5\,3$ -\end_inset - -, - -\begin_inset Formula $3\,1\,2\,5\,4$ -\end_inset - -, - -\begin_inset Formula $3\,1\,2\,4\,5$ -\end_inset - -. -\end_layout - -\begin_layout Standard -\begin_inset ERT -status open - -\begin_layout Plain Layout - - -\backslash -rexerc4[13] -\end_layout - -\end_inset - -Given the fact that -\begin_inset Formula $\log_{10}1000!=2567.60464...$ -\end_inset - -, - determine exactly how many decimal digits are present in the number -\begin_inset Formula $1000!$ -\end_inset - -. - What is the -\emph on -most significant -\emph default - digit? - What is the -\emph on -least significant -\emph default - digit? -\end_layout - -\begin_layout Standard -\begin_inset ERT -status open - -\begin_layout Plain Layout - - -\backslash -answer -\end_layout - -\end_inset - -Given a number -\begin_inset Formula $x$ -\end_inset - - with -\begin_inset Formula $n+1$ -\end_inset - - digits -\begin_inset Formula $x_{n}x_{n-1}\cdots x_{1}x_{0}$ -\end_inset - -, - we have -\begin_inset Formula $x_{n}10^{n}\leq x<(x_{n}+1)10^{n}$ -\end_inset - - and therefore -\begin_inset Formula $n+\log_{10}x_{n}\leq\log x<n+\log_{10}(x_{n}+1)$ -\end_inset - -, - with -\begin_inset Formula $0\leq\log_{10}X_{n}<\log_{10}(x_{n}+1)\leq1$ -\end_inset - -. - Thus, - -\begin_inset Formula $1000!$ -\end_inset - - has 2568 digits and the most significant digit is 4, - since -\begin_inset Formula $\log_{10}4=0.60205...$ -\end_inset - - and -\begin_inset Formula $\log_{10}5=0.69897...$ -\end_inset - -. - Furthermore, - since -\begin_inset Formula $10\mid1000!$ -\end_inset - -, - the least significant digit is 0. -\end_layout - -\begin_layout Standard -\begin_inset ERT -status open - -\begin_layout Plain Layout - - -\backslash -rexerc6[17] -\end_layout - -\end_inset - -Using Eq. - (8), - write -\begin_inset Formula $20!$ -\end_inset - - as a product of prime factors. -\end_layout - -\begin_layout Standard -\begin_inset ERT -status open - -\begin_layout Plain Layout - - -\backslash -answer -\end_layout - -\end_inset - -Numbers up to 20 have prime factors up to 20, - so the prime factors are 2, - 3, - 5, - 7, - 11, - 13, - 17, - and 19. - For the multiplicities, -\begin_inset Formula -\begin{align*} -\mu_{2} & =\sum_{k\geq1}\left\lfloor \frac{20}{2^{k}}\right\rfloor =10+5+2+1=18, & \mu_{11} & =\sum_{k\geq1}\left\lfloor \frac{20}{11^{k}}\right\rfloor =1,\\ -\mu_{3} & =\sum_{k\geq1}\left\lfloor \frac{20}{3^{k}}\right\rfloor =6+2=8, & \mu_{13} & =\sum_{k\geq1}\left\lfloor \frac{20}{13^{k}}\right\rfloor =1,\\ -\mu_{5} & =\sum_{k\geq1}\left\lfloor \frac{20}{5^{k}}\right\rfloor =4, & \mu_{17} & =\sum_{k\geq1}\left\lfloor \frac{20}{17^{k}}\right\rfloor =1,\\ -\mu_{7} & =\sum_{k\geq1}\left\lfloor \frac{20}{7^{k}}\right\rfloor =2, & \mu_{19} & =\sum_{k\geq1}\left\lfloor \frac{20}{19^{k}}\right\rfloor =1, -\end{align*} - -\end_inset - -so -\begin_inset Formula $20!=2^{18}3^{8}5^{4}7^{2}\cdot11\cdot13\cdot17\cdot19$ -\end_inset - -. -\end_layout - -\begin_layout Standard -\begin_inset ERT -status open - -\begin_layout Plain Layout - - -\backslash -exerc7[M10] -\end_layout - -\end_inset - -Show that the -\begin_inset Quotes eld -\end_inset - -generalized termial -\begin_inset Quotes erd -\end_inset - - function in Eq. - (10) satisfies the identity -\begin_inset Formula $x?=x+(x-1)?$ -\end_inset - - for all real numbers -\begin_inset Formula $x$ -\end_inset - -. -\end_layout - -\begin_layout Standard -\begin_inset ERT -status open - -\begin_layout Plain Layout - - -\backslash -answer -\end_layout - -\end_inset - - -\begin_inset Formula $x+(x-1)?=x+\frac{1}{2}(x-1)x=\frac{1}{2}2x+\frac{1}{2}(x-1)x=\frac{1}{2}(x+1)x=x?$ -\end_inset - -. -\end_layout - -\begin_layout Standard -\begin_inset ERT -status open - -\begin_layout Plain Layout - - -\backslash -exerc9[M10] -\end_layout - -\end_inset - -Determine the values of -\begin_inset Formula $\Gamma(\frac{1}{2})$ -\end_inset - - and -\begin_inset Formula $\Gamma(-\frac{1}{2})$ -\end_inset - -, - given that -\begin_inset Formula $(\frac{1}{2})!=\sqrt{\pi}/2$ -\end_inset - -. -\end_layout - -\begin_layout Standard -\begin_inset ERT -status open - -\begin_layout Plain Layout - - -\backslash -answer -\end_layout - -\end_inset - - -\begin_inset Formula -\begin{align*} -(\tfrac{1}{2})!=\tfrac{1}{2}\Gamma(\tfrac{1}{2}) & \implies\Gamma(\tfrac{1}{2})=2(\tfrac{1}{2})!=\sqrt{\pi},\\ --\tfrac{1}{2}\Gamma(-\tfrac{1}{2})=\Gamma(\tfrac{1}{2}) & \implies\Gamma(-\tfrac{1}{2})=-2\Gamma(\tfrac{1}{2})=-2\sqrt{\pi}. -\end{align*} - -\end_inset - - -\end_layout - -\begin_layout Standard -\begin_inset ERT -status open - -\begin_layout Plain Layout - - -\backslash -rexerc10[HM20] -\end_layout - -\end_inset - -Does the identity -\begin_inset Formula $\Gamma(x+1)=x\Gamma(x)$ -\end_inset - - hold for all real numbers -\begin_inset Formula $x$ -\end_inset - -? -\end_layout - -\begin_layout Standard -\begin_inset ERT -status open - -\begin_layout Plain Layout - - -\backslash -answer -\end_layout - -\end_inset - -No, - as it doesn't hold when -\begin_inset Formula $\Gamma(x)$ -\end_inset - - or -\begin_inset Formula $\Gamma(x+1)$ -\end_inset - - are not defined. - However, - when they are defined, -\begin_inset Formula -\begin{align*} -x\Gamma(x) & =x\lim_{m}\frac{m^{x}m!}{\prod_{i=0}^{m}(x+i)}=\lim_{m}\frac{m^{x}m!}{\prod_{i=1}^{m}(x+i)}=\lim_{m}\frac{(m+1)^{x}(m+1)!}{\prod_{i=1}^{m+1}(x+i)}=\\ - & =\lim_{m}\frac{(m+1)^{x+1}m!}{\prod_{i=0}^{m}(x+1+i)}=\lim_{m}\left(\frac{m^{x+1}m!}{\prod_{i=0}^{m}((x+1)+i)}\left(\frac{m+1}{m}\right)^{x+1}\right)=\Gamma(x+1)\cdot1. -\end{align*} - -\end_inset - -Note that, - if -\begin_inset Formula $x\in\mathbb{Z}^{-}$ -\end_inset - -, - then the terms from -\begin_inset Formula $m=-x$ -\end_inset - - onward are not defined, - so this is not the scenario we are dealing with. - For ant other value, - this holds. -\end_layout - -\begin_layout Standard -\begin_inset ERT -status open - -\begin_layout Plain Layout - - -\backslash -exerc11[M15] -\end_layout - -\end_inset - -Let the representation of -\begin_inset Formula $n$ -\end_inset - - in the binary system be -\begin_inset Formula $n=2^{e_{1}}+2^{e_{2}}+\dots+2^{e_{r}}$ -\end_inset - -, - where -\begin_inset Formula $e_{1}>e_{2}>\dots>e_{r}\geq0$ -\end_inset - -. - Show that -\begin_inset Formula $n!$ -\end_inset - - is divisible by -\begin_inset Formula $2^{n-r}$ -\end_inset - - but not by -\begin_inset Formula $2^{n-r+1}$ -\end_inset - -. -\end_layout - -\begin_layout Standard -\begin_inset ERT -status open - -\begin_layout Plain Layout - - -\backslash -answer -\end_layout - -\end_inset - -This is exactly to say that, - for -\begin_inset Formula $p=2$ -\end_inset - -, - -\begin_inset Formula $\mu=n-r$ -\end_inset - -. - But -\begin_inset Formula $r$ -\end_inset - - is the sum of all bits of -\begin_inset Formula $n$ -\end_inset - - in base 2, - so by Exercise 12, - -\begin_inset Formula $\mu=\frac{1}{2-1}(n-r)=n-r$ -\end_inset - -. -\end_layout - -\begin_layout Standard -\begin_inset ERT -status open - -\begin_layout Plain Layout - - -\backslash -rexerc12[M22] -\end_layout - -\end_inset - -(A. - Legendre, - 1808.) Generalizing the result of the previous exercise, - let -\begin_inset Formula $p$ -\end_inset - - be a prime number, - and let the representation of -\begin_inset Formula $n$ -\end_inset - - in the -\begin_inset Formula $p$ -\end_inset - --ary number system be -\begin_inset Formula $n=a_{k}p^{k}+a_{k-1}p^{k-1}+\dots+a_{1}p+a_{0}$ -\end_inset - -. - Express the number -\begin_inset Formula $\mu$ -\end_inset - - of Eq. - (8) in a simple formula involving -\begin_inset Formula $n$ -\end_inset - -, - -\begin_inset Formula $p$ -\end_inset - -, - and -\begin_inset Formula $a$ -\end_inset - -'s. -\end_layout - -\begin_layout Standard -\begin_inset ERT -status open - -\begin_layout Plain Layout - - -\backslash -answer -\end_layout - -\end_inset - -The question makes sense for -\begin_inset Formula $n\in\mathbb{N}^{*}$ -\end_inset - -. - Then, - given that the previous exercise showed that, - for -\begin_inset Formula $p=2$ -\end_inset - -, - -\begin_inset Formula $\mu=n-r$ -\end_inset - -, - where -\begin_inset Formula $r\coloneqq|\{k\in\mathbb{N}\mid a_{k}\neq0\}|=\sum_{k}a_{k}$ -\end_inset - -, - a guess is that -\begin_inset Formula $\mu=n-\sum_{k}a_{k}$ -\end_inset - - for any other positive prime integer -\begin_inset Formula $p$ -\end_inset - - as well, - that is, - -\begin_inset Formula $n-\mu=\sum_{k}a_{k}$ -\end_inset - -. - To prove this, -\begin_inset Formula -\[ -\mu=\sum_{j\geq1}\left\lfloor \frac{n}{p^{j}}\right\rfloor =\sum_{j=1}^{k}\sum_{i=j}^{k}a_{i}p^{i-j}=\sum_{1\leq j\leq i\leq k}a_{i}p^{i-j}=\sum_{i=1}^{k}a_{i}\left(\sum_{j=0}^{i-1}p^{j}\right)=\sum_{i=1}^{k}\frac{a_{i}(p^{i}-1)}{p-1}, -\] - -\end_inset - -where the latter identity is because of the cyclotomic formula. - Then, -\begin_inset Formula -\begin{align*} -\sum_{i=1}^{k}\frac{a_{i}(p^{i}-1)}{p-1} & =\frac{1}{p-1}\left(\sum_{i=1}^{k}a_{i}p^{i}-\sum_{i=1}^{k}a_{i}\right)=\frac{1}{p-1}\left((n-a_{0})-\sum_{i\geq1}a_{i}\right)\\ - & =\frac{1}{p-1}\left(n-\sum_{i\geq0}a_{i}\right). -\end{align*} - -\end_inset - - -\end_layout - -\begin_layout Standard -\begin_inset ERT -status open - -\begin_layout Plain Layout - - -\backslash -rexerc22[HM20] -\end_layout - -\end_inset - -Try to put yourself in Euler's place, - looking for a way to generalize -\begin_inset Formula $n!$ -\end_inset - - to noninteger values of -\begin_inset Formula $n$ -\end_inset - -. - Since -\begin_inset Formula $(n+\frac{1}{2})!/n!$ -\end_inset - - times -\begin_inset Formula $((n+\frac{1}{2})+\frac{1}{2})!/(n+\frac{1}{2})!$ -\end_inset - - equals -\begin_inset Formula $(n+1)!/n!=n+1$ -\end_inset - -, - it seems natural that -\begin_inset Formula $(n+\frac{1}{2})!/n!$ -\end_inset - - should be approximately -\begin_inset Formula $\sqrt{n}$ -\end_inset - -. - Similarly, - -\begin_inset Formula $(n+\frac{1}{3})!/n!$ -\end_inset - - should be -\begin_inset Formula $\approx\sqrt[3]{n}$ -\end_inset - -. - Invent a hypothesis about the ratio -\begin_inset Formula $(n+x)!/n!$ -\end_inset - - as -\begin_inset Formula $n$ -\end_inset - - approaches infinity. - Is your hypothesis correct when -\begin_inset Formula $x$ -\end_inset - - is an integer? - Does it tell anything about the appropriate value of -\begin_inset Formula $x!$ -\end_inset - - when -\begin_inset Formula $x$ -\end_inset - - is not an integer? -\end_layout - -\begin_layout Standard -\begin_inset ERT -status open - -\begin_layout Plain Layout - - -\backslash -answer -\end_layout - -\end_inset - -The previous examples show -\begin_inset Formula $\frac{(n+\frac{1}{m})!}{n!}\approx\sqrt[m]{n}=n^{\frac{1}{m}}$ -\end_inset - -, - which is to say that -\begin_inset Formula $\frac{(n+x)!}{n!}\approx n^{x}$ -\end_inset - - for -\begin_inset Formula $x=\frac{1}{m}$ -\end_inset - -. - As -\begin_inset Formula $n$ -\end_inset - - gets bigger, - the approximation should probably be more accurate for the same value of -\begin_inset Formula $x$ -\end_inset - -, - so we could see that -\begin_inset Formula $(n+x)!\approx n^{x}n!$ -\end_inset - -. - For a non-negative integer -\begin_inset Formula $x$ -\end_inset - -, - -\begin_inset Formula $(n+x)!=(n+1)\cdots(n+x)\cdot n!$ -\end_inset - -, - so as -\begin_inset Formula $n$ -\end_inset - - gets bigger the approximation is more and more precise, - and in fact, -\begin_inset Formula -\[ -\lim_{n}\frac{n^{x}n!}{(n+x)!}=\lim_{n}\frac{n^{x}}{(n+1)\cdots(n+x)}=\lim_{n}\prod_{k=1}^{x}\frac{n}{n+k}=1. -\] - -\end_inset - -Multiplying by -\begin_inset Formula $x!$ -\end_inset - -, -\begin_inset Formula -\[ -x!=\lim_{n}\frac{n^{x}x!n!}{(n+x)!}=\lim_{n}(n^{x}n!)\frac{x!}{(n+x)!}=\lim_{n}\frac{n^{x}n!}{(x+1)\cdots(x+n)}, -\] - -\end_inset - -which is Euler's factorial formula. -\end_layout - -\begin_layout Standard -\begin_inset ERT -status open - -\begin_layout Plain Layout - - -\backslash -rexerc24[HM21] -\end_layout - -\end_inset - -Prove the handy inequalities -\begin_inset Formula -\begin{align*} -\frac{n^{n}}{\text{e}^{n-1}} & \leq n!\leq\frac{n^{n+1}}{\text{e}^{n-1}}, & \text{integer }n & \geq1. -\end{align*} - -\end_inset - - -\end_layout - -\begin_layout Standard -\begin_inset ERT -status open - -\begin_layout Plain Layout - - -\backslash -answer -\end_layout - -\end_inset - - -\begin_inset Note Greyedout -status open - -\begin_layout Plain Layout -(Looking at the answers.) -\end_layout - -\end_inset - -We have -\begin_inset Formula -\begin{align*} -\frac{n^{n}}{n!} & =\prod_{k=1}^{n}\frac{n}{k}=\prod_{k=1}^{n-1}\frac{n}{k}=\prod_{k=1}^{n-1}\prod_{j=k}^{n-1}\frac{j+1}{j}=\prod_{1\leq k\leq j<n}\frac{j+1}{j}=\prod_{j=1}^{n-1}\left(\frac{j+1}{j}\right)^{j}=\\ - & =\prod_{j=1}^{n-1}\left(1+\frac{1}{j}\right)^{j}\leq\prod_{j=1}^{n-1}\left(\text{e}^{1/j}\right)^{j}=\text{e}^{n-1}, -\end{align*} - -\end_inset - -where for the inequality we use that -\begin_inset Formula $1+x\leq\text{e}^{x}$ -\end_inset - - for all real -\begin_inset Formula $x$ -\end_inset - -. - Likewise, -\begin_inset Formula -\begin{align*} -\frac{n^{n+1}}{n!} & =n\frac{n^{n}}{n!}=n\prod_{j=1}^{n-1}\left(\frac{j+1}{j}\right)^{j}=\prod_{j=1}^{n-1}\frac{j+1}{j}\prod_{j=1}^{n-1}\left(\frac{j+1}{j}\right)^{j}=\prod_{j=1}^{n-1}\left(\frac{j+1}{j}\right)^{j+1}=\\ - & =\prod_{j=2}^{n}\left(\frac{j}{j-1}\right)^{j}=\prod_{j=2}^{n}\left(1-\frac{1}{j}\right)^{-j}\geq\prod_{j=2}^{n}\left(\text{e}^{-1/j}\right)^{-j}=\text{e}^{n-1}. -\end{align*} - -\end_inset - - -\end_layout - -\end_body -\end_document |
